JPS61212069A - Gaas field effect transistor - Google Patents

Gaas field effect transistor

Info

Publication number
JPS61212069A
JPS61212069A JP5222685A JP5222685A JPS61212069A JP S61212069 A JPS61212069 A JP S61212069A JP 5222685 A JP5222685 A JP 5222685A JP 5222685 A JP5222685 A JP 5222685A JP S61212069 A JPS61212069 A JP S61212069A
Authority
JP
Japan
Prior art keywords
gate
source
gaas
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222685A
Other languages
Japanese (ja)
Inventor
Kazumichi Sakamoto
坂本 和道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5222685A priority Critical patent/JPS61212069A/en
Publication of JPS61212069A publication Critical patent/JPS61212069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8124Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with multiple gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a twin gate GaAs FET which has gentle second gate-source voltage dependency and can be easily utilized concerning the circuit, by making the second gate shorter than the first gate. CONSTITUTION:The twin gate GaAs FET includes a semi-insulating substrate 1 of GaAs crystal, a channel section and an N-type doped layer 2 serving as source-drain contacts. Source and drain electrodes 3, 4 are made of Ni/Au plated layers or the like, laying AuGe under them. A first gate 5 made of Al has a gate length lg1 of about 1-2mu, while a second control gate 6 made of Al has a gate length lg2 of about 0.5-1mu. By making the lg2 shorter than lg1, confinement of the drain current by employing the second gate G2 can be moderated, the source-drain current can be increased and thus the amplification factor can be increased, with the result that voltage dependency between the source and second gate for automatic gain control can be moderated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はGaAs  半導体装置、49に双ゲートGa
AsFET(デュアルゲート電界効果トランジスタ)に
関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a GaAs semiconductor device, a dual gate Ga
Regarding AsFET (dual gate field effect transistor).

〔背景技術〕[Background technology]

テレビジョンのチェーナ用として、低雑音性。 Low noise for use in television channels.

電力利得性、あるいは耐サージ性のよい双ゲート型のG
aAsFETが使われている。
Twin gate type G with good power gain or surge resistance
aAsFET is used.

このGaAsFETは、第3図に示すようK、半絶縁性
Ga As基板1上K、たとえばn型のアクティブ層2
を形成し、このn型層2上にシ璽ットキ・バリアをつく
る金属、たとえばA1よりなる第1ゲー)G、、第2ゲ
ーhGtを並べて設け、これら2つのゲートを挾んで上
記n型層にオーミックコンタクトするソース(S)・ド
レイン(至)電極を設けた構造を有し、第1ゲートGI
への信号入力によって、直下のチャネルn型層2の空乏
層を変えてソース・ドレイン電流を制御するものである
。一方、第2ゲートG、は可変抵抗として使用される。
As shown in FIG.
On this n-type layer 2, a first gate (G) and a second gate (hGt) made of metal, for example A1, which form a barrier are provided side by side, and these two gates are sandwiched between the above n-type layer It has a structure in which source (S) and drain (to) electrodes are provided in ohmic contact with the first gate GI.
By inputting a signal to the channel, the depletion layer of the channel n-type layer 2 immediately below is changed to control the source-drain current. On the other hand, the second gate G is used as a variable resistor.

(NEC技報、 Vol 36.tVkL12/198
3.p6〜p9[低雑音GaAsFETJ参照) このようなGaAsFETrにおける増幅率gm特性は
、第2図のドレイン電流Id、ゲート・ンース電圧YG
s曲線で示されるように、第1ゲートGIは急峻な曲線
形状がのぞましく、一方、第2ゲートG、はなだらかな
スローカットオフの形状がのぞましい。
(NEC Technical Report, Vol 36.tVkL12/198
3. p6 to p9 [Refer to low-noise GaAsFETJ] The amplification factor gm characteristics in such a GaAsFETr are as follows: drain current Id, gate-to-source voltage YG
As shown by the s curve, the first gate GI preferably has a steep curved shape, while the second gate G preferably has a gentle slow cutoff shape.

従来のスゲ−) GaAs F E Tにおいては、第
3図に示されるように第1ゲート長ngtと第2ゲート
長Agtとを同寸法(l gt =−8gt )とする
か、又は、第4図に示されるようにMOSFETの帰還
容量CR55を小さくするため!g、を大きくCl5g
ρ1gm)したものが利用されている。なおゲート幅は
第1ゲートと第2ゲートが同寸法であるとする。
In the conventional GaAs FET, as shown in FIG. To reduce the feedback capacitance CR55 of the MOSFET as shown in the figure! g, increase Cl5g
ρ1gm) is used. It is assumed that the first gate and the second gate have the same gate width.

しかし、13gtを大きくすることは第2ゲートG、に
よってソース・ドレイン電流ID5S(IDSSは、第
1ゲート拳ソース間電圧、第2ゲート−ソース間電圧が
ともに零である時のソース・ドレイン電流である。)が
大幅に制限され、I I)ss状態での9mが大幅に低
下する。また、ドレイン電流IDの第2ゲート・ソース
電圧VG、S依存性が極めて大きくなり、パワゲインP
G(JiFmと等価)のvc、S依存性が急峻となって
ドレイン電流の制御が難しくなるため回路上使用し難く
なるという問題点があることがわかった。
However, increasing 13gt means that the second gate G has a source-drain current ID5S (IDSS is the source-drain current when both the first gate-source voltage and the second gate-source voltage are zero). ) is significantly limited, and II) 9m in the ss state is significantly reduced. In addition, the dependence of the drain current ID on the second gate-source voltages VG and S becomes extremely large, and the power gain P
It has been found that there is a problem in that the dependence of G (equivalent to JiFm) on VC and S becomes steep, making it difficult to control the drain current, making it difficult to use in circuits.

このように従来のスゲ−)GaAs FETでは43 
g I≦Egtの構造が採用され、第2ゲートGtを積
極的に最適化して特性の向上を図るようにしていない。
In this way, in the conventional GaAs FET, 43
A structure in which g I≦Egt is adopted, and the second gate Gt is not actively optimized to improve the characteristics.

したがって、双ゲート型GaAs F E Tの特性は
第2ゲートの存在により単ゲートのそれよりもPG、N
F(雑音指数)等の面で劣っていることがわかった。
Therefore, due to the presence of the second gate, the characteristics of the double-gate GaAs FET are better than those of the single gate.
It was found that it was inferior in terms of F (noise figure), etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、A G C(Autom
at 1cGain Control )において、第
2ゲート・ソース電圧Vo、s依存性をゆるやかにして
回路的に使用し易すくした双ゲートGaAs F E 
Tを提供することKある。
The object of the present invention is to perform AGC (Automatic
At 1cGain Control), the dual-gate GaAs FE has a gentle dependence on the second gate-source voltages Vo and s, making it easier to use in terms of circuitry.
There is K to provide T.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、GaAs基板上に第1ゲート及び第2ゲート
が並設され第1ゲートへの電圧印加によってソース・ド
レイン電流が制御されるGaAsFETであって、第2
ゲート長!gtを第1ゲート長Jgs よりも小さく形
成することKより、1mの向上が図られ、同時に第2ゲ
ート・ソース電圧依存性vG、 sが弱められて回路に
使用し易くなり発明の目的を達成できる。
That is, it is a GaAsFET in which a first gate and a second gate are arranged in parallel on a GaAs substrate, and the source/drain current is controlled by applying a voltage to the first gate.
Gate chief! By making gt smaller than the first gate length Jgs, an improvement of 1 m is achieved by K, and at the same time, the second gate-source voltage dependence vG, s is weakened, making it easier to use in circuits, achieving the purpose of the invention. can.

〔実施例1〕 第1図は本発明の一実施例を示すものであって、スゲ−
)GaAsFETの縦断面、斜面図である。
[Example 1] Figure 1 shows an example of the present invention.
) A longitudinal section and a slope view of a GaAsFET.

1はGaAs結晶からなる半絶縁性基板(チップ)、2
はチャネル部及びソース・ドレイン・コンタクトどなる
n型ドープ層である。なお、ソース・ドレインコンタク
トとなるn型層表面部分には高濃度n+型型数散層形成
しておくことがのぞましい。
1 is a semi-insulating substrate (chip) made of GaAs crystal, 2
is an n-type doped layer that forms the channel portion and source/drain contacts. Note that it is preferable to form a highly concentrated n+ type dispersed layer on the surface portion of the n type layer which will serve as the source/drain contact.

3.4はソース・ドレイン電極であって、AuGeを下
地とするNi/Auメッキ層等から構成され、前記n型
層(n+型層)表面に蒸着、ス/(ツタ等により形成さ
れる。5は第1ゲートでA[よりなり、ゲート長−gg
+=1〜2μ程度とする。6は制御用のための第2ゲー
トで、AAよりなりゲート長1g、=0.5〜1μ程度
とする。
Reference numeral 3.4 denotes source/drain electrodes, which are composed of a Ni/Au plating layer with AuGe as a base, and are formed on the surface of the n-type layer (n+-type layer) by vapor deposition, sintering, etc. 5 is the first gate and consists of A[, gate length - gg
+=approximately 1 to 2μ. Reference numeral 6 denotes a second gate for control, which is made of AA and has a gate length of 1 g and approximately 0.5 to 1 μm.

なお、図示されないが、電極を含む基板表面上にはパッ
ジベージ冒ンとしてCVD(気相化学堆積)Sin、膜
のごとき無機絶縁膜、又はポリイミド系樹脂のごとき有
機絶縁膜で覆われることになる。
Although not shown, the surface of the substrate including the electrodes is covered with an inorganic insulating film such as CVD (vapor phase chemical deposition) Sin, a film, or an organic insulating film such as polyimide resin as a padding coating.

〔発明の効果〕〔Effect of the invention〕

以上実施例で述べた発明によれば、下記のように効果が
得られる。
According to the invention described in the embodiments above, the following effects can be obtained.

fi+  第2ゲート長2g!を第1ゲート長−13g
Iよりも短かくすることにより、第2ゲートG、による
ドレイン電流ID制限が緩和され、ソース・ドレイン電
流I D8gが大きくなり、その結果として増幅率1m
をたかめることができる。すなわちAGC(自動利得制
御)のVc、s依存性がゆるやかになり、広い範囲で使
い易くなった。
fi+ 2nd gate length 2g! The first gate length - 13g
By making it shorter than I, the drain current ID restriction by the second gate G is relaxed, the source-drain current ID8g becomes larger, and as a result, the amplification factor is 1m.
can be increased. In other words, the dependence of AGC (automatic gain control) on Vc and s has become gentler, making it easier to use over a wide range.

(2)  第2ゲート長を短かくすることにより、ピン
チオフが深くなり、スローカットオフが効果的になった
(2) By shortening the second gate length, the pinch-off becomes deeper and the slow cut-off becomes more effective.

(3)  上記fil(2)により、利得制御側、雑音
特性が同一ゲート幅で向上する。
(3) With the above fil (2), the gain control side and noise characteristics are improved with the same gate width.

〔実施例2〕 第5図は本発明の他の一実施例を示すものであって、ス
ゲ−) GaAs F E Tの縦断面図である。
[Embodiment 2] FIG. 5 shows another embodiment of the present invention, and is a longitudinal sectional view of a GaAs FET.

この実施例では第1ゲート、第2ゲートにおいて、ゲー
ト幅W、ゲート長−g g 1  e 4 g tは等
しいが、チャネル深さくd+  −d!  )を変える
ことにより1m等を向上させるものである。
In this embodiment, the gate width W and the gate length -g g 1 e 4 g t are the same in the first gate and the second gate, but the channel depth is d+ -d! ) can be improved by 1m, etc.

すなわち、同図に示すように第1ゲートGIの形成され
るn型層20表面のみに凹部7をホトエツチングにより
あけておき、第2ゲートG1の形成されるn型層の表面
は凹部を形成しないか、又は凹部7に比べて浅い凹部を
形成し、これらの上に同じゲート長の第1ゲートG1及
び第2ゲートG!を形成するものである。
That is, as shown in the figure, a recess 7 is formed by photoetching only on the surface of the n-type layer 20 where the first gate GI is formed, and no recess is formed on the surface of the n-type layer where the second gate G1 is formed. Alternatively, a recess shallower than the recess 7 is formed, and the first gate G1 and the second gate G! having the same gate length are formed above the recess 7. It forms the

このような双ゲートGaAsFET構造によれば第2ゲ
ートG、下のチャネル深さd、は第1ゲート下のチャネ
ル深さd、よりも深いことにより、第2ゲートGtによ
るドレイン電流ID制限が緩和され、実施例】の場合と
同様の理由でJmが向上し、電力利得、雑音特性が向上
できる。
According to such a double-gate GaAsFET structure, the channel depth d under the second gate G is deeper than the channel depth d under the first gate, so that the restriction on drain current ID by the second gate Gt is relaxed. Therefore, Jm is improved for the same reason as in the embodiment, and power gain and noise characteristics can be improved.

〔実施例3〕 第6図は本発明の他の一実施例を示すものであって、ス
ゲ−) GaAs F E Tの断面図である。
[Embodiment 3] FIG. 6 shows another embodiment of the present invention, and is a sectional view of a GaAs FET.

この実施例では第1ゲー)、iI2ゲートにおいてゲー
ト幅、ゲート長を等しくする一方、チャネル部の不純物
濃度を変えることにより前記発明の目的を達成させるも
のである。
In this embodiment, the object of the invention is achieved by making the gate width and gate length equal in the first gate) and iI2 gate, while changing the impurity concentration in the channel portion.

すなわち、同図に示すように、第1ゲートG。That is, as shown in the figure, the first gate G.

の形成されるn型層2の表面にこのn型層2よりわずか
に高い濃度で不純物(たとえばシリコン)をイオン打込
み等圧より導入し、n型層8を形成しておくものである
。なお、チャネル部となるn型層2の不純物濃度n−は
低く制御しておく必要がある。
An impurity (for example, silicon) is introduced into the surface of the n-type layer 2 by ion implantation at a slightly higher concentration than the n-type layer 2, thereby forming the n-type layer 8. Note that the impurity concentration n- of the n-type layer 2 serving as the channel portion must be controlled to be low.

このような双ゲートGaAsFET構造によれば、第2
ゲートGt下のチャネル部濃度が第1ゲートG、のチャ
ネル濃度よりも低いことにより第2ゲ−) G、による
ドレイン電流ID制限が緩和され、実施例1の場合と同
様の理由で1mが向上し、電力利得、雑音特性が向上で
きる。
According to such a double-gate GaAsFET structure, the second
Since the channel concentration under the gate Gt is lower than the channel concentration of the first gate G, the drain current ID limit due to the second gate G is relaxed, and 1m is improved for the same reason as in Example 1. However, power gain and noise characteristics can be improved.

〔利用分野〕[Application field]

本発明は主としてテレビジョン、チューナ用双ゲー) 
GaAs F E Tに応用して効果がある。
The present invention is mainly applicable to televisions and tuners.
It is effective when applied to GaAs FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、GaAs F ET
の正面断面斜面図である。 第2図は双ゲートFETにおけるId−VGS曲線図で
ある。 第3図及び第4図はGaAsFETの従来例を示す断面
図である。 第5図及び第6図は本発明の他の実施例を示す断面図で
ある。 1・・・G a A s基板、2・・・n型層(チャネ
ル部、コンタクト部)、3・・・ソース電極、4・・・
ドレイン電極、5・・・第1ゲート、6・・・第2ゲー
ト、7・・・凹部、8・・・n型拡散層。 第  1  図 第  2  図 一1/fS 第  3  図 第  4  図
FIG. 1 shows an embodiment of the present invention, in which a GaAs FET
FIG. FIG. 2 is an Id-VGS curve diagram for a double-gate FET. FIGS. 3 and 4 are cross-sectional views showing conventional examples of GaAsFETs. FIGS. 5 and 6 are cross-sectional views showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Ga As substrate, 2... n-type layer (channel part, contact part), 3... source electrode, 4...
Drain electrode, 5... first gate, 6... second gate, 7... recess, 8... n-type diffusion layer. Figure 1 Figure 2 Figure 1/fS Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、GaAs基板上に信号入力用の第1ゲート及びゲイ
ン調整用の第2ゲートが並設され、これら2つのゲート
を挾んでソース電極及びドレイン電極が設けられ、ソー
ス電極近傍に設けられた第1ゲートへの電圧印加によっ
てソース・ドレイン電流が制御されるGaAs電界効果
トランジスタであって、第2ゲート長は第1ゲート長よ
りも短かく形成されていることを特徴とするGaAs電
界効果トランジスタ。 2、GaAs基板上に信号入力用の第1ゲート及びゲイ
ン調整用の第2ゲートが並設され、これら2つのゲート
を挾んでソース及びドレイン各電極が設けられ、ソース
電極近傍に設けられた第1ゲートへの電圧印加によって
ソース・ドレイン電流が制御されるGaAs電界効果ト
ランジスタであって、第2ゲートのチャンネル部の深さ
が第1ゲートのそれより深くしたことを特徴とするGa
As電界効果トランジスタ。 3、第1ゲートと第2ゲートは基板表面の凹部内に形成
され、第2ゲートの凹部の深さは第1ゲートのそれより
浅く形成された特許請求の範囲第2項に記載のGaAs
電界効果トランジスタ。
[Claims] 1. A first gate for signal input and a second gate for gain adjustment are arranged in parallel on a GaAs substrate, a source electrode and a drain electrode are provided sandwiching these two gates, and the source electrode A GaAs field effect transistor whose source/drain current is controlled by applying a voltage to a first gate provided nearby, characterized in that the second gate length is formed shorter than the first gate length. GaAs field effect transistor. 2. A first gate for signal input and a second gate for gain adjustment are arranged in parallel on a GaAs substrate, and source and drain electrodes are provided between these two gates, and a second gate is provided near the source electrode. A GaAs field effect transistor whose source-drain current is controlled by voltage application to one gate, characterized in that the depth of the channel portion of the second gate is deeper than that of the first gate.
As field effect transistor. 3. The GaAs according to claim 2, wherein the first gate and the second gate are formed in a recess in the substrate surface, and the depth of the recess of the second gate is shallower than that of the first gate.
Field effect transistor.
JP5222685A 1985-03-18 1985-03-18 Gaas field effect transistor Pending JPS61212069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222685A JPS61212069A (en) 1985-03-18 1985-03-18 Gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222685A JPS61212069A (en) 1985-03-18 1985-03-18 Gaas field effect transistor

Publications (1)

Publication Number Publication Date
JPS61212069A true JPS61212069A (en) 1986-09-20

Family

ID=12908825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222685A Pending JPS61212069A (en) 1985-03-18 1985-03-18 Gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPS61212069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227071A (en) * 1990-01-31 1991-10-08 Nec Corp Schottky barrier field-effect transistor
GB2438677B (en) * 2006-05-31 2011-08-10 Filtronic Compound Semiconductors Ltd A field effect transistor having multiple pinch off voltages

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227071A (en) * 1990-01-31 1991-10-08 Nec Corp Schottky barrier field-effect transistor
GB2438677B (en) * 2006-05-31 2011-08-10 Filtronic Compound Semiconductors Ltd A field effect transistor having multiple pinch off voltages
US8115233B2 (en) 2006-05-31 2012-02-14 Rfmd (Uk) Limited Field effect transistor having multiple pinch off voltages

Similar Documents

Publication Publication Date Title
US5973341A (en) Lateral thin-film silicon-on-insulator (SOI) JFET device
US5146298A (en) Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US5675172A (en) Metal-insulator-semiconductor device having reduced threshold voltage and high mobility for high speed/low-voltage operation
US6064088A (en) RF power MOSFET device with extended linear region of transconductance characteristic at low drain current
TWI475690B (en) Multi-gate semiconductor devices
US4994872A (en) Insulated gate static induction transistor and integrated circuit including same
EP0036887A4 (en) Semiconductor devices controlled by depletion regions.
JPS59193066A (en) Mos semiconductor device
US4652896A (en) Modulation doped GaAs/AlGaAs field effect transistor
KR101222758B1 (en) High breakdown voltage double-gate semiconductor device
US5670804A (en) PN-junction gate FET
JPS61212069A (en) Gaas field effect transistor
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
US7012285B2 (en) Semiconductor device
US5389807A (en) Field effect transistor
US4191963A (en) Built-in notched channel MOS-FET triodes for high frequency application
JPH0328065B2 (en)
US4450468A (en) Gallium arsenide ISL gate with punched-through bipolar driver transistor
JPH02250378A (en) Semiconductor device
JP3131267B2 (en) Field effect transistor
JP2553673B2 (en) Field effect transistor
JPS6378574A (en) Manufacture of semiconductor device
JPH0645362A (en) Field effect transistor
JPS62283672A (en) Field-effect transistor and manufacture thereof
JPS626670B2 (en)