JPS6121178B2 - - Google Patents

Info

Publication number
JPS6121178B2
JPS6121178B2 JP10961882A JP10961882A JPS6121178B2 JP S6121178 B2 JPS6121178 B2 JP S6121178B2 JP 10961882 A JP10961882 A JP 10961882A JP 10961882 A JP10961882 A JP 10961882A JP S6121178 B2 JPS6121178 B2 JP S6121178B2
Authority
JP
Japan
Prior art keywords
gas
base material
temperature
optical fiber
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10961882A
Other languages
Japanese (ja)
Other versions
JPS593033A (en
Inventor
Tetsuo Myanochi
Hiroaki Takimoto
Hisao Sato
Tamio Tsurita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10961882A priority Critical patent/JPS593033A/en
Publication of JPS593033A publication Critical patent/JPS593033A/en
Publication of JPS6121178B2 publication Critical patent/JPS6121178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明は光フアイバ用母材の製造方法の改良に
関するものである。 技術の背景 光フアイバ用母材の製造は、図に示すように反
応容器1の下方に配置された複数のノズルを有す
る酸水素炎バーナ2からガラス原料およびその屈
折率を変える屈折率制御用原料を所定の空間分布
となるよう上方に向けて吹き出させ、これを加水
分解し該酸水素炎バーナ2と対向する支持棒3の
下端部に反応によつて生成したガラス微粒子を付
着堆積させ、成長に従つて支持棒3を回転させつ
つ引き上げて光フアイバ用母材10を得るもので
ある。 従来技術と問題点 図に示す光フアイバ用母材10の生成過程にお
いては、該母材10の表面、特にまさにガラス微
粒子の堆積が行なわれつつある母材下端部の母材
成長面6の表面の温度を均一に保つことが高品質
の母材を得るための非常に有効な手段となる。然
し、ガラス微粒子が堆積中の母材表面における母
材成長面6の温度は、酸水素炎バーナ2が形成す
る炎4のゆらぎ、反応容器1の外表面の外気によ
る冷却作用の変化に起因する反応容器1内部のガ
スの温度の変化、反応容器1内部のガスの流れ状
態の変化による母材10周囲のガスの温度分布の
変化、反応容器1から排気管5を経由して外部へ
排出される排気ガス8の流量の変化等の影響を受
け変動する。従来からこの変動を一定に抑える手
段として、酸水素炎バーナ2から供給される水素
量または酸素量を操作することにより、または外
部からタングステンランプ、CO2レーザ等の熱源
を利用して直接母材成長面6の温度を制御する方
法が提案されているが、前者は炎4内で起つてい
るガス微粒子生成反応と炎の形状自体に直接影響
を与えてしまうので好ましくなく、後者について
はその影響が局部的であること、または装置とし
て組込むことに操作上の安定性、反応容器1の形
状、材質に対する制約が大きく好ましくないとい
う問題があつた。 発明の目的 本発明の目的は、反応容器内へガラス原料を吹
きつけるバーナとは別の個所から供給されるガス
(以下余剰ガスと云う)の温度を操作することに
より、反応容器内にて生成中の光フアイバ用母材
の表面温度を一定に制御することにより光フアイ
バ用母材の長手方向、すなわち生長方向の品質を
均一に維持し良質の光フアイバ用母材を得ること
にある。以下図により説明する。 発明の実施例 本発明は、図において反応容器1内へ供給され
る余剰ガス7の温度を加熱器9によつて操作する
ことにより母材成長面6の温度を一定に制御する
ものである。本発明の方法によれば母材成長面6
の温度を炎4をして、または母材成長面6の周辺
から母材10の熱伝導によつて間接的に制御でき
るため、先に述べた従来の方法による欠点は存在
しない。図において11a乃至11dは酸水素炎
バーナ2に酸素、水素および原料ガス、さらに不
活性ガス等を供給するポートである。12は排気
ガス8に含まれる主として塩化水素ガスを中和す
るための洗浄塔であり、13は中和液を噴霧する
ノズル、14は中和液をノズル13へ送るポン
プ、15は中和液の受槽である。16は排気フア
ンで排気ガス8はもとより余剰ガス7もすべて該
排気フアン16に吸引される。17はチヤツクで
支持棒3を回転させつつガラス微粒子の堆積速度
に合わせて上方に移動する。18は母材成長面6
の温度を検出する温度計であり、通常は赤外放射
温度計を用いる。19は制御回路で加熱器9の出
力パワを、温度計18の出力値と設定値との偏差
が零になるよう制御する。なお加熱器9の熱慣性
を小さくすることは制御の応答性を早めるうえで
重要であるが構造上限度がある。従つて応答の非
常に早い制御系が必要な場合には図の破線内に示
す構成による方法が有利である。加熱器9と反応
容器1を接続する配管20の途中にガスの合流部
21を設け、加熱器9を通過する余剰ガス7aと
加熱器9を通らない余剰ガス7bを合流させる。
余剰ガス7aと7bの混合比を、余剰ガス7bの
配管中に設けた流量調節弁22の開度によつて変
えることにより、結果的に反応容器1内に流入す
る余剰ガス7の温度を制御する。23は流量調節
弁22を駆動するモータ、24は余剰ガス7aと
7bを効率的に混合するアジテータである。この
方法によれば応答の非常に早い制御系を実現でき
ることは明らかである。 次に母材成長面6の温度制御を実施するに際し
て、破線部内の構成を用いない場合(CASE
A)と、該構成を用いた場合(CASE B)及び
全く温度制御を実施しない場合(CASE C)の
3条件で光フアイバ用母材を製造した結果を表に
示す。表は品質の安定性を帯域特性で示すととも
に、参考として各CASEにおける母材成長面6の
温度変動幅を示す。余剰ガス7,7a,7bは空
気を用いた。
TECHNICAL FIELD OF THE INVENTION The present invention relates to improvements in a method for manufacturing optical fiber preforms. Background of the Technology As shown in the figure, the production of the base material for optical fiber is carried out from an oxyhydrogen flame burner 2 having a plurality of nozzles arranged below a reaction vessel 1 to a raw material for glass and a raw material for controlling the refractive index to change its refractive index. is blown upward in a predetermined spatial distribution, hydrolyzed, and the glass fine particles generated by the reaction are deposited on the lower end of the support rod 3 facing the oxyhydrogen flame burner 2, and the glass particles are grown. Accordingly, the support rod 3 is rotated and pulled up to obtain the optical fiber base material 10. Prior Art and Problems In the production process of the optical fiber base material 10 shown in the figure, the surface of the base material 10, particularly the surface of the base material growth surface 6 at the lower end of the base material where glass fine particles are being deposited. Maintaining a uniform temperature is a very effective means of obtaining a high quality base material. However, the temperature of the base material growth surface 6 on the base material surface where the glass particles are being deposited is due to fluctuations in the flame 4 formed by the oxyhydrogen flame burner 2 and changes in the cooling effect of the outside air on the outer surface of the reaction vessel 1. Changes in the temperature of the gas inside the reaction vessel 1, changes in the temperature distribution of the gas around the base material 10 due to changes in the flow state of the gas inside the reaction vessel 1, and changes in the temperature distribution of the gas around the base material 10 due to changes in the gas flow state inside the reaction vessel 1; It fluctuates under the influence of changes in the flow rate of exhaust gas 8, etc. Conventionally, as a means to keep this fluctuation constant, by manipulating the amount of hydrogen or oxygen supplied from the oxyhydrogen flame burner 2, or by using an external heat source such as a tungsten lamp or CO 2 laser, it is possible to directly control the base material. A method of controlling the temperature of the growth surface 6 has been proposed, but the former is undesirable because it directly affects the gas particle generation reaction occurring within the flame 4 and the shape of the flame itself, while the latter is unfavorable. There is a problem that the reaction is localized, or that it is undesirable to incorporate it into a device because there are significant restrictions on operational stability, the shape of the reaction vessel 1, and the material. Purpose of the Invention The purpose of the present invention is to control the temperature of gas (hereinafter referred to as surplus gas) supplied from a location other than the burner that blows glass raw materials into the reaction container. The purpose of the present invention is to maintain uniform quality of the optical fiber base material in the longitudinal direction, that is, the growth direction, by controlling the surface temperature of the optical fiber base material to obtain a high-quality optical fiber base material. This will be explained below using figures. Embodiments of the Invention In the present invention, the temperature of the base material growth surface 6 is controlled to be constant by controlling the temperature of the surplus gas 7 supplied into the reaction vessel 1 using a heater 9 as shown in the figure. According to the method of the present invention, the base material growth surface 6
The disadvantages of the conventional methods mentioned above do not exist because the temperature of the base metal 10 can be controlled indirectly by the flame 4 or by heat conduction through the base metal 10 from the vicinity of the base metal growth surface 6. In the figure, 11a to 11d are ports for supplying oxygen, hydrogen, source gas, and inert gas to the oxyhydrogen flame burner 2. 12 is a cleaning tower for neutralizing mainly hydrogen chloride gas contained in the exhaust gas 8; 13 is a nozzle that sprays a neutralizing liquid; 14 is a pump that sends the neutralizing liquid to the nozzle 13; 15 is a neutralizing liquid It is a receiving tank. 16 is an exhaust fan, and not only the exhaust gas 8 but also the excess gas 7 are all sucked into the exhaust fan 16. Reference numeral 17 rotates the support rod 3 with a chuck and moves it upward in accordance with the deposition rate of the glass particles. 18 is the base material growth surface 6
It is a thermometer that detects the temperature of a person, and usually an infrared radiation thermometer is used. A control circuit 19 controls the output power of the heater 9 so that the deviation between the output value of the thermometer 18 and the set value becomes zero. Although it is important to reduce the thermal inertia of the heater 9 in order to speed up control responsiveness, there is a structural upper limit. Therefore, when a control system with very quick response is required, the method using the configuration shown within the broken line in the figure is advantageous. A gas merging section 21 is provided in the middle of a pipe 20 connecting the heater 9 and the reaction vessel 1, and surplus gas 7a passing through the heater 9 and surplus gas 7b not passing through the heater 9 are merged.
By changing the mixing ratio of the surplus gases 7a and 7b by changing the opening degree of the flow rate control valve 22 provided in the pipe for the surplus gas 7b, the temperature of the surplus gas 7 flowing into the reaction vessel 1 is controlled as a result. do. 23 is a motor that drives the flow control valve 22, and 24 is an agitator that efficiently mixes the surplus gases 7a and 7b. It is clear that this method makes it possible to realize a control system with very quick response. Next, when controlling the temperature of the base material growth surface 6, if the configuration inside the broken line is not used (CASE
The table shows the results of manufacturing optical fiber base materials under three conditions: A), when this configuration was used (CASE B), and when no temperature control was performed at all (CASE C). The table shows the stability of quality in terms of band characteristics, and also shows the temperature fluctuation range of the base material growth surface 6 in each CASE for reference. Air was used as the surplus gases 7, 7a, and 7b.

【表】 なお表中CASE A、Bにおいて余剰空気の反
応容器入口での温度は20乃至50℃を示し、CASE
A、B、Cにおいて余剰空気の量は50/分であ
つた。また次の条件はCASE A、B、Cにおい
て同一とした。 (1) マツフル形状:300mmO.D×800mmHeight (2) バーナ供給ガス:H2、4/分、O2、7
/分、Ar;2/分、SiCl4;1.7g/分、
GeCl4;0.3g/分 (3) 母材形状:50mmO.D.×400mmLength (4) 成長速度:0.5gr/分 発明の効果 以上述べたように本発明は生成中の母材のまさ
に粒状ガラスの堆積しつつある部分またはその近
傍の表面温度を、ガラス材料を吹きつけるバーナ
の設置個所とは異なる個所から余剰ガスを供給
し、該余剰ガスの温度を操作して一定温度に制御
することにより、安定な操作で光フアイバ用母材
の成長方向の品質を均一に維持することができ、
良質の光フアイバ用母材を得ることができその効
果顕著である。
[Table] In CASE A and B in the table, the temperature of excess air at the inlet of the reaction vessel is 20 to 50℃, and CASE
In A, B, and C, the amount of excess air was 50/min. In addition, the following conditions were the same for CASE A, B, and C. (1) Matsuful shape: 300mm OD × 800mm Height (2) Burner supply gas: H 2 , 4/min, O 2 , 7
/min, Ar; 2/min, SiCl 4 ; 1.7g/min,
GeCl 4 ; 0.3g/min( 3 ) Base material shape: 50mm OD By supplying surplus gas from a location different from the location where the burner that blows the glass material is installed, and manipulating the temperature of the surplus gas to control the surface temperature of the part where it is being deposited or its vicinity to a constant temperature, Through stable operation, the quality of the base material for optical fibers can be maintained uniformly in the growth direction.
A high-quality base material for optical fiber can be obtained, and the effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の光フアイバ用母材の製造方法を示
す概略図である。 1……反応容器、2……酸水素炎バーナ、3…
…支持棒、4……炎、5……排気管、6……母材
成長面、7,7a,7b,……余剰ガス、8……
排気ガス、9……加熱器、10……母材、11a
乃至11d……ポート、12……洗浄塔、13…
…中和液噴霧用ノズル、14……ポンプ、15…
…受槽、16……排気フアン、17……チヤツ
ク、18……温度計、19……制御回路、20…
…配管、21……ガス合流部、22……流量調節
弁、23……モータ、24……アジテータ。
The figure is a schematic diagram showing a method for manufacturing an optical fiber base material of the present invention. 1... Reaction vessel, 2... Oxyhydrogen flame burner, 3...
... Support rod, 4 ... Flame, 5 ... Exhaust pipe, 6 ... Base metal growth surface, 7, 7a, 7b, ... Surplus gas, 8 ...
Exhaust gas, 9... Heater, 10... Base material, 11a
to 11d...port, 12...washing tower, 13...
... Neutralizing liquid spray nozzle, 14... Pump, 15...
...Receiving tank, 16...Exhaust fan, 17...Chuck, 18...Thermometer, 19...Control circuit, 20...
... Piping, 21 ... Gas confluence section, 22 ... Flow control valve, 23 ... Motor, 24 ... Agitator.

Claims (1)

【特許請求の範囲】 1 ガラス原料の気体を酸水素バーナから噴出さ
せて火炎加水分解し、火炎加水分解によつて生成
する粒状ガラスを棒状に堆積させて多孔質の光フ
アイバ用母材を反応容器内で製造し、前記生成中
の母材のまさに粒状ガラスの堆積しつつある部分
または部分の近傍の表面温度を検出し、 表面温度を前記酸水素バーナの噴出個所とは異
なる個所から供給するガスに温度制御をかけるこ
とによつて前記表面温度を制御する光フアイバ用
母材の製造方法において、 前記噴出個所とは異なる個所から供給するガス
に温度制御をかける方法は、 前記ガスを加熱または冷却する手段と、 前記ガスを加熱または冷却する手段と前記反応
容器とを接続する配管の途中から前記ガスとは異
なるガスを合流する手段と、 前記異なるガスの流量を調節する手段 とからなることを特徴とする光フアイバ用母材の
製造方法。
[Scope of Claims] 1. Glass raw material gas is ejected from an oxyhydrogen burner to undergo flame hydrolysis, and granular glass produced by the flame hydrolysis is deposited in a rod shape to react with a porous optical fiber base material. Produced in a container, detecting the surface temperature of the part or the vicinity of the part where the granular glass is just depositing on the base material being produced, and supplying the surface temperature from a part different from the spouting part of the oxyhydrogen burner. In the method for manufacturing an optical fiber base material in which the surface temperature is controlled by temperature-controlling the gas, the method of temperature-controlling the gas supplied from a location different from the ejection location includes heating or heating the gas. a means for cooling the gas; a means for merging a gas different from the gas from the middle of a pipe connecting the means for heating or cooling the gas and the reaction vessel; and a means for adjusting the flow rate of the different gas. A method for producing a base material for optical fiber, characterized by:
JP10961882A 1982-06-25 1982-06-25 Manufacture of base material for optical fiber Granted JPS593033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10961882A JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10961882A JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS593033A JPS593033A (en) 1984-01-09
JPS6121178B2 true JPS6121178B2 (en) 1986-05-26

Family

ID=14514853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10961882A Granted JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS593033A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372283U (en) * 1989-11-10 1991-07-22
WO2003062159A1 (en) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material

Also Published As

Publication number Publication date
JPS593033A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
US4062665A (en) Continuous optical fiber preform fabrication method
US3957474A (en) Method for manufacturing an optical fibre
US4367085A (en) Method of fabricating multi-mode optical fiber preforms
JP3521681B2 (en) Manufacturing method of optical fiber preform
JP4043768B2 (en) Manufacturing method of optical fiber preform
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
CN101492244B (en) Apparatus and method for producing prefabricated stick of optical fiber
JPS6269010A (en) Burner device and manufacture of glass product
US4414008A (en) Process for producing optical fiber preform
JPH10245242A (en) Apparatus for producing porous glass base material for optical fiber
JPS6121178B2 (en)
KR20000052506A (en) Method and apparatus for forming an optical fiber preform by combustionless hydrolysis
KR20040001769A (en) Outside vapor deposition apparatus used for making optical fiber
JPH02102146A (en) Production of glass fine particle deposit
US5207813A (en) Method for producing glass article
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JPS6081035A (en) Manufacture of base material for optical fiber
JPH0971430A (en) Production of preformed material for optical fiber and production unit therefor
RU2245853C2 (en) Method of production of a porous billet of glass (alternatives)
JPS62162637A (en) Production of optical fiber preform
JPS63147841A (en) Production of optical fiber base material
KR101556635B1 (en) Constant weight powder feeding equipment for manufacturing quartz glass ingot
JPH05319849A (en) Production of silica porous preform
JPS63307137A (en) Production of glass preform for optical fiber
JP3818567B2 (en) Method for producing synthetic quartz glass ingot