JPS61213330A - Bar-shaped body having high-temperature resistant strength and its production - Google Patents

Bar-shaped body having high-temperature resistant strength and its production

Info

Publication number
JPS61213330A
JPS61213330A JP5406485A JP5406485A JPS61213330A JP S61213330 A JPS61213330 A JP S61213330A JP 5406485 A JP5406485 A JP 5406485A JP 5406485 A JP5406485 A JP 5406485A JP S61213330 A JPS61213330 A JP S61213330A
Authority
JP
Japan
Prior art keywords
preform
shaped body
rod
resistant
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5406485A
Other languages
Japanese (ja)
Inventor
Koji Kiryu
桐生 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5406485A priority Critical patent/JPS61213330A/en
Publication of JPS61213330A publication Critical patent/JPS61213330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a bar-shaped body consisting of a composite material having high strength, high elasticity and excellent high-temp. strength by molding a preform of whiskers in a two-step liquid mixing stage then pouring a molten light metal onto the same. CONSTITUTION:The whiskers 1 consisting of SiC, etc., are incorporated into water 2, etc., and are stirred. A suspension 4 prepd. in such a manner is poured into a mold 5 and is sucked through a filter medium 6. The whiskers 1 in the wet state are pressurized 8 to increase the volumetric rate of the whiskers. Numerous cracks are generated by spring back in the taken out preform 9. Water is again added to the preform 9 and is mixed by stirring. A fiber preform 10 is disposed in the central part of the mold and the suspension 11 of the whiskers is admitted to the outside thereof and is sucked by a vacuum. A square columnar preform 13 disposed with the fiber preform 10 in the longitudinal direction and disposed with the whisker preform 12 in the outside peripheral part is thus obtd. Such bar-shaped body is applicable for production of parts in a high-energy field.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はボルトその他の機械的結合手段等に適用される
高比強度および高比弾性を備えた耐高温強度棒状体およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a high-temperature-resistant strength bar having high specific strength and high specific elasticity, which is applied to bolts and other mechanical coupling means, and a method for manufacturing the same.

〔発明の技術的背狽とその問題点〕 構造物を機械的に接合する手段として、例えばボルト結
合が一般的に用いられているが、これらは高・強度を目
的としているため従来は鉄系材料で構成されるものがほ
とんどであった。ところが、最近では特殊な目的のため
にFe系材料以外のボルトの必要性も生じている。例え
ば宇宙機器、航空機、自動車、ロボットなどの分野では
軽石化が最優先するが、へ強度と共に高弾性を兼ね備え
ることが強く求められている。また原子力、核融合およ
び高エネルギ物理等の分野で用いるボルト等の場合、l
”e系材料製のものでは誘1g放射化により放射能が低
減するまで長期間を必要どし、人体への影響が懸念され
るため、半減期の短い軽元素金属、特にAl系材料での
設計製作がなされるJ:うになってきている。Al系材
料はFe系材料に比べ重量を約1/3、半減期を約1/
10に減少することが可能である。Al系材料の中でも
ジュラルミンと総称される高力Al!合金においては、
Fe系材料に近い強度特性を得ることが可能であるが、
弾性率の向上がほとんどないことが欠点である。また高
力A1合金を形成する添加元素としてのCu、Mn、Z
n等は放射化が大きく不適元素である。ざらに、これら
の分野では超高真空を述するため、130〜200℃程
度に加熱するベーキング処理を必要とするが、Aj!系
材料を単体で用いた場合には100℃以上の高温下にお
いては急激に強度低下する欠点があった。
[Technical disadvantages of the invention and its problems] For example, bolt connections are generally used as a means of mechanically joining structures, but since these are aimed at high strength and strength, conventionally iron-based Most were made of materials. However, recently there has been a need for bolts made of materials other than Fe-based materials for special purposes. For example, in fields such as space equipment, aircraft, automobiles, and robots, pumice is given top priority, but there is a strong demand for materials that have both strength and high elasticity. In addition, in the case of bolts used in fields such as nuclear power, nuclear fusion, and high energy physics, l
``For those made of e-based materials, it takes a long time for the radioactivity to decrease due to 1g activation, and there are concerns about the impact on the human body. The design and manufacturing process is becoming more and more common.Al-based materials have about 1/3 the weight and about 1/1/2 the half-life compared to Fe-based materials.
It is possible to reduce it to 10. Among Al-based materials, high-strength Al is collectively known as duralumin! In alloys,
Although it is possible to obtain strength properties close to those of Fe-based materials,
The disadvantage is that there is almost no improvement in elastic modulus. Additionally, Cu, Mn, and Z are added as additive elements to form high-strength A1 alloy.
Elements such as n are unsuitable elements because of their large activation. Generally speaking, in these fields, ultra-high vacuum is used, which requires baking treatment to be heated to about 130 to 200 degrees Celsius, but Aj! When these materials are used alone, there is a drawback that the strength rapidly decreases at high temperatures of 100° C. or higher.

ところで、従来、軽量強化材として、軽金属マトリック
ス中にウィスカを混入した金属基複合材料が知られてい
る。このようなウィスカ混入の複合材料は高温耐熱強度
を有することから、この材料によりボルト等の耐強度棒
状体を構成することが考えられる。しかし、高引張り、
剪断力等を受けるボルト等に単なる複合材料をそのまま
の形態で適用した場合には、強度上の信頼性が必ずしも
完全ではなく、例えば亀裂等が生じると、その成長の抑
制が困難である等の問題がある。
Incidentally, a metal matrix composite material in which whiskers are mixed into a light metal matrix is conventionally known as a lightweight reinforcing material. Since such a whisker-containing composite material has high-temperature heat-resistant strength, it is conceivable that this material can be used to construct a strength-resistant rod-shaped body such as a bolt. However, high tensile
If a simple composite material is applied as it is to a bolt or the like that is subjected to shearing force, the reliability in terms of strength is not necessarily perfect; for example, if a crack occurs, it may be difficult to suppress its growth. There's a problem.

また、従来、このような金属基複合材料の成形に際して
は、ウィスカを有磯溶剤で固めたプリフォームを作り、
これを成形型内に収納して軽金属F8KJを注湯する方
法が一般に採用されている。
In addition, conventionally, when molding such metal matrix composite materials, a preform was made by hardening the whiskers with Ariso solvent.
Generally, a method is adopted in which the mold is placed in a mold and the light metal F8KJ is poured into the mold.

この場合、ウィスカのマトリックス金属中への含有体積
率を増大させ、製品の強度を高める手段として、プリフ
ォーム成形時に加圧による濃縮化を図ることが行なわれ
ている。しかし、加圧力除去後に、内部圧力によって膨
張したり、プリフォーム外表面にひび割れ等を生じ、好
ましい成形が行なえなくなる問題がある。
In this case, as a means of increasing the volume fraction of whiskers contained in the matrix metal and increasing the strength of the product, concentration is carried out by applying pressure during preform molding. However, after the pressurizing force is removed, the preform expands due to internal pressure and cracks occur on the outer surface of the preform, making it impossible to perform desired molding.

(発明の目的〕 本発明はこのような事情に鑑みてなされたもので、高強
度と高弾性を右するとともに高温強度を有し、半減期を
短くできる耐高温強度棒状体と、その棒状体をウィスカ
複合材料で構成する場合に高ウィスカ体積率のプリフォ
ームを良好な形状で得ることができる製造方法を提供す
ることを目的とする。
(Object of the Invention) The present invention has been made in view of the above circumstances, and provides a high temperature resistant strength rod-like body that has high strength and high elasticity, high-temperature strength, and has a short half-life, and the rod-like body. An object of the present invention is to provide a manufacturing method capable of obtaining a preform with a high whisker volume ratio and a good shape when the preform is made of a whisker composite material.

〔発明の概要〕[Summary of the invention]

本発明の耐高温強度棒状体は、引張り、剪断等の荷重が
高温状態下で作用する部分に使用される耐高温強度棒状
体において、耐熱性を右する軽金属材料を主体とし、そ
の軸心部に軸心方向に沿う耐熱性長繊維束を配設したこ
とを特徴としている。
The high-temperature-resistant strength rod-shaped body of the present invention is a high-temperature-resistant strength rod-shaped body used in a part where loads such as tensile and shearing are applied under high temperature conditions, and is mainly made of a light metal material that determines heat resistance. It is characterized by having heat-resistant long fiber bundles arranged along the axial direction.

望ましくは、棒状主体部分を軽金属マトリックス中にウ
ィスカを混入したものとし、耐熱性長111m束は耐熱
無機物からなるものとする。
Preferably, the rod-shaped main portion is made of a light metal matrix with whiskers mixed therein, and the heat-resistant length 111 m bundle is made of a heat-resistant inorganic material.

また、本発明の耐高温強度棒状体の製造方法はウィスカ
の分散液を混合・撹拌する第1の工程と、第1の工程で
得られた懸濁液を注型後脱液し、次いで加圧して第1の
プリフォームを成形する第2の工程と、第1のプリフォ
ームを分散液中で混合・撹拌する第3の工程と、第3の
工程で得られた懸濁液を注型後脱液して第2のプリフォ
ームを成形する第4の工程とからなるプリフォーム成形
工程を右し、上記工程において得られたプリフォームの
中心部に繊維束を配置して、そのプリフォームに軽金属
溶湯を注湯することを特徴とする。
In addition, the method for producing a rod-shaped body with high temperature resistance and strength according to the present invention includes a first step of mixing and stirring a dispersion of whiskers, and a step in which the suspension obtained in the first step is drained after casting, and then heated. A second step of molding the first preform by pressing, a third step of mixing and stirring the first preform in the dispersion, and casting the suspension obtained in the third step. A preform molding step is performed, which includes a fourth step of deliquifying and molding a second preform, and a fiber bundle is placed in the center of the preform obtained in the above step, and the preform is It is characterized by pouring molten light metal into the process.

本発明において、マトリックスを構成する軽金属として
は、Al系、Mg系、Ti系のものを適用する。また耐
熱性長繊維束を構成する耐熱無機物およびウィスカとし
ては、Al2O2系、SiC系、C系、B系、3i−T
i −C系等を挙げることができる。これらの耐熱無機
物からなるm帷束およびウィスカは比較的密度が小さく
、したがってこれらを軽金属マトリックス中に混入する
と軽量複合材料が得られる。
In the present invention, Al-based, Mg-based, and Ti-based light metals are used as light metals constituting the matrix. In addition, heat-resistant inorganic substances and whiskers constituting the heat-resistant long fiber bundle include Al2O2-based, SiC-based, C-based, B-based, 3i-T
Examples include the i-C system. The bundles and whiskers of these refractory inorganics have relatively low densities, and therefore their incorporation into a light metal matrix results in lightweight composite materials.

本発明に係る耐高温強度棒状体、例えばボルトは、その
円周方向中心部の長手方向に沿って前述した耐熱性長繊
維束が軽金属マトリックス中に混入され、その外周部分
は、例えば軽金属マトリックス中にウィスカを混入した
構造となっている。
The high-temperature-resistant strength rod-shaped body, such as a bolt, according to the present invention has the above-mentioned heat-resistant long fiber bundle mixed in a light metal matrix along the longitudinal direction of its circumferential center, and the outer peripheral portion thereof is mixed in the light metal matrix, for example. It has a structure in which whiskers are mixed in.

このように、繊維およびウィスカを軽金属マトリックス
中に混入した金属基複合材料にとすることによって、高
比強度と高弾性を有するボルトが構成できる。また、ボ
ルトの外周部は軽金属マトリックス中にウィスカが混入
した構造であるため、転造、切削等によるボルトの成形
加工が容易となる。
In this manner, by forming a metal matrix composite material in which fibers and whiskers are mixed into a light metal matrix, a bolt having high specific strength and high elasticity can be constructed. Further, since the outer peripheral portion of the bolt has a structure in which whiskers are mixed in a light metal matrix, the bolt can be easily formed by rolling, cutting, etc.

次にボルトの円周方向中央部の長手方向に沿って配置さ
れるm維」については、ボルト成形前の素形材の径(D
)に対して、中央部の繊維束径を(d)とした場合、0
.2<d/D<0.8とすることが望ましい。d/Dが
0.2よりも小さいと、素形材製造時に繊維を素形材の
円周方向中央部の長手方向に沿って直線的に配置させる
ことが技術的に困難である。一方、d/Dが0.8より
も大きいと、Ili帷がネジ加工部にも配置されるよう
になるため、ネジ加工法が切削加工の場合、繊維を切断
するためボルトの強度低下を生じ、また、ネジ加工法が
転造加工の場合には繊維が破損して、ネジ加工が困難と
なる。
Next, the diameter of the material before bolt forming (D
), if the fiber bundle diameter at the center is (d), then 0
.. It is desirable that 2<d/D<0.8. When d/D is smaller than 0.2, it is technically difficult to arrange the fibers linearly along the longitudinal direction of the circumferential center of the formed material during production of the formed material. On the other hand, if d/D is larger than 0.8, the Ili thread will also be placed in the threaded part, so if the threading method is cutting, the strength of the bolt will decrease due to cutting of the fibers. Further, when the thread processing method is rolling processing, the fibers are damaged, making thread processing difficult.

本発明に係る耐高温強度棒状体の製造方法では、ウィス
カのプリフォーム成形を行なう。このプリフォーム成形
は、有機系バインダーによるプリフォーム成形であるが
、約500〜800℃程度の高温加圧成形となるため、
有機系バインダーは約200〜300℃程度で飛散する
。このため30%以下のmmでは局部的な片寄りを生じ
、体積率のバラツキが大きな問題となる。また繊維では
体積率が増すと機械的強度も比例して向上するが、体積
率70%以上ではマトリックス金属が繊維の周辺まで完
全に廻り込めず、欠陥の多い材料となる。したがって、
ボルト素形材中の円周中央部に長手方向に直線的かつ均
一的に繊維を配向させるためにはm#ff束内の適正な
体積率としては30〜70%の範囲が好適である。
In the method for manufacturing a rod-shaped body with high temperature resistance and strength according to the present invention, whisker preform molding is performed. This preform molding is a preform molding using an organic binder, but since it is a high temperature pressure molding of about 500 to 800 degrees Celsius,
The organic binder scatters at about 200 to 300°C. For this reason, if the thickness is less than 30%, local deviation occurs and variations in volume ratio become a big problem. In addition, as the volume fraction of fibers increases, the mechanical strength increases proportionally, but when the volume fraction exceeds 70%, the matrix metal cannot completely wrap around the fibers, resulting in a material with many defects. therefore,
In order to orient the fibers linearly and uniformly in the longitudinal direction at the center of the circumference of the bolt material, the appropriate volume fraction within the m#ff bundle is preferably in the range of 30 to 70%.

一方、ウィスカはそれ自体粉状であり、所定の形状とす
るためには水あるいは有機溶剤中に浸漬してからプリフ
ォーム成形を行なう。ウィスカのプリフォームを成形す
る場合、ウィスカ体積率は10〜40%の範囲とするこ
とが望ましい。水また有機溶剤中にウィスカを分散した
液を乾燥したときのウィスカ体積率が10%程度あり、
またウィスカ体積率が40%を超えると、ウィスカによ
り複合材料の強化に対する効果が小さく、また伸びが急
激に低下する。
On the other hand, whiskers themselves are in the form of powder, and in order to form them into a predetermined shape, they are immersed in water or an organic solvent before being molded into a preform. When molding a whisker preform, the whisker volume fraction is preferably in the range of 10 to 40%. When a liquid containing whiskers dispersed in water or an organic solvent is dried, the whisker volume percentage is about 10%.
Moreover, when the whisker volume fraction exceeds 40%, the effect of whiskers on reinforcing the composite material is small, and the elongation decreases rapidly.

さらに、本発明による耐高温強度棒状体の製造方法では
、ウィスカのプリフォーム成形に際し、二段階液混合工
程を施す。即ち、第1の工程でウィスカの分散液を混合
、撹拌および脱液した後、加圧してウィスカの体積率を
高めた第1のプリフォーム成形を行ない、これを乾燥し
た後、再度懸濁液にして、脱液、乾燥して第2のプリフ
ォーム成形を行なう。これにより、第1のプリフォーム
の乾燥時に内部圧力によりひび割れ等が生じても、再度
の液混合および非加圧乾燥により、ひび割れ等を消去す
ることができる。
Further, in the method for manufacturing a rod-shaped body with high temperature resistance and strength according to the present invention, a two-step liquid mixing step is performed when forming the whisker preform. That is, after the whisker dispersion is mixed, stirred, and deliquified in the first step, a first preform is formed by applying pressure to increase the whisker volume ratio, and after drying, the suspension is re-formed. Then, the liquid is removed, dried, and a second preform is formed. As a result, even if cracks or the like occur due to internal pressure during drying of the first preform, the cracks or the like can be eliminated by mixing the liquid again and drying without pressure.

〔発明の実施例〕[Embodiments of the invention]

第1図(A)〜(G)は本発明に係る耐高温強度棒状体
、例えばボルトの製造方法の各工程順に示す工程である
。例えば、SiCからなるウィスカ1を水2(または有
機溶剤)中に混入し、撹拌器3により撹拌する(A)。
FIGS. 1(A) to 1(G) show the steps of the method for manufacturing a high-temperature-resistant strength rod-shaped body, such as a bolt, according to the present invention. For example, a whisker 1 made of SiC is mixed into water 2 (or an organic solvent) and stirred by a stirrer 3 (A).

次いで、このウィスカ1が混入した懸濁液4を筒状の型
5内に流入さぽ、w!紙等の滅過材6を介して吸引器7
により水2を吸引する(B)。この状態では、プリフォ
ームのウィスカ体積率は約10%である。次いで湿潤状
態のSiCウィスカ1を加圧機8で加圧する(C)。こ
れにより、プリフォームのウィスカ体積率は約30%ま
で高まる。加圧成形後、ウィスカのプリフォーム9を取
り出ず(0)。このプリフォームはSiCウィスカ1の
スプリングバックにより無数の割れが発生する。割れの
発生したプリフォームに再度水2(または有機溶剤)を
加え、撹拌器3により混合撹拌する(E)。次いで筒状
の型5の中心部に繊維のプリフォーム10を配置させ、
この繊維プリフォーム10の外周側にウィスカの懸濁液
11を流入させ、第1図(B)で示す方法と同様にして
真空吸引を行なう(F)。これによって円周方向中心部
の長手方向に沿って繊維プリフォーム10が配置され、
その外周部のウィスカのプリフォーム12が配置された
角柱状のプリフォーム13を取り出し乾燥する(G)。
Next, the suspension 4 mixed with the whiskers 1 is poured into the cylindrical mold 5, lol! A suction device 7 is passed through a sterilizing material 6 such as paper.
(B). In this state, the whisker volume fraction of the preform is about 10%. Next, the wet SiC whisker 1 is pressurized by a pressurizer 8 (C). This increases the whisker volume fraction of the preform to about 30%. After pressure molding, the whisker preform 9 was not removed (0). In this preform, numerous cracks occur due to the springback of the SiC whiskers 1. Water 2 (or organic solvent) is added again to the cracked preform and mixed and stirred using the stirrer 3 (E). Next, a fiber preform 10 is placed in the center of the cylindrical mold 5,
The whisker suspension 11 is caused to flow into the outer peripheral side of the fiber preform 10, and vacuum suction is performed in the same manner as the method shown in FIG. 1(B) (F). As a result, the fiber preform 10 is arranged along the longitudinal direction of the circumferential center,
The prismatic preform 13 on which the whisker preform 12 is placed on its outer periphery is taken out and dried (G).

このプリフォーム13は割れがなく、第1図(C)で加
圧したときのプリフォームと同程度、例えば30%のウ
ィスカ体積率を有する。
This preform 13 has no cracks and has a whisker volume fraction of about the same level as the preform when pressurized in FIG. 1(C), for example, 30%.

このようにして得られた角柱状のプリフォーム13にA
j!系、MQ系、Ti系の軽合金溶湯を注湯した後、例
えば第1図(H)の如く丸棒状に成形し、その後、切削
加工、転造加工等の方法によつでネジ加工を行ない所定
形状のボルトとすることができる。
A to the prismatic preform 13 obtained in this way
j! After pouring the molten metal of type, MQ type, or Ti type light alloy, it is formed into a round bar shape, for example, as shown in Fig. 1 (H), and then threaded by cutting, rolling, etc. The bolt can be made into a predetermined shape.

本実施例のボルトの製造方法において、第1図(A)〜
第1図(G)で示す各工程によって直接第1図(H)に
示す円柱状にプリフォームを成形してもよい。また円柱
状または角柱状のウィスカプリフォームを成形し、次い
でウィスカプリフォームの中心部に穿孔を設け、この孔
部に繊維プリフォームを挿入した後、Al系合金等の溶
湯をプリフォームに注湯してもよい。
In the bolt manufacturing method of this embodiment, FIGS.
The preform may be directly molded into the cylindrical shape shown in FIG. 1(H) by each step shown in FIG. 1(G). Alternatively, a cylindrical or prismatic whisker preform is formed, a hole is made in the center of the whisker preform, a fiber preform is inserted into the hole, and molten metal such as an Al alloy is poured into the preform. You may.

第1表は本実施例に用いた金属基複合材料の単体素材の
各種特性について示したものであるが、Al2O3繊維
とSiCウィスカはマトリックスのA7合金と同程度の
密度であり、かつ引張強さや弾性率は著しく高い強化素
材であることがわかる。
Table 1 shows various properties of the single material of the metal matrix composite material used in this example.Al2O3 fibers and SiC whiskers have a density similar to that of the matrix A7 alloy, and have a high tensile strength and It can be seen that this is a reinforced material with a significantly high elastic modulus.

第  1   表 第2図はボルトの円周方向中央部の長手方向に沿って配
置させたA第203系van束14の直径を素形材の直
径の半分の3.5amとし、さらにその外周表面部を6
061Aj!合金15として、転造ネジ加工を行なった
M8ボルトである。第3図は、外周表面部を30%体積
率でS i C,ウィスカ強化した6061Aj!合金
16としたもので、それ以外は第2図同様にしたM8ボ
ルト(本発明)である。
Table 1 and Figure 2 show that the diameter of the A-203 series van bundle 14 arranged along the longitudinal direction of the circumferential center of the bolt is 3.5 am, which is half the diameter of the material, and that the outer peripheral surface part 6
061Aj! This is an M8 bolt made of Alloy 15 and subjected to thread rolling. Figure 3 shows 6061Aj, whose outer peripheral surface is reinforced with S i C and whiskers at a volume fraction of 30%! Alloy 16 was used, and the other parts were M8 bolts similar to those shown in FIG. 2 (this invention).

M8ボルト各温度における引張試験結果を第4図に示す
。曲線Aは第2図に示したボルト、曲線”Bは第3図に
示したボルト、曲線Cは市販されている6061−T6
のA1合金ボルトである。本発明によるポル1〜は室温
の破断荷重は2.0〜2.5ton程度であり、市販の
A1合金ボルトの約1,3tonに比べ著しい強度向上
が認められる。さらに本発明によるボルトの大きな特徴
として、高温強度が大きく向上することであり、A1合
金ボルトでは100℃を超えると曲wICの通り急激な
強度低下を示すが、第2図のボルトでは曲線Aの通り1
50℃停止度まで、さらに第3図のボルトでは曲線7の
通り300’C程度まで強度低下がなく非常に良好であ
る。また前述した3種類のボルト成形前の素形材におい
て、室温における密度と弾性率の測定結果を第2表に示
すが、本発明のボルトは市販のAl!合金ボルトに比べ
同等のレベルの密度を有しており、弾性率の向上が大き
いことがわかる。
Figure 4 shows the tensile test results for M8 bolts at various temperatures. Curve A is the bolt shown in Figure 2, curve B is the bolt shown in Figure 3, and curve C is the commercially available 6061-T6.
This is an A1 alloy bolt. The breaking load of Pol 1~ according to the present invention at room temperature is about 2.0 to 2.5 tons, which is a significant improvement in strength compared to about 1.3 tons of commercially available A1 alloy bolts. Furthermore, a major feature of the bolt according to the present invention is that the high-temperature strength is greatly improved.A1 alloy bolt shows a sudden decrease in strength as shown by curve wIC when the temperature exceeds 100℃, but the bolt shown in Fig. 2 shows a sharp decrease in strength as shown by curve A. street 1
The bolt shown in FIG. 3 is very good with no decrease in strength up to about 300'C as shown by curve 7. Furthermore, Table 2 shows the measurement results of the density and elastic modulus at room temperature for the three types of bolt-formed materials described above.The bolt of the present invention is commercially available Al! It can be seen that the bolt has a density on the same level as the alloy bolt, and the elastic modulus is greatly improved.

次に素形材の系(D)に対して内周中央部の長手方向に
配向したl!維束径(d)とした場合、素形材径(D>
中に含まれる1illI東径(d)の割合d/Dとして
成形したMボルトの破断荷重の関係を第5図に示す。
Next, l! is oriented in the longitudinal direction of the center of the inner circumference for the system (D) of the raw material! When the fiber bundle diameter (d) is the material diameter (D>
FIG. 5 shows the relationship between the breaking load of a molded M bolt and the ratio d/D of the IllI east diameter (d) contained therein.

第5図から明らかなように破断荷重はd/Dが約0.8
まで直線的に増大していることがわかる。
As is clear from Figure 5, the breaking load is approximately 0.8 d/D.
It can be seen that it increases linearly.

第6図はAj!中の5iC(ウィスカ)体積率と機械的
特性との関係を示し、5iC(ウィスカ)の体積率が1
0〜40%の範囲では体積率が向上するにつれて、引張
強さおよび0.2%耐力が急激に増大し、一方、伸びは
体積率が40%を超えると急激に低下していることがわ
かる。
Figure 6 is Aj! The relationship between the volume fraction of 5iC (whiskers) inside and the mechanical properties is shown, and the volume fraction of 5iC (whiskers) is 1.
It can be seen that in the range of 0 to 40%, as the volume fraction increases, the tensile strength and 0.2% proof stress increase rapidly, while elongation rapidly decreases when the volume fraction exceeds 40%. .

第7図は5iC(ウィスカ)プリフォームの体積率と面
圧との関係を示し、第2図に示すプリフォームの成形工
程において、5iC(ウィスカ)のプリフォームを再懸
濁して再度プリフォームを成形すると、再lIl?11
時(破線b)では最初に加圧したときく実線a)に比べ
て若干の体積率減少はあるものの、略最初の値に近い体
積率のプリフォームが成形できることがわかる。
Figure 7 shows the relationship between the volume fraction and surface pressure of the 5iC (whisker) preform. When molded, is it re-lIl? 11
Although there is a slight decrease in volume fraction at the time (broken line b) when pressure is applied for the first time compared to the solid line a), it can be seen that a preform with a volume fraction substantially close to the initial value can be molded.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る#4高温強度棒状体に
よれば、耐熱性を有する軽金属を主体とし、その軸心部
に軸方向に沿って耐熱性長11束を配設することにより
、引張り、剪断等の荷重がa編上で作用しても、十分な
高強度、高弾性を発揮することができる。特に主体部を
軽金属マトリックスに比重の小さいウィスカを混入した
複合強化材料とした場合には、繊維束による軸心部補強
作用により、さらに高比強度と高比弾性を有するものと
なる。そして、例えばボルト等に適用した場合には、従
来のA1合金ボルトが使用不可能な100〜300℃近
い高温領域でも、各種特性の低下が小さい助他意で十分
適用できるようになる。また、複合強化材としての繊維
やウィスカは、Aj!203系、SaC系、C系、B系
、、sl−’ri−Q系等であり、マトリックスのAi
+同様に半減期が小さいため、放射化が問題とされる分
野においても、高力A1合金よりも好ましい材料となる
等の効果がある。
As described above, according to the #4 high-temperature strength rod-shaped body according to the present invention, the main body is made of a heat-resistant light metal, and by arranging the heat-resistant length 11 bundles along the axial direction at the axial center. Even when loads such as tension, shearing, etc. are applied to the a-knit fabric, sufficient high strength and high elasticity can be exhibited. In particular, when the main body is made of a composite reinforcing material in which whiskers with a small specific gravity are mixed into a light metal matrix, the axial center reinforcing action of the fiber bundle results in higher specific strength and higher specific elasticity. For example, when applied to bolts, the present invention can be applied even in a high temperature range of 100 to 300°C, where conventional A1 alloy bolts cannot be used, with minimal deterioration of various properties. In addition, fibers and whiskers as composite reinforcement materials can be used as Aj! 203 system, SaC system, C system, B system, sl-'ri-Q system, etc., and the matrix Ai
+ Similarly, since it has a short half-life, it has the effect of becoming a more preferable material than high-strength A1 alloy even in fields where activation is a problem.

また、ウィスカのプリフォーム成形においては、ウィス
カの体積率が高いプリフォームが、ひび割れ等の不都合
を生じることなく、良好な形態で得られ、上記の棒状体
の成形を容易、かつ確実に行なうことができる。
In addition, in whisker preform molding, a preform with a high whisker volume ratio can be obtained in good shape without causing any inconveniences such as cracks, and the above-mentioned rod-shaped body can be molded easily and reliably. I can do it.

このように本発明に係る棒状体によれば、その耐熱性、
高比強度、高比弾性、低放射能化等に基づき、宇宙、航
空、自動車、ロボット、原子力、核融合、高エネルギ物
理等の分野における部品として、信頼性や健全性を著し
く高める等の優れた効果を奏する。
As described above, according to the rod-shaped body according to the present invention, its heat resistance,
Based on its high specific strength, high specific elasticity, and low radioactivity, it has excellent properties such as significantly increasing reliability and soundness as a component in fields such as space, aviation, automobiles, robots, nuclear power, nuclear fusion, and high-energy physics. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(G)は本発明に係る耐高温強度棒状体
の製造方法の一例を各工程順に示す工程図、第1図(H
)は得られた耐高温強度棒状体の素形を示す斜視図、第
2図は外周部をA1合金として経過ネジ加工したM8ポ
ル1−の断面図、第3図は外周部をSiCウィスカ強化
材としたM8ボルトの断面図、第4図は各ボルトの破断
荷重特性線図、第5図は素形材径と![束径との割合を
変化させた場合の破断荷重特性線図、第6図はウィスカ
体積率と引張強さ等との関係を示す特性線図、第7図は
ウィスカプリフォームの体積率と面圧との関係を示す特
性線図である。 1・・・ウィスカ(SiC)、2・・・水(または有機
溶剤)、3・・・撹拌器、4・・・懸濁液、5・・・型
、6・・・濾過材、7・・・吸引器、8・・・加圧機、
9・・・プリフォーム(ウィスカ)、10・・・プリフ
ォーム(繊維)、11・・・懸濁液、12・・・プリフ
ォーム(ウィスカ)、13・・・プリフォーム(ウィス
カおよび繊維)、14・・・Al2O3系繊維束、1訃
・・6061A7合金、16・・・SiCウィスカ強化
6061△1合金。 出願人代理人   波 多 野   久第1図 第2図 第3図 02%而1面(Kgf/mm )、グ151Hs(Kg
f/mm2)仲α %
Figures 1 (A) to (G) are process diagrams showing an example of the method for producing a high temperature resistant strength rod-shaped body according to the present invention in order of each step, and Figure 1 (H
) is a perspective view showing the basic shape of the obtained high-temperature-resistant strength rod-shaped body, Figure 2 is a cross-sectional view of M8 pole 1- whose outer periphery is made of A1 alloy and threaded, and Figure 3 is the outer periphery reinforced with SiC whiskers. A cross-sectional view of the M8 bolt used as the material, Figure 4 is the breaking load characteristic diagram of each bolt, and Figure 5 is the diameter of the material to be formed! [Breaking load characteristic diagram when changing the ratio to bundle diameter, Figure 6 is a characteristic diagram showing the relationship between whisker volume fraction and tensile strength, etc., Figure 7 is a characteristic diagram showing the relationship between whisker volume fraction and tensile strength, etc. FIG. 3 is a characteristic diagram showing the relationship with surface pressure. DESCRIPTION OF SYMBOLS 1... Whisker (SiC), 2... Water (or organic solvent), 3... Stirrer, 4... Suspension, 5... Mold, 6... Filter medium, 7... ... Suction device, 8... Pressure machine,
9... Preform (whisker), 10... Preform (fiber), 11... Suspension, 12... Preform (whisker), 13... Preform (whisker and fiber), 14...Al2O3-based fiber bundle, 1...6061A7 alloy, 16...SiC whisker reinforced 6061△1 alloy. Applicant's agent Hisashi Hatano Figure 1 Figure 2 Figure 3 02% and 1 plane (Kgf/mm),
f/mm2) Naka α %

Claims (1)

【特許請求の範囲】 1、引張り、剪断等の荷重が高温状態下で作用する部分
に使用される耐高温強度棒状体において、耐熱性を有す
る軽金属材料を主体とし、その軸心部に軸心方向に沿う
耐熱性長繊維束を配設したことを特徴とする耐高温強度
棒状体。 2、棒状体主体部は軽金属マトリックス中にウィスカを
混入した金属基複合材料からなり、耐熱性長繊維束は耐
熱無機繊維からなる特許請求の範囲第1項記載の耐高温
強度棒状体。 3、軽金属マトリックスが、Al系、Mg系、Ti系の
いずれかである特許請求の範囲第2項記載の耐高温強度
棒状体。 4、耐熱無機繊維が、Al_2O_3系、SiC系、C
系、B系、Si−Ti−C系のいずれか1種以上である
特許請求の範囲第2項記載の耐高温強度棒状体。 5、ウィスカが、SiC系、またはAl_2O_3系の
いずれか1種以上である特許請求の範囲第2項記載の耐
高温強度棒状体。 6、軽金属マトリックス中に体積率30〜70%の範囲
で耐熱無機繊維が混入されている特許請求の範囲第2項
記載の耐高温強度棒状体。 7、軽金属マトリックス中に体積率10〜40%の範囲
でウィスカが混入されている特許請求の範囲第2項記載
の耐高温強度棒状体。 8、棒状体主体部は外周部に転造または切削加工により
ねじ山を形成され、これによりボルトとされている特許
請求の範囲第1項記載の耐高温強度棒状体。 9、ボルトの素形材径(D)に対し、その軸心部に配設
した繊維束径(d)の割合を0.2<d/D<0.8と
した特許請求の範囲第8項記載の耐高温強度棒状体。 10、ウィスカの分散液を混合・攪拌する第1の工程と
、第1の工程で得られた懸濁液を注型後脱液し、次いで
加圧して第1のプリフォームを成形する第2の工程と、
第1のプリフォームを分散液中で混合・撹拌する第3の
工程と、第3の工程で得られた懸濁液を注型後脱液して
第2のプリフォームを成形する第4の工程からなるプリ
フォーム成形工程とを有し、上記工程において得られた
プリフォームの中心部に繊維束を配置し、そのプリフォ
ームに軽金属溶湯を注湯することを特徴とする耐高温強
度棒状体の製造方法。 11、第4の工程において、繊維束を型の中心部に配置
し、その状態下で懸濁液注型を行なう特許請求の範囲第
10項記載の耐高温強度棒状体の製造方法。
[Claims] 1. A rod-shaped body with high temperature resistance and strength used in a part where loads such as tension and shear are applied under high temperature conditions, which is mainly made of a heat-resistant light metal material and has an axial center at its axial center. A rod-shaped body with high temperature resistance and strength, characterized by having heat-resistant long fiber bundles arranged along the direction. 2. The high-temperature-resistant strength rod-shaped body according to claim 1, wherein the main body portion of the rod-shaped body is made of a metal matrix composite material in which whiskers are mixed in a light metal matrix, and the heat-resistant long fiber bundle is made of heat-resistant inorganic fibers. 3. The high-temperature-resistant strength rod-shaped body according to claim 2, wherein the light metal matrix is one of Al-based, Mg-based, and Ti-based. 4. The heat-resistant inorganic fiber is Al_2O_3-based, SiC-based, C
The high temperature resistant strength rod according to claim 2, which is one or more of the following: type B, type B, and Si-Ti-C type. 5. The high temperature resistant strength rod-shaped body according to claim 2, wherein the whisker is one or more of SiC type or Al_2O_3 type. 6. The high-temperature-resistant strength rod-shaped body according to claim 2, wherein heat-resistant inorganic fibers are mixed in the light metal matrix at a volume percentage of 30 to 70%. 7. The high temperature resistant strength rod-shaped body according to claim 2, wherein whiskers are mixed in the light metal matrix at a volume percentage of 10 to 40%. 8. A rod-shaped body with high temperature resistance and strength according to claim 1, wherein the main body portion of the rod-shaped body has a thread formed on its outer peripheral portion by rolling or cutting, thereby forming a bolt. 9. Claim 8, in which the ratio of the fiber bundle diameter (d) arranged at the axial center of the bolt to the diameter (D) of the bolt is 0.2<d/D<0.8 High-temperature-resistant strength rod-shaped body described in Section 1. 10. A first step of mixing and stirring the whisker dispersion, and a second step of casting the suspension obtained in the first step, deliquifying it, and then applying pressure to mold the first preform. The process of
A third step of mixing and stirring the first preform in the dispersion liquid, and a fourth step of molding the second preform by deliquifying the suspension obtained in the third step after casting. A high-temperature-resistant strength rod-shaped body comprising a preform forming process consisting of a preform forming process, a fiber bundle being arranged in the center of the preform obtained in the above process, and a light metal molten metal being poured into the preform. manufacturing method. 11. The method for producing a high-temperature-resistant strength rod-shaped body according to claim 10, wherein in the fourth step, the fiber bundle is placed in the center of the mold, and suspension casting is performed under this condition.
JP5406485A 1985-03-18 1985-03-18 Bar-shaped body having high-temperature resistant strength and its production Pending JPS61213330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5406485A JPS61213330A (en) 1985-03-18 1985-03-18 Bar-shaped body having high-temperature resistant strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5406485A JPS61213330A (en) 1985-03-18 1985-03-18 Bar-shaped body having high-temperature resistant strength and its production

Publications (1)

Publication Number Publication Date
JPS61213330A true JPS61213330A (en) 1986-09-22

Family

ID=12960184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5406485A Pending JPS61213330A (en) 1985-03-18 1985-03-18 Bar-shaped body having high-temperature resistant strength and its production

Country Status (1)

Country Link
JP (1) JPS61213330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048278A (en) * 2003-06-19 2005-02-24 Sumitomo Denko Steel Wire Kk Magnesium based alloy screw, and its production method
JP2007315351A (en) * 2006-05-29 2007-12-06 Honda Motor Co Ltd Bearing structure for internal combustion engine
JP2008106848A (en) * 2006-10-25 2008-05-08 Taiheiyo Cement Corp Aluminum-based composite material made screw and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048278A (en) * 2003-06-19 2005-02-24 Sumitomo Denko Steel Wire Kk Magnesium based alloy screw, and its production method
JP2007315351A (en) * 2006-05-29 2007-12-06 Honda Motor Co Ltd Bearing structure for internal combustion engine
JP2008106848A (en) * 2006-10-25 2008-05-08 Taiheiyo Cement Corp Aluminum-based composite material made screw and its manufacturing method

Similar Documents

Publication Publication Date Title
Vasudevan et al. The influence of hydrostatic pressure on the ductility of Al SiC composites
US4468272A (en) Composite material manufacturing method exothermically reducing metallic oxide in binder by element in matrix metal
JPS61166934A (en) Short fiber compacted body for manufacturing composite material and its manufacture
Pepper et al. Mechanical properties of aluminum-graphite composites prepared by liquid phase hot pressing
Cratchley Factors affecting the UTS of a metal/metal-fibre reinforced system
JPS61213330A (en) Bar-shaped body having high-temperature resistant strength and its production
Vennett et al. Multiple necking of tungsten fibers in a brass-tungsten composite
US3066365A (en) Destructible reinforced sand core for metal casting
Zhu et al. Fabrication and mechanical behavior of Al matrix composites reinforced with porous ceramic of in situ grown whisker framework
DE1814732A1 (en) Material composition of silicon and silicon carbide and a method for its production
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
JPS62244565A (en) Production of metallic member containing closed loop-shaped carbon fiber reinforced section
Towata et al. Mechanical properties of carbon fiber-reinforced aluminum alloys with whiskers and particulates of silicon-carbide
DE4123677A1 (en) FIBER MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF AND USE OF THE MOLDED BODY FOR THE PRODUCTION OF FIBER REINFORCED ALUMINUM CASTING PARTS
JPS60106931A (en) Production of fiber reinforced metallic material
JPH0368090B2 (en)
Bhagat et al. SiC fiber reinforced aluminum matrix composites- High pressure squeeze casting and mechanical properties
Sample et al. High Pressure Squeeze Casting of Unidirectional Graphite Fiber Reinforced Aluminum Matrix Composites
PARRATT Manufacture of metallic materials and components, reinforced by pre-aligned mats of SiC whiskers and other fibres
JPH0293030A (en) Manufacture of fiber reinforced aluminum alloy composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
Yu et al. Effect of Thermal Cycling on the Mechanical Properties of SiC Particle-Reinforced 6061Al Alloy
Baldwin et al. Fracture characteristics of a metal matrix composite
JPS63303019A (en) Production of preform for metal base composite material
MOGUCHII Some shell theory concepts applied to the extrusion/compression/ process(Two component flow and optimal strength ratios between core and shell materials during extrusion of composite bimetallic specimens into circular tubes)