JPS61212070A - Thin film semiconductor solar cell containing amorphous material - Google Patents

Thin film semiconductor solar cell containing amorphous material

Info

Publication number
JPS61212070A
JPS61212070A JP60053563A JP5356385A JPS61212070A JP S61212070 A JPS61212070 A JP S61212070A JP 60053563 A JP60053563 A JP 60053563A JP 5356385 A JP5356385 A JP 5356385A JP S61212070 A JPS61212070 A JP S61212070A
Authority
JP
Japan
Prior art keywords
layer
solar cell
silicide
semiconductor
back electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60053563A
Other languages
Japanese (ja)
Other versions
JPH0564868B2 (en
Inventor
Jun Takada
純 高田
Yoshinori Yamaguchi
美則 山口
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60053563A priority Critical patent/JPS61212070A/en
Publication of JPS61212070A publication Critical patent/JPS61212070A/en
Publication of JPH0564868B2 publication Critical patent/JPH0564868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce optical deterioration, by reducing the thickness of the intrinsic layer of semiconductor layer, by providing a transparent silicide layer between the underside electrode and the semiconductor layer, and by employing an electrode with a high reflection factor as the underside electrode. CONSTITUTION:On a transparent substrate 1 having a transparent electrode 3 formed, a thin film semiconductor layer 4 consisting of an amorphous silicon P layer, I layer and N layer is formed. The intrinsic layer (I layer) as thin as 500-4,000Angstrom can reduce deterioration of solar cell performance resulting from variation of the photo-induction structure of the I layer. A underside electrode 6 compensates decrease of the optical absorbing quantity owing to the I layer being thin by employing Ag, Au, or Cu, etc., each having a reflection factor above 80% to light with a wavelength above 0.6mum. In order to prevent deterioration or destruction of the cell due to diffusing Ag, Au, or Cu, etc., into the semiconductor, a light-transparent silicide layer 5 is formed between the underside electrode 6 and semiconductor layer 4. The silicide layer is made of silicide such as of Mg, Sr, Ba, Ti, Zr, Hf, V, Nb, Ni, Pd, Pt.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は非晶質を含む薄膜半導体系太陽電池に関する。 〔従来の技術〕 従来からアモルファスシリコンを用いた太陽電池が使用
されている。 〔発明が解決しようとする問題点〕 従来から使用されているアモルファスシリコンを用いた
太陽電池では、光照射によって初期の性能劣化が大きく
、長期間にわたる信頼性が不足するという問題がある。 真性層の厚さを薄くすると劣化率が低くなるが、変換効
率も低下してしまうという問題が生ずる。 この効率の低下を抑えるため、裏面電極に高反射率のA
g、Au、 Cuなどからなる電極を用いる方法もある
が、この方法では電極を形成する金属がアモルファスシ
リコン(a−8i:1中へ拡散し、太陽電池特性が低化
するという問題がある。 本発明は初期性能を従来の太陽電池に近い値を有した形
で、かつ電極を形成する金属の拡散による太陽電池特性
の低化を防止し、光劣化を少なくすることを目的として
なされたものである。 〔問題点を解決するための手段〕 本発明は、第1に実質的に真性な層(i層)の厚さを5
00〜4000人と従来の太陽電池にくらべて薄くし、
1層の光誘起構造が変化することによる太陽電池性能の
劣化に与える影響を低減せしめ゛、第2にi層を薄くす
ることによる活性層の光吸収量の低下を高反射率を有す
るAg、AU、Cuなどからなる裏面電極の使用で補い
、ざらに第3に裏面電極として用いるA(]、Au、 
Cuなどの半導体中への拡散による太陽電池の劣化〜破
壊を防止するために、裏面電極と半導体層との間に10
〜80人の厚さのシリサイド層を設けた構造にすること
により、前記目的が達成されることが見出されたことに
よりなされたものであり、光電変操作用を有する非晶質
を含む薄膜半導体層が基板上に設けられた太陽電池にお
いて、該半導体層の実質的に真性な層の厚さが500〜
4000人であり、裏面電極と最も裏面電橋側の半導体
層との間に透光性のシリサイド層を設けい該裏面電極が
、波長0.8層1m以上の光に対する反射率が80%以
上の値を、有する金属から形成されていることを特徴と
する非晶質を含む薄膜半導体系太I11電池に関する。 〔実施例〕 本発明に用いる光電変操作用を有する非晶質を含む薄膜
半導体としては、Si、 Ge、 Cの少なくなとも1
種を含むもの、あるいは5iSGeSCの少なくとも1
種を含むものにチッ素原子や酸素原子が構成成分として
加えられているものなどがあげられ、形成された半導体
のダングリングボンドが水素原子やフッ素原子でターミ
ネートされていてもよい。 前記のような半導体の具体例としては、a−3i:H,
a−3i:F:Hla−8iGe:H,a−8iSn:
H。 a−SiN:t(、a−3iGe:F −H、a−3i
Sn:F:H、a−8i:N:F:H,a−3iC:H
、a−8iC:F:H、a−3iO:H。 a−3iO:F:Hなどがあげられ、n型、n型、真性
のいずれであってもよい。また該半導体かへテロ接合構
造を有するように形成されていてもよく、ホモ接合構造
を有するように形成されていてもよい。 前記半導体の厚さとしては、実質的に真性なWJ(i層
)の厚さが500〜4000人、好ましくは1000〜
4000人、さらに好ましくは1500〜3500人の
半導体であるかぎり、とくに限定はない。 前記i層の厚さが500人未満になると太陽電池にした
ばあいの光電変換効率が低下し、4000人をこえると
光劣化が増加し、いずれも好ましくない。 なお本明細書にいう実質的に真性な層〈i層)とは光電
変換に対して活性な層のことであり、ドーパントにより
コンペンセートされた層であってもよい。 通常、半導体は透明電極を有する透明基板上にp層、i
層、nilの順に、あるいは裏面電極を有するまたは裏
面電極となる基板上にn層、1層、plの順に形成され
る。通常p層が光入射側となるので、厚すぎると光損失
が大きくなるため、その厚さとしては300Å以下が好
ましく、さらに好ましくは40〜150人であり、n層
は裏面電極側となるので厚すぎると、長波長の光の裏面
電極での反射の際の光損失が大きくなるため、その厚さ
としては300Å以下が好ましく、さらに好ましくは4
0〜200人、ことに好ましくは40〜150人である
。 該非晶質を含む半導体には微結晶状のものが含まれてい
てもよく、少なくともシリサイド層と接する半導体層(
通常はn層)がマイクロクリスタリンアモルファスシリ
コンからなるばあいには、後述する裏面電極の半導体層
中への拡散が少なくなり、これによる太陽電池性能の劣
化が少なくなり好ましい。 上記説明では主としてpIn型太陽電池ついて説明した
が、ショットキー型であってもよい。 いずれのばあいでも光劣化を低減するために、光入射は
p側から行なうのがよい。 本発明においては、前記のごとき非晶質を含む薄膜半導
体が、たとえば透明電極を有する透明基板上に設けられ
、最も裏面電極側の半導体層と裏面電極との間に透光性
のシリサイド層が最も裏面電極側の半導体層と裏面電極
に接して設けられ、非晶質を含む薄膜半導体系太陽電池
が製造される。 前記透明電極を有する透明基板とは、たとえばガラス、
セラミック、エポキシ系樹脂やフッ素系樹脂などの有機
高分子材料のように透光性を有する材料から形成された
厚さ0.1〜10mm程度の基板上に、たとえばITO
、In2O3、SnO,、ITO/5n02、Cdy 
SnOy (Xは0.5〜2、yは2〜4である) 、
 Irz O+−z (Zは0.33〜0.5である)
、ZnO(mはO〜0.5である)な  1−m どの透明電極を500〜104人程度の厚さ成長成した
ものである。 前記裏面電極としては、波長0.6I!rn以上の光に
対する反射率が80%以上の値を有する金属からなる5
00〜104人程度の厚さ成長極であればとくに限定な
く使用しつる。前記のごとき金属の具体例としては、A
(1、Au、 Cuなどがあげられるが、これらに限定
されるものではない。なお、これら金属製の裏面電極の
外表面に耐腐食性のある金属や合金層、たとえばCr、
 Ni、 Tなどからなる層を設けることにより、裏面
電極を保護してもよい。 前記裏面電極が波長0.6−以上の光に対する反射率が
80%以上の値を有する金属から形成されると、i層を
薄くすることによる活性層の光吸収量の低下を高反射率
を有する裏面電極での反射光を有効利用することで補う
ことができる。 最も裏面電極側の半導体層と裏面電極との間に設けられ
る透光性のシリサイド層とは、裏面電極を形成する金属
が半導体中へ拡散し、半導体層の劣化〜破壊を防止する
ために設けられる層であり、裏面電極での反射光が利用
できるように、波長0.6−以上の光に対する透光性を
有し、透過率70%以上の特性を有する層であれば使用
しつる。このようなシリサイド層の具体例としては、H
g、 Sr、 Ba、 Ti、 Zr、 Hf、V 、
 Nb。 Ta、 Cr、 No、W 、 Mn、 Re、 Fe
1Ru、 Os、 Co、 Tr。 Ni、PdまたはPtなどのシリサイドからなる、好ま
しくは10〜80人の厚さの層があげられる。 つぎに本発明の太陽電池の製法を一実施態様にもとづき
説明する。 まず透明電極を゛設けた透明基板上に、常法により非晶
質のp層、i層、n層を形成する。そののちシリサイド
形成元素、たとえばCr、旧などを用いて通常の電子ビ
ーム蒸着法により、所定の厚さの層を形成する。もちろ
んシリサイド形成元素をスパッター用ターゲットを用い
てスパッター法により堆積させてもよい。 そののち常法により高反射性金属を所定の厚さに蒸着さ
せる。 第1図に示すように、前記透明基板(1)の透明電極(
3)側表面(21に500〜5000人の範囲の凹凸が
あればこの部分の乱反射により半導体(4)中への光閉
込効果が増し、JSCが増すのでさらによい。 なお第1図中の(5)はシリサイド層、(6)は裏面電
極である。 また第2図に示すように、透明基板の透明電極側表面の
凹凸のかわりに透明電極(3)の半導体側表面(71に
500〜5000人の範囲の凹凸が設けられていても、
前記と同様の効果かえられる。 もちろん電極を有する基板上に半導体層を形成した太陽
電池についても同様な凹凸がその電極に設けられている
方が、光閉込効果が増すのでよい。 このようにして作製された本発明の太陽電池は、このま
までも加熱による太陽電池性能の低下が少なく、良好な
特性を有するものであるが、サラニ180℃〜成11m
K(180〜400℃程度)テ0.5〜4時間時間熱処
理すると、シリサイド形成元素層がシリサイド化し、裏
面電極とn層との接触をよくすることができ、その界面
の直列抵抗を減少させることができる。 もちろんシリサイド層の形成はシリサイドターゲットを
用いて行なってもよい。 このようにして製造される本発明の非晶質を含む薄膜半
導体系太陽電池は、i層が薄いにもかかわらず裏面での
反射光を有効利用することで高い変換効率を有し、かつ
光劣化が少なく、耐熱性に優れている。 つぎに本発明の太陽電池を実施例にもとづき説明する。 実施例1 厚さ1000人のITO/SnO2透明電極を設けた厚
さ1■の青板ガラス基板上に、基板温度約200℃、圧
力的1 Torrにて、5i)laおよび82)Il+
からなる混合ガス、5i14F3よびH2からなる混合
ガス、5iHaおよびPHsからなる混合ガスをこの順
に用いて、グロー放電分解法にてそれぞれアモルファス
シリコンのp層を 120人、i層を3000人、n層
を200人の厚さになるように堆積させた。 そののち、クロム層を電子ビーム蒸着法にて10’ T
orrで膜厚が20人になるようにn層上に堆積させた
のち、続いてA(lを2000人堆積させた。 ついで200℃で2時間熱処理して太陽電池を製造した
。 えられた太陽電池の特性、最適負荷状態で200a+W
/cm2 x 40時間光照射試験後の特性、230’
CX6時間加熱試験後の特性をAM−1100mW/C
l112のソーラーシミュレーターにて測定した。 結果を第1表に示す。 比較例1 1層の厚さを6000人にし、シリサイド層を設けず裏
面電極にアルミニウム2000人を用いたほかは実施例
1と同様にして太陽電池を作製し、えられた太陽電池の
特性を測定した。そののち実施例1と同様の試験後の特
性を測定した。結果を第1表に示す。 [以下余白] なお第1表の性能は実施例1の初期値を基準にしたばあ
いの相対値で示しである。
[Industrial Application Field] The present invention relates to a thin film semiconductor solar cell containing an amorphous material. [Prior Art] Solar cells using amorphous silicon have been used for a long time. [Problems to be Solved by the Invention] Conventionally used solar cells using amorphous silicon suffer from significant initial performance deterioration due to light irradiation, resulting in a lack of long-term reliability. If the thickness of the intrinsic layer is made thinner, the rate of deterioration will be lowered, but a problem arises in that the conversion efficiency will also be lowered. In order to suppress this decrease in efficiency, a high reflectance A
There is also a method of using electrodes made of g, Au, Cu, etc., but this method has the problem that the metal forming the electrodes diffuses into amorphous silicon (a-8i:1), deteriorating the solar cell characteristics. The present invention was made with the aim of achieving initial performance close to that of conventional solar cells, preventing deterioration of solar cell characteristics due to diffusion of metal forming electrodes, and reducing photodeterioration. [Means for solving the problems] The present invention firstly reduces the thickness of the substantially intrinsic layer (i-layer) to 5.
00 to 4,000 people and thinner than conventional solar cells,
This reduces the influence on the deterioration of solar cell performance due to changes in the photo-induced structure of one layer.Secondly, the decrease in the amount of light absorption of the active layer due to thinning of the i-layer is reduced by using Ag with high reflectivity. This is supplemented by the use of a back electrode made of AU, Cu, etc., and the third method is A(], Au,
In order to prevent deterioration or destruction of the solar cell due to diffusion of Cu into the semiconductor, there is a layer of 10
This was made based on the discovery that the above object can be achieved by creating a structure with a silicide layer of ~80 μm thickness, and a thin film containing an amorphous material having a photoelectric conversion operation. In a solar cell in which a semiconductor layer is provided on a substrate, the thickness of the substantially intrinsic layer of the semiconductor layer is 500 nm to 500 nm.
4,000 people, and a light-transmitting silicide layer is provided between the back electrode and the semiconductor layer closest to the backside electrical bridge, and the back electrode has a reflectance of 80% or more for light with a wavelength of 0.8 layer or more than 1 m. The present invention relates to a thick I11 battery containing an amorphous thin film semiconductor, characterized in that it is formed from a metal having a value of . [Example] The amorphous-containing thin film semiconductor having photoelectric conversion operation used in the present invention includes at least one of Si, Ge, and C.
containing seeds, or at least one of 5iSGeSC
Examples include those containing seeds with nitrogen atoms or oxygen atoms added as constituents, and the formed semiconductor dangling bonds may be terminated with hydrogen atoms or fluorine atoms. Specific examples of the above semiconductors include a-3i:H,
a-3i:F:Hla-8iGe:H, a-8iSn:
H. a-SiN:t(, a-3iGe:F-H, a-3i
Sn:F:H, a-8i:N:F:H, a-3iC:H
, a-8iC:F:H, a-3iO:H. Examples include a-3iO:F:H, and may be n-type, n-type, or intrinsic. Further, the semiconductor may be formed to have a heterojunction structure or may be formed to have a homojunction structure. As for the thickness of the semiconductor, the thickness of the substantially intrinsic WJ (i layer) is 500 to 4000, preferably 1000 to 4000.
There is no particular limitation as long as there are 4,000 semiconductor workers, more preferably 1,500 to 3,500 semiconductor workers. If the thickness of the i-layer is less than 500 layers, the photoelectric conversion efficiency in a solar cell will decrease, and if it exceeds 4000 layers, photodeterioration will increase, both of which are unfavorable. Note that the substantially intrinsic layer (i-layer) referred to in this specification refers to a layer active for photoelectric conversion, and may be a layer compensated with a dopant. Usually, semiconductors are formed by forming a p-layer, i
The layers are formed in this order: n layer, nil, or n layer, 1 layer, and pl on a substrate having a back electrode or serving as a back electrode. Normally, the p-layer is on the light incident side, so if it is too thick, the optical loss will increase, so the thickness is preferably 300 Å or less, more preferably 40 to 150 Å, and the n-layer is on the back electrode side. If it is too thick, the optical loss when long-wavelength light is reflected on the back electrode becomes large, so the thickness is preferably 300 Å or less, and more preferably 400 Å or less.
0 to 200 people, particularly preferably 40 to 150 people. The amorphous-containing semiconductor may include a microcrystalline semiconductor, and at least the semiconductor layer in contact with the silicide layer (
It is preferable that the n-layer (usually the n-layer) is made of microcrystalline amorphous silicon because diffusion of the back electrode (described later) into the semiconductor layer is reduced, and the resulting deterioration of solar cell performance is reduced. In the above description, the pIn type solar cell was mainly explained, but a Schottky type solar cell may also be used. In any case, in order to reduce optical deterioration, it is preferable that light be incident from the p side. In the present invention, a thin film semiconductor containing an amorphous material as described above is provided on a transparent substrate having a transparent electrode, and a transparent silicide layer is provided between the semiconductor layer closest to the back electrode and the back electrode. A thin film semiconductor solar cell including an amorphous material is manufactured by being provided in contact with the semiconductor layer closest to the back electrode and the back electrode. The transparent substrate having the transparent electrode is, for example, glass,
For example, ITO is placed on a substrate with a thickness of about 0.1 to 10 mm made of a translucent material such as ceramic, an organic polymer material such as an epoxy resin, or a fluorine resin.
, In2O3, SnO, , ITO/5n02, Cdy
SnOy (X is 0.5-2, y is 2-4),
Irz O+-z (Z is 0.33-0.5)
, ZnO (m is O~0.5), 1-m transparent electrodes are grown to a thickness of about 500 to 104. The wavelength of the back electrode is 0.6I! 5 made of metal having a reflectance of 80% or more for light of rn or more
As long as it is a growth pole with a thickness of about 00 to 104 people, it can be used without any particular restrictions. Specific examples of the metals mentioned above include A
(1) Au, Cu, etc. may be mentioned, but are not limited to these. Note that the outer surface of the back electrode made of these metals is coated with a corrosion-resistant metal or alloy layer, such as Cr,
The back electrode may be protected by providing a layer made of Ni, T, or the like. When the back electrode is formed of a metal having a reflectance of 80% or more for light with a wavelength of 0.6 or more, the decrease in the amount of light absorption of the active layer due to thinning of the i-layer can be suppressed by increasing the reflectance. This can be compensated for by effectively utilizing the reflected light from the back electrode. The light-transmitting silicide layer provided between the semiconductor layer closest to the back electrode and the back electrode is provided to prevent the metal forming the back electrode from diffusing into the semiconductor and deteriorating or destroying the semiconductor layer. In order to utilize the reflected light from the back electrode, any layer can be used as long as it has a property of transmitting light with a wavelength of 0.6 or more and a transmittance of 70% or more. A specific example of such a silicide layer is H
g, Sr, Ba, Ti, Zr, Hf, V,
Nb. Ta, Cr, No, W, Mn, Re, Fe
1Ru, Os, Co, Tr. Mention may be made of a layer of silicide, such as Ni, Pd or Pt, preferably from 10 to 80 people thick. Next, a method for manufacturing a solar cell according to the present invention will be explained based on one embodiment. First, amorphous p-layer, i-layer, and n-layer are formed by a conventional method on a transparent substrate provided with a transparent electrode. Thereafter, a layer having a predetermined thickness is formed using a silicide-forming element such as Cr, Cr, etc. by a conventional electron beam evaporation method. Of course, the silicide-forming element may be deposited by sputtering using a sputtering target. Thereafter, a highly reflective metal is deposited to a predetermined thickness by a conventional method. As shown in FIG. 1, the transparent electrode (
3) It is even better if the side surface (21) has irregularities in the range of 500 to 5000, since the diffused reflection of this part will increase the light confinement effect in the semiconductor (4) and increase the JSC. (5) is a silicide layer, and (6) is a back electrode.Also, as shown in FIG. 2, instead of the unevenness on the transparent electrode side surface of the transparent substrate, Even if there are irregularities in the range of ~5000 people,
The same effect as above can be obtained. Of course, in the case of a solar cell in which a semiconductor layer is formed on a substrate having electrodes, it is better if the electrodes are provided with similar irregularities because the light confinement effect increases. The solar cell of the present invention produced in this way has good characteristics with little deterioration in solar cell performance due to heating even as it is.
When heat treated at K (approx. 180 to 400 degrees Celsius) for 0.5 to 4 hours, the silicide-forming element layer becomes silicide, which improves the contact between the back electrode and the n-layer and reduces the series resistance at the interface. be able to. Of course, the silicide layer may be formed using a silicide target. The amorphous-containing thin film semiconductor solar cell of the present invention manufactured in this way has high conversion efficiency by effectively utilizing the light reflected on the back surface despite the thin i-layer, and has high light conversion efficiency. Has little deterioration and excellent heat resistance. Next, the solar cell of the present invention will be explained based on Examples. Example 1 5i)la and 82)Il+ were deposited on a 1-inch-thick blue plate glass substrate provided with a 1000-thick ITO/SnO2 transparent electrode at a substrate temperature of about 200°C and a pressure of 1 Torr.
A mixed gas consisting of 5i14F3 and H2, a mixed gas consisting of 5iHa and PHs were used in this order to form amorphous silicon p-layer, i-layer, and n-layer by glow discharge decomposition method. was deposited to a thickness of 200 people. After that, a chromium layer was deposited at 10'T by electron beam evaporation.
After depositing on the n-layer to a film thickness of 20 layers with orr, 2000 layers of A(l) were subsequently deposited. Then, a solar cell was manufactured by heat treatment at 200° C. for 2 hours. Characteristics of solar cells: 200a+W under optimal load conditions
/cm2 x Characteristics after 40 hours light irradiation test, 230'
AM-1100mW/C characteristics after CX 6 hour heating test
Measured using a solar simulator 1112. The results are shown in Table 1. Comparative Example 1 A solar cell was produced in the same manner as in Example 1, except that the thickness of one layer was 6000 mm, no silicide layer was provided, and aluminum 2000 mm was used for the back electrode, and the characteristics of the obtained solar cell were It was measured. Thereafter, the characteristics after the same test as in Example 1 were measured. The results are shown in Table 1. [Margin below] Note that the performances in Table 1 are shown as relative values based on the initial values of Example 1.

【発明の効果】【Effect of the invention】

本発明の太陽電池は、 (1)i層を500〜4000人と薄くすることにより
光劣化を大幅に減少させることができる (2)高反射率の金属からなる裏面電極を用いているの
で、1層を薄くすることによる活性層の光吸収量の低下
を裏面反射光を有効利用することで充分補うことができ
る (3)半導体層と裏面電極との間に透光性のシリサイド
層を設け、裏面電極の高反射性をそこなうことなく、裏
面電極を形成する金属の半導体中への拡散を防止するこ
とができるので耐熱性に優れている (4)前記シリサイド層は極めて簡単に形成でき、品質
のバラツキも少ないため容易に製造できるなどの特徴を
有するものである。
The solar cell of the present invention has the following features: (1) By making the i-layer thinner by 500 to 4,000 people, photodeterioration can be significantly reduced. (2) Since the back electrode is made of a highly reflective metal, The decrease in light absorption of the active layer due to thinning of one layer can be sufficiently compensated for by effectively utilizing light reflected from the back surface. (3) A transparent silicide layer is provided between the semiconductor layer and the back electrode. (4) The silicide layer can be formed extremely easily, since it can prevent the metal forming the back electrode from diffusing into the semiconductor without impairing the high reflectivity of the back electrode. It has the characteristics that it can be easily manufactured because there is little variation in quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は透明基板として透明電極側に凹凸を有するもの
を用いたばあいにえられる本発明の太陽電池の一実施態
様に関する説明図、第2図は第1図に示す透明基板の透
明電極側のかわりに透明電極の半導体側に凹凸を有する
ものを用いたばあいにえられる本発明の太陽電池の一実
施態様に関する説明図である。 (図面の主要符号) (1):透明基板 (3):透明電極 (4)二手導体 (5):シリサイド層 (6):裏面電極
FIG. 1 is an explanatory diagram of an embodiment of the solar cell of the present invention obtained when a transparent substrate having unevenness on the transparent electrode side is used, and FIG. 2 is an explanatory diagram of the transparent electrode of the transparent substrate shown in FIG. 1. FIG. 4 is an explanatory diagram of an embodiment of the solar cell of the present invention obtained when a transparent electrode having irregularities on the semiconductor side instead of the semiconductor side is used. (Main symbols in the drawing) (1): Transparent substrate (3): Transparent electrode (4) Two-handed conductor (5): Silicide layer (6): Back electrode

Claims (1)

【特許請求の範囲】 1 光電変換作用を有する非晶質を含む薄膜半導体層が
基板上に設けられた太陽電池において、該半導体層の実
質的に真性な層の厚さが500〜4000Åであり、裏
面電極と最も裏面電極側の半導体層との間に透光性のシ
リサイド層を設け、該裏面電極が波長0.6μm以上の
光に対する反射率が80%以上の値を有する金属から形
成されていることを特徴とする非晶質を含む薄膜半導体
系太陽電池。 2 前記半導体層がヘテロ接合構造を有する特許請求の
範囲第1項記載の太陽電池。 3 少なくともシリサイド層と接する前記半導体層がマ
イクロクリスタリンアモルファスシリコンからなる特許
請求の範囲第1項記載の太陽電池。 4 前記シリサイド層がMg、Sr、Ba、Ti、Zr
、Hf、V、Nb、Ta、Cr、Ho、W、Mn、Re
、Fe、Ru、Os、Co、Ir、Ni、PbまたはP
tのシリサイドからなる特許請求の範囲第1項記載の太
陽電池。 5 前記裏面電極がAg、Au、Cuからなる特許請求
の範囲第1項記載の太陽電池。
[Scope of Claims] 1. A solar cell in which a thin film semiconductor layer containing an amorphous substance having a photoelectric conversion function is provided on a substrate, wherein the substantially intrinsic layer of the semiconductor layer has a thickness of 500 to 4000 Å. , a light-transmitting silicide layer is provided between the back electrode and the semiconductor layer closest to the back electrode, and the back electrode is formed from a metal having a reflectance of 80% or more for light with a wavelength of 0.6 μm or more. A thin film semiconductor solar cell containing amorphous material. 2. The solar cell according to claim 1, wherein the semiconductor layer has a heterojunction structure. 3. The solar cell according to claim 1, wherein the semiconductor layer in contact with at least the silicide layer is made of microcrystalline amorphous silicon. 4 The silicide layer is Mg, Sr, Ba, Ti, Zr
, Hf, V, Nb, Ta, Cr, Ho, W, Mn, Re
, Fe, Ru, Os, Co, Ir, Ni, Pb or P
2. The solar cell according to claim 1, comprising t silicide. 5. The solar cell according to claim 1, wherein the back electrode is made of Ag, Au, or Cu.
JP60053563A 1985-03-18 1985-03-18 Thin film semiconductor solar cell containing amorphous material Granted JPS61212070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053563A JPS61212070A (en) 1985-03-18 1985-03-18 Thin film semiconductor solar cell containing amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053563A JPS61212070A (en) 1985-03-18 1985-03-18 Thin film semiconductor solar cell containing amorphous material

Publications (2)

Publication Number Publication Date
JPS61212070A true JPS61212070A (en) 1986-09-20
JPH0564868B2 JPH0564868B2 (en) 1993-09-16

Family

ID=12946284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053563A Granted JPS61212070A (en) 1985-03-18 1985-03-18 Thin film semiconductor solar cell containing amorphous material

Country Status (1)

Country Link
JP (1) JPS61212070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273672A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film photoelectric transfer element
KR20000052280A (en) * 1999-01-18 2000-08-16 마스다 노부유키 Amorphous silicon solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104184A (en) * 1982-11-19 1984-06-15 シ−メンス,アクチエンゲゼルシヤフト Solar battery
JPS59107580A (en) * 1982-12-11 1984-06-21 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS59147469A (en) * 1983-02-14 1984-08-23 Hitachi Ltd Amorphous silicon solar cell
JPS59154081A (en) * 1983-02-22 1984-09-03 Unitika Ltd Solar battery
JPS59177974A (en) * 1983-03-28 1984-10-08 Nippon Denso Co Ltd Amorphous silicon group semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104184A (en) * 1982-11-19 1984-06-15 シ−メンス,アクチエンゲゼルシヤフト Solar battery
JPS59107580A (en) * 1982-12-11 1984-06-21 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS59147469A (en) * 1983-02-14 1984-08-23 Hitachi Ltd Amorphous silicon solar cell
JPS59154081A (en) * 1983-02-22 1984-09-03 Unitika Ltd Solar battery
JPS59177974A (en) * 1983-03-28 1984-10-08 Nippon Denso Co Ltd Amorphous silicon group semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273672A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film photoelectric transfer element
KR20000052280A (en) * 1999-01-18 2000-08-16 마스다 노부유키 Amorphous silicon solar cell

Also Published As

Publication number Publication date
JPH0564868B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US4765845A (en) Heat-resistant thin film photoelectric converter
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
US5296045A (en) Composite back reflector for photovoltaic device
US5668050A (en) Solar cell manufacturing method
US4941032A (en) Semiconductor device
JPS60208813A (en) Photoelectric converting device and manufacture therefor
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
US5718773A (en) Photoelectric transducer
US4665278A (en) Heat-resistant photoelectric converter
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPS61212070A (en) Thin film semiconductor solar cell containing amorphous material
JPH0658971B2 (en) Photovoltaic device manufacturing method
JP3510443B2 (en) Method for manufacturing photovoltaic device
JPS61144885A (en) Heatproof, thin film optoelectric transducer and production thereof
JP2000012879A (en) Transparent electrode for photoelectric converter elements and photoelectric converter element using the same
JP2846508B2 (en) Photovoltaic element
JP3196155B2 (en) Photovoltaic device
JPS6191973A (en) Heat resisting thin film photoelectric conversion element and manufacture thereof
JP2994716B2 (en) Photovoltaic device
JPH0456170A (en) Manufacture of thin-film solar cell
JP2003008036A (en) Solar battery and its manufacturing method
JPS59150485A (en) Photoelectric conversion semiconductor device
JPH088368B2 (en) Manufacturing method of heat-resistant thin film photoelectric conversion element
JPH0936406A (en) Photoelectric converter and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term