JPS61212127A - Apd bias control circuit - Google Patents

Apd bias control circuit

Info

Publication number
JPS61212127A
JPS61212127A JP60051874A JP5187485A JPS61212127A JP S61212127 A JPS61212127 A JP S61212127A JP 60051874 A JP60051874 A JP 60051874A JP 5187485 A JP5187485 A JP 5187485A JP S61212127 A JPS61212127 A JP S61212127A
Authority
JP
Japan
Prior art keywords
voltage
apd
output
amplifier
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60051874A
Other languages
Japanese (ja)
Inventor
Tsutomu Fukugahara
福川原 勤
Akihiko Ichikawa
明彦 市川
Kazuyoshi Shimizu
和義 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60051874A priority Critical patent/JPS61212127A/en
Publication of JPS61212127A publication Critical patent/JPS61212127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To always operate an APD at the operating point of a high current multiplication factor and also stably by monitoring the noise level of an out- band in the output terminal of a pre-amplifier connected to the output of the APD and controlling the bias voltage of the APD, when said level exceeds some reference value. CONSTITUTION:The APD 1 receives an optical signal and converts it to an electric signal and the converted electric signal is amplified by the pre-amplifier 2 and also amplified by an amplifier 3 and outputted. To the output of the pre-amplifier 2, a band pass filter 4 is connected, and the frequency component of the outside of a working band is extracted from in the electric signal. The extracted frequency component of the outside of the working band is converted to a DC voltage by a detector 5. This DC voltage V is inputted to a comparator 6 and compared with a prescribed voltage value V0. If the DC voltage is larger than the prescribed voltage value V0, a bias voltage is lowered by executing feedback. On the other hand, if the DC voltage is smaller than the prescribed voltage value V0, the bias voltage is not changed.

Description

【発明の詳細な説明】 〔概要〕 アバランシェ・フォトダイオード(以下APDと云う)
に安定な高圧バイアスを供給し、而も常にAPDの規定
内で而も電流増倍率の高い動作をさせ得る様にバイアス
を制御する。
[Detailed description of the invention] [Summary] Avalanche photodiode (hereinafter referred to as APD)
A stable high-voltage bias is supplied to the APD, and the bias is controlled so as to always operate within the APD specifications and with a high current multiplication factor.

〔産業上の利用分野〕[Industrial application field]

本発明は光通信方式に於ける光−電気変換部に於いてA
PDの最大バイアス電圧を制御する回路に関するもので
ある。
The present invention provides A
This invention relates to a circuit that controls the maximum bias voltage of a PD.

従来のAPDに供給するバイアス電圧は電流増倍率を高
くする為APDの規定の上限に近い所で動作させるので
温度特性等によりAPDを破壊する恐れがある。
Since the bias voltage supplied to a conventional APD is operated close to the specified upper limit of the APD in order to increase the current multiplication factor, there is a risk that the APD may be destroyed due to temperature characteristics or the like.

従って従来から此の改善が強く望まれていた。Therefore, this improvement has long been strongly desired.

〔従来の技術〕[Conventional technology]

周知の如く光通信方式に於いて、受光素子としてはAP
Dが通している。APDは高バイアス電圧を必要とする
と云う欠点があるが、電流増倍作用により受光系のS/
Nを向上させることが出来ると云う利点がある。
As is well known, in optical communication systems, AP is used as a light receiving element.
D is passing. APD has the disadvantage of requiring a high bias voltage, but due to the current multiplication effect, the S/
There is an advantage that N can be improved.

第2図はAPDのバイアス電圧と、電流増倍率a及び暗
電流すの関係を説明する図である。
FIG. 2 is a diagram illustrating the relationship between the bias voltage of the APD, the current multiplication factor a, and the dark current S.

図示する様にバイアス電圧が増加すると、電流増倍率a
が増加するが、同時に暗電流すも又増加する。尚暗電流
とはAPDに光入力がない時に出力される電流のことで
、雑音となる。
As shown in the figure, when the bias voltage increases, the current multiplication factor a
However, at the same time, the dark current also increases. Note that the dark current is a current that is output when there is no optical input to the APD, and it becomes noise.

従ってAPDにバイアス電圧を印加する場合、バイアス
電圧を大きくして電流増倍率aが大きい状態で使用する
のが普通である。
Therefore, when applying a bias voltage to the APD, it is common to increase the bias voltage and use it in a state where the current multiplication factor a is large.

然しAPDに印加するバイアス電圧には上限があり、此
の上限を越すとAPDの破壊を招く恐れがある。
However, there is an upper limit to the bias voltage applied to the APD, and exceeding this upper limit may lead to destruction of the APD.

此の上限はブレークダウン電圧■、と云われ、ブレーク
ダウン電圧1日は暗電流が100μAになる電圧で規定
されている。
This upper limit is called the breakdown voltage (2), and the breakdown voltage (1 day) is defined as the voltage at which the dark current becomes 100 μA.

此の様にブレークダウン電圧■8に可なり近い最大バイ
アス電圧V、に固定して使用するので、種々の問題が発
生する。
Since the breakdown voltage (1) is fixed at the maximum bias voltage V, which is quite close to 8, various problems occur.

即ち、APDの温度変化によりAPDのブレークダウン
電圧■8が変化する。例えば温度が高くなると暗電流す
は点線で示す特性Cに変化(右に移動)する。従ってブ
レークダウン電圧V、は右に移動して■8° となる。
That is, the breakdown voltage (18) of the APD changes due to a change in the temperature of the APD. For example, when the temperature rises, the dark current changes to characteristic C (moves to the right) as shown by the dotted line. Therefore, the breakdown voltage V, moves to the right and becomes 8°.

又温度が低くなると暗電流すは点線で示す特性dに変化
(左に移動)する。
Furthermore, when the temperature decreases, the dark current changes to the characteristic d shown by the dotted line (moves to the left).

従って今固定バイアスで使用していると、例えば温度が
高くなるとブレークダウン電圧V、高(なるが、反面電
流増倍率aは低くなる。
Therefore, if it is currently used with a fixed bias, for example, as the temperature rises, the breakdown voltage V will increase (but on the other hand, the current multiplication factor a will decrease).

逆に温度が高くなると電流増倍率aは高(なるが、反面
ブレークダウン電圧■、低くなり、APDの破壊を招く
恐れがある。
On the other hand, as the temperature rises, the current multiplication factor (a) becomes high (but on the other hand, the breakdown voltage (2) decreases, which may lead to destruction of the APD.

又APDに流す電流にリミッタを設ける方法もあるが、
此の方法では歪特性が悪くなると云う欠点がある。
There is also a method of installing a limiter on the current flowing to the APD,
This method has the disadvantage that distortion characteristics deteriorate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は上記従来方式の欠点を除去し、APDの
最大バイアス電圧をフィードバック回路により制御して
APD素子の温度特性のバラツキに依る影響を無くすこ
とである。
An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional system and to control the maximum bias voltage of the APD by a feedback circuit to eliminate the influence of variations in the temperature characteristics of the APD element.

〔問題点を解決するための手段〕[Means for solving problems]

第1図に示す様にAPDIの出力に接続される前置増幅
器2の出力端で帯域外の雑音を帯域濾波器4により抽出
し、此の雑音レベルを検波器5で直流電圧に直し、此の
直流電圧が成る基準値以上となった時APD 1のバイ
アス電圧を加減することにより常に高い電流増倍率の動
作点で安定的に動作させることにより達成される。
As shown in Fig. 1, at the output end of the preamplifier 2 connected to the output of the APDI, out-of-band noise is extracted by a bandpass filter 4, this noise level is converted to a DC voltage by a detector 5, and then this noise level is converted to DC voltage by a detector 5. This is achieved by adjusting the bias voltage of APD 1 when the DC voltage of APD 1 exceeds a reference value, thereby stably operating at an operating point with a constant high current multiplication factor.

〔作用〕[Effect]

本発明に依るとAPDIの出力に接続される前置増幅器
2の出力端に於ける帯域外の雑音レベルを監視し、成る
基準値を越えた時APDIのバイアス電圧を制御するこ
とによりAPDlを常に高い電流増倍率の動作点で而も
安定に動作させ得ると云う効果が生まれる。
According to the present invention, the out-of-band noise level at the output terminal of the preamplifier 2 connected to the output of the APDI is monitored, and when the out-of-band noise level exceeds a reference value, the bias voltage of the APDI is controlled to keep the APDl constant. The effect is that stable operation can be achieved even at an operating point with a high current multiplication factor.

〔実施例〕〔Example〕

第1図は本発明に依るAPDバイアス制御回路の一実施
例を示す図である。
FIG. 1 is a diagram showing one embodiment of an APD bias control circuit according to the present invention.

図中、1はAPD、2は前置増幅器、3は増幅器、4は
帯域濾波器、5は検波器、6は比較器である。
In the figure, 1 is an APD, 2 is a preamplifier, 3 is an amplifier, 4 is a bandpass filter, 5 is a detector, and 6 is a comparator.

以下図に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

APDIは光信号を受けて電気信号に変換し、変換され
た電気信号は前置増幅器2で増幅され、更に増幅器3で
増幅されて出力される。
The APDI receives an optical signal and converts it into an electrical signal, and the converted electrical signal is amplified by a preamplifier 2, further amplified by an amplifier 3, and output.

本発明では前置増幅器2の出力に帯域濾波器4を接続し
て電気信号の中から使用帯域外の周波数成分を抽出する
In the present invention, a bandpass filter 4 is connected to the output of the preamplifier 2 to extract frequency components outside the used band from the electrical signal.

抽出された使用帯域外の周波数成分は検波器5により直
流電圧に変換される。
The extracted frequency components outside the used band are converted into DC voltage by the detector 5.

此の直流電圧Vを比較器6に入力して規定電圧値■。と
比較する。
Input this DC voltage V to the comparator 6 to obtain the specified voltage value ■. Compare with.

若し直流電圧■が規定電圧値v0より大きい時はフィー
ドバックしてバイアス電圧を下げる。
If the DC voltage (2) is larger than the specified voltage value v0, it is fed back and the bias voltage is lowered.

若し直流電圧■が規定電圧値V0より小さい時はバイア
ス電圧を変えない。
If the DC voltage (■) is smaller than the specified voltage value V0, the bias voltage is not changed.

此の場合、APDlがブレークダウン電圧VIの直前時
に発生する雑音量に対応する検波器5の入力直流電圧よ
り小さい値に規定電圧値■。を設定する。
In this case, the specified voltage value (■) is set to a value smaller than the input DC voltage of the detector 5, which corresponds to the amount of noise generated just before the breakdown voltage VI. Set.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、APDの最大
バイアス電圧をフィードバック回路により制御してAP
D素子の温度特性のバラツキに依る影響を無くすことが
出来ると云う大きい効果がある。
As explained in detail above, according to the present invention, the maximum bias voltage of the APD is controlled by the feedback circuit, and the maximum bias voltage of the APD is controlled by the feedback circuit.
This has the great effect of eliminating the influence of variations in the temperature characteristics of the D elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に依るAPDバイアス制御回路の一実施
例を示す図である。 第2図はAPDのバイアス電圧と、電流増倍率a及び暗
電流すの関係を説明する図である。 図中、1はAPD、2は前置増幅器、3は増幅器、4は
帯域濾波器、5は検波器、6は比較器である。
FIG. 1 is a diagram showing one embodiment of an APD bias control circuit according to the present invention. FIG. 2 is a diagram illustrating the relationship between the bias voltage of the APD, the current multiplication factor a, and the dark current S. In the figure, 1 is an APD, 2 is a preamplifier, 3 is an amplifier, 4 is a bandpass filter, 5 is a detector, and 6 is a comparator.

Claims (1)

【特許請求の範囲】 アバランシェ・フォトダイオード1を使用する光−電気
変換回路に於いて、 該アバランシェ・フォトダイオード1出力の電気信号を
増幅する前置増幅器2、 該前置増幅器2出力に接続される必要帯域外の雑音を抽
出する帯域濾波器4、 該帯域濾波器4出力を直流電圧に変換する検波器5、 該検波器5出力の直流電圧と基準電圧を比較する比較器
6、 及び該比較器6出力により前記アバランシェ・フォトダ
イオードのバイアスを制御する手段を有することを特徴
とするAPDバイアス制御回路。
[Claims] In an optical-to-electrical conversion circuit using an avalanche photodiode 1, a preamplifier 2 for amplifying an electrical signal output from the avalanche photodiode 1, connected to the output of the preamplifier 2; a bandpass filter 4 for extracting noise outside the required band; a detector 5 for converting the output of the bandpass filter 4 into a DC voltage; a comparator 6 for comparing the DC voltage output from the detector 5 with a reference voltage; An APD bias control circuit comprising means for controlling the bias of the avalanche photodiode using the output of a comparator 6.
JP60051874A 1985-03-15 1985-03-15 Apd bias control circuit Pending JPS61212127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051874A JPS61212127A (en) 1985-03-15 1985-03-15 Apd bias control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051874A JPS61212127A (en) 1985-03-15 1985-03-15 Apd bias control circuit

Publications (1)

Publication Number Publication Date
JPS61212127A true JPS61212127A (en) 1986-09-20

Family

ID=12899027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051874A Pending JPS61212127A (en) 1985-03-15 1985-03-15 Apd bias control circuit

Country Status (1)

Country Link
JP (1) JPS61212127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065809A1 (en) * 1999-07-02 2001-01-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA Adaptive array sensor and electrical circuit therefore
JP2015106784A (en) * 2013-11-29 2015-06-08 住友電気工業株式会社 Optical communication module, optical communication device and optical communication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065809A1 (en) * 1999-07-02 2001-01-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA Adaptive array sensor and electrical circuit therefore
US6469489B1 (en) 1999-07-02 2002-10-22 Csem Centre Suisse D'electronique Et De Microtechnique Sa Adaptive array sensor and electrical circuit therefore
JP2015106784A (en) * 2013-11-29 2015-06-08 住友電気工業株式会社 Optical communication module, optical communication device and optical communication method

Similar Documents

Publication Publication Date Title
JPH02113640A (en) Automatic gain controller
EP0532203B1 (en) Power controller
JPS6215909A (en) Optical reception circuit
JPS61212127A (en) Apd bias control circuit
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
JP2001036351A (en) Power amplifier
JP2713126B2 (en) Optical receiver
JP2001053565A (en) Optical receiver and method for adjusting band width of the optical receiver
JP3060646B2 (en) Optical amplifier gain control circuit
CN206532171U (en) A kind of power circuit for isolating Serial regulation output
JP3826779B2 (en) Optical receiver circuit
JPH10303820A (en) Optical receiver using apd
JPS6329859B2 (en)
JPS6047783B2 (en) Automatic gain control method
JPS62185419A (en) Optical reception circuit
JPH01103334A (en) Optical receiver
JP2693427B2 (en) Optical receiver AGC device
JPS61177832A (en) Automatic gain controlling system of optical receiver
JPH10107555A (en) Optical reception circuit and its control method
JPH10135746A (en) Light receiving circuit for optical free-space transmission
JPS6220407A (en) Agc circuit for optical communication
JPS62208724A (en) Optical receiver
JPH04334137A (en) Burst optical receiver
JP2718312B2 (en) Optical receiving amplifier circuit
SU1647847A1 (en) Amplifying device