JPS61211344A - Fortified ion-exchange membrane - Google Patents

Fortified ion-exchange membrane

Info

Publication number
JPS61211344A
JPS61211344A JP5026085A JP5026085A JPS61211344A JP S61211344 A JPS61211344 A JP S61211344A JP 5026085 A JP5026085 A JP 5026085A JP 5026085 A JP5026085 A JP 5026085A JP S61211344 A JPS61211344 A JP S61211344A
Authority
JP
Japan
Prior art keywords
yarn
membrane
cloth
exchange membrane
denier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026085A
Other languages
Japanese (ja)
Inventor
Hiroaki Ito
宏明 伊藤
Koji Suzuki
公二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5026085A priority Critical patent/JPS61211344A/en
Publication of JPS61211344A publication Critical patent/JPS61211344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide the titled ion-exchange membrane which has excellent mechanical strength such as tear resistance and dimensional stability and low membrane resistance and can be operated at a low-voltage high-current efficiency over a long period of time, by fortifying the membrane with a fortifying cloth composed of a mixed yarn of a fluoropolymer yarn and a sacrificial yarn. CONSTITUTION:A mixed yarn having a denier of 20-350, a yarn density of 10-200/in and a flatness ratio (yarn crosssection) of 0.9-0.1 composed of multi- and/or monofilament of a fluoropolymer yarn (e.g. perfluoropolymer yarn) and 7-70% sacrificial yarn of polyester, polyamide, acrylic or cellulose soluble under electrolysis conditions, is woven into a cloth by twilling, plain weaving, gauze weaving, etc., thus obtaining a fortifying cloth having a porosity of 30-90% and a thickness of 40-120mu. The cloth is laminated onto an unfortified ion-exchange membrane contg. an exchange group such as carboxyl or sulfo group by heating under pressure to insert the cloth into the membrane, thus obtaining the titled ion-exchange membrane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、補強されたイオン交換膜に関するものであり
、さらに詳しくは特定の補強布により補強されたイオン
交換膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a reinforced ion exchange membrane, and more particularly to an ion exchange membrane reinforced with a specific reinforcing fabric.

[従来の技術] 耐酸化性、耐アルカリ性に優れたパーフルオロカーボン
系イオン交換膜をハロゲン化アルカリ電解用隔膜として
用いるイオン交換膜アルカリ電解法は従来の水銀電解法
、アスベスト隔膜雷替辻シ÷鈷lプ線抗絆 制旦旦唇 
儒八中小点で優れており、近年、急速に普及しつつある
[Prior art] The ion exchange membrane alkaline electrolysis method uses a perfluorocarbon ion exchange membrane with excellent oxidation resistance and alkali resistance as a diaphragm for alkali halide electrolysis. l-p line anti-bond system tandan lip
It is excellent in terms of 8 points, middle and small points, and has become rapidly popular in recent years.

しかしながら、補強材を有しないイオン交換膜は、それ
自体では裂は易く、また電解液の濃度変化−に伴ない、
膜が伸縮するなど寸法安定性に実用上の問題を有してい
た。
However, ion exchange membranes without reinforcing materials tend to tear easily by themselves, and with changes in the concentration of the electrolyte,
There were practical problems with dimensional stability, such as the membrane expanding and contracting.

かかる欠点を補い、イオン交換膜の機械的強度および寸
法安定性を向上する方法として、布による補強が有効で
ある。しかし、補強布の適用は導電面積の減少による膜
抵抗の上昇が避けられない、この対策として、特定の糸
径と織り密度を有する種々の織布で補強したイオン交換
膜が提案されている(実公昭58−8901号、実公昭
55−3850号、実開昭53−101048号各公報
、米国特許第4072793号明細書等を参照)。
Reinforcement with cloth is an effective method for compensating for such drawbacks and improving the mechanical strength and dimensional stability of ion exchange membranes. However, the application of reinforcing fabrics inevitably increases membrane resistance due to a decrease in the conductive area. As a countermeasure to this problem, ion exchange membranes reinforced with various woven fabrics with specific thread diameters and weaving densities have been proposed ( (See Utility Model Publication No. 58-8901, Utility Model Publication No. 55-3850, Utility Model Application Publication No. 53-101048, U.S. Pat. No. 4,072,793, etc.).

しかしながら、粗いメツシュの織布を用いると膜抵抗は
小さくなる利点を有するものの、特にフルオロカーボン
糸を用いた場合、糸同志が滑り易くなるために、目ずれ
を生じイオン交換膜の機械的強度が部分的に損なわれる
欠点を有する。
However, although the use of a woven fabric with a coarse mesh has the advantage of reducing membrane resistance, especially when using fluorocarbon threads, the threads tend to slip against each other, causing misalignment and partially reducing the mechanical strength of the ion exchange membrane. It has disadvantages that are detrimental to its performance.

一方、未補強イオン交換膜(便宜上イオン交換基に変換
される基を有する熱可塑性樹脂フィルムも含めて総称す
る二以下と同じ)としては低い電気抵抗を得るために薄
膜化の方向が望ましいが、かかる薄膜に、糸交点の厚い
補強用布を適用した場合、該交点の部分で膜にピンホー
ルが生じやすくなり、またピンホール発生には至らない
場合でも、布補強した膜において。補強布の糸の交点部
分で樹脂層の実質的厚みが小さくなるため、加水分解し
た膜を折り曲げる際に、糸の交点部分でイオン交換膜に
クラックが入り易くなるという難点があった。
On the other hand, as for unreinforced ion-exchange membranes (same as 2 or less, which includes thermoplastic resin films having groups that can be converted into ion-exchange groups for convenience), it is desirable to make them thinner in order to obtain lower electrical resistance. If a thick reinforcing cloth at thread intersections is applied to such a thin film, pinholes are likely to occur in the membrane at the intersections, and even if pinholes do not occur, the fabric is reinforced with cloth. Since the substantial thickness of the resin layer is reduced at the intersections of the reinforcing fabric threads, there is a problem in that the ion exchange membrane is likely to crack at the intersections of the threads when the hydrolyzed membrane is bent.

更に、従来電解使用下に溶解しうる犠牲糸を、織布の縦
糸と横糸のいずれか一方に織り込んだフルオロカーボン
糸の織布で補強された織布が知られている。(特開昭5
8−37187号公報)しかし、上記犠牲糸が溶出した
後の織布は、強度的に弱いのみならず、織布を得る段階
でなお目ずれを起し易く、十分な寸法安定性のある補強
布を得難く、ひいては均一な機械的強度をもつイオン交
換膜を得るという点ではなお不十分であった・ [発明の解決しようとする問題点] 本発明は、h記聞照点を解消するものであり、機械的強
度および寸法安定性に優れ、かつ膜抵抗が小さく、さら
にピンホールの発生を見ない優れたイオン交換膜の提供
を目的とするものである。
Furthermore, woven fabrics reinforced with woven fabrics of fluorocarbon yarns in which sacrificial yarns that can be dissolved during electrolytic use are woven into either the warp or weft of the woven fabric are known. (Unexamined Japanese Patent Publication No. 5
(No. 8-37187) However, the woven fabric after the sacrificial yarn has been eluted is not only weak in strength, but also easily misaligned at the stage of obtaining the woven fabric. It was difficult to obtain a cloth, and furthermore, it was still insufficient in terms of obtaining an ion exchange membrane with uniform mechanical strength. [Problems to be solved by the invention] The present invention solves the problems described in h. The object of the present invention is to provide an excellent ion exchange membrane that has excellent mechanical strength and dimensional stability, has low membrane resistance, and does not generate pinholes.

[問題点を解決するための手段] 本発明のイオン交換膜は、フルオロポリマー系と電解使
用下に溶解性を有する犠牲糸の混紡糸からなる補強布で
あって、好ましくは、デニール数が20〜350であり
、かつ糸密度(本ンインチ)が10〜20Gであり、さ
らに糸の断面の扁平比が0.9〜0.1であり、且つ混
紡糸中の犠牲糸の含有割合が好ましくは7〜70重量%
である補強布でイオン交換膜である。
[Means for Solving the Problems] The ion exchange membrane of the present invention is a reinforcing fabric made of a blended yarn of a fluoropolymer system and a sacrificial yarn that is soluble under electrolytic use, and preferably has a denier of 20. -350, the yarn density (inches) is 10-20G, the cross-sectional aspect ratio of the yarn is 0.9-0.1, and the content ratio of sacrificial yarn in the blended yarn is preferably 7-70% by weight
It is a reinforced cloth and an ion exchange membrane.

本発明においては、好ましくは補強布の糸のデニール数
が20〜300、糸密度は10〜200木/” I 7
4−−  R# I−/ l+ 19〜+F+11 +
/ I ン4−r*ih klかつ糸の断面扁平比が0
.9〜0.1、好ましくは0.8〜0.15である。こ
こで扁平比は糸断面の縦方向の径を横方向の径で除した
値である。さらに、混紡糸中の犠牲糸の含有割合は7〜
70%。
In the present invention, preferably the denier number of the reinforcing cloth threads is 20 to 300, and the thread density is 10 to 200 wood/''I7.
4-- R# I-/l+ 19~+F+11+
/ I n4-r*ih kl and the cross-sectional flatness ratio of the thread is 0
.. 9 to 0.1, preferably 0.8 to 0.15. Here, the aspect ratio is the value obtained by dividing the longitudinal diameter of the yarn cross section by the transverse diameter. Furthermore, the content ratio of sacrificial yarn in the blended yarn is 7~
70%.

好まし、〈は15〜60%であることが好ましい、かか
る細い糸を織る方法としては、からみ織り。
Preferably, < is 15 to 60%. A method for weaving such thin threads is leno weaving.

平織り、綾織り、朱子織りなどが有り、なかでもからみ
織り、平織りが適当である。
There are plain weave, twill weave, satin weave, etc. Among them, leno weave and plain weave are suitable.

混紡糸を構成するパーフルオロポリマー系および犠牲糸
の繊維形態はモノフィラメント、マルチフィラメントの
いずれも適用可能である。
The fiber form of the perfluoropolymer and sacrificial yarn constituting the blended yarn can be either monofilament or multifilament.

糸のデニール数が上記範囲の下限以下の場合には、引裂
き強度に関し、補強効果が不十分となり、また上限以上
の場合には、m維による遮蔽の影響が顕著となり、その
結果、膜抵抗が増大するので好ましくない。
If the denier number of the yarn is below the lower limit of the above range, the reinforcing effect will be insufficient in terms of tear strength, and if it is above the upper limit, the effect of shielding by m-fibers will become significant, and as a result, the membrane resistance will increase. This is not desirable because it increases the amount of water.

また、糸断面を扁平にする方法としては、扁平な断面を
有する糸またはスリットしたフィルムを織布に織ること
も可能であるが、丸い糸断面の糸を織布にした後、カレ
ンダーロール等で圧縮し、扁平な断面の糸からなる布に
変換した後、未補強イオン交換膜と加熱、加圧下に積層
し、補強布を膜内に挿入もできる。
In addition, as a method for making the thread cross section flat, it is possible to weave thread with a flat cross section or slit film into a woven fabric, but after making a thread with a round cross section into a woven fabric, it is possible to make the thread with a calendar roll etc. After being compressed and converted into a fabric made of threads with a flat cross-section, it can be laminated with an unreinforced ion exchange membrane under heat and pressure, and the reinforcing fabric can be inserted into the membrane.

糸の扁平比が上記範囲以上では、糸の交点が厚くなり、
ピンホールやクラックを発生し易くなり、上記範囲以下
では、糸による遮蔽が大きすぎて膜抵抗の増大が著しく
なるのでともに不都合である。
When the aspect ratio of the threads exceeds the above range, the intersections of the threads become thicker,
Pinholes and cracks are likely to occur, and below the above range, shielding by the threads is too large and membrane resistance increases significantly, both of which are disadvantageous.

混紡糸を構成する犠牲糸の含有割合が上記範囲以上では
引裂強度に関し、補強、効果が不十分となり好ましくな
い、また、上記範囲の下限以下では、縦糸と横糸の間で
糸が滑り易くなり目ずれを生じ、織布を製造できず好ま
しくない。
If the content ratio of the sacrificial yarn constituting the blended yarn exceeds the above range, the reinforcement and effect on tear strength will be insufficient, which is undesirable.If the content ratio is below the lower limit of the above range, the yarn will tend to slip between the warp and weft yarns, resulting in an undesirable result. This is not preferable because it causes misalignment and makes it impossible to manufacture a woven fabric.

本発明の補強布を構成する繊維の材料であるフルオロポ
リマーとしては、テトラフルオロエチレンの単独重合体
(PTFE)は勿論のこと、テトラフルオロエチレンと
ヘキサフルオロエチレンおよび/またはパーフルオロ(
アルキルビニルエーテル)との共重合体のごとき熔融流
動性のパーフルオロポリマーが好ましい例として挙げら
れる。
The fluoropolymer that is the material of the fibers constituting the reinforcing fabric of the present invention includes, of course, tetrafluoroethylene homopolymer (PTFE), tetrafluoroethylene, hexafluoroethylene, and/or perfluoroethylene (PTFE), and tetrafluoroethylene, hexafluoroethylene, and/or perfluoroethylene
Preferred examples include melt-flowable perfluoropolymers such as copolymers with alkyl vinyl ethers.

また、電解下で溶解性を有する所謂犠牲繊維の材料とし
ては、より大きな溶解性を有するものが好ましく、好ま
しくはセルロース、ポリエステル、ポリアミドおよびア
クリルなどが含まれる。
Further, as the material for the so-called sacrificial fiber that has solubility under electrolysis, materials that have higher solubility are preferred, and preferably include cellulose, polyester, polyamide, acrylic, and the like.

かくして得られる本発明での補強布は、開口率が好まし
くは、30〜80%特には40〜80%をもつものが好
ましく、また厚みは、好ましくは40〜120μm特に
は45〜100μmであるのが好ましい。
The reinforcing fabric of the present invention thus obtained has an aperture ratio of preferably 30 to 80%, particularly 40 to 80%, and a thickness of preferably 40 to 120 μm, particularly 45 to 100 μm. is preferred.

本発明のイオン交換膜は、その形態、材質、交換基の種
類、交換容量等は限定されず、例えば形態としては、単
層膜に限らず交換基の種類もしくは交換容量の異なる2
層以上の層を有する複層膜、また。PTFEフィブリル
等により(小繊維)等を添加、混合して製造されるミク
ロ補強された膜も包含される。
The ion exchange membrane of the present invention is not limited in its form, material, type of exchange group, exchange capacity, etc., and for example, the form is not limited to a single layer membrane, but it can be used in two forms with different types of exchange groups or exchange capacities.
A multilayer film having more than one layer, also. Also included are micro-reinforced membranes produced by adding and mixing PTFE fibrils (fibrils) and the like.

しかして、交換基の種類としては、電解電圧、電流効率
などの電解性能さらには耐久性などの面からカルボン酸
基および/またはスルホン酸基が好ましく例示される。
Therefore, as the type of exchange group, carboxylic acid groups and/or sulfonic acid groups are preferably exemplified from the viewpoint of electrolytic performance such as electrolytic voltage and current efficiency, as well as durability.

本発明において補強用布をイオン交換樹脂膜の補強材と
して適用する方法も限定され外い。
In the present invention, the method of applying the reinforcing cloth as a reinforcing material for an ion exchange resin membrane is also not limited.

例えば、未補強膜(これには前記のごときミクロ補強膜
も含まれる)を加熱軟化した状態で加圧し補強用布にイ
オン交換樹脂の溶液もしくは分散液を含浸後、溶剤除去
、造膜を行なわしめるキャスティング法等があげられる
For example, an unreinforced membrane (this includes the micro-reinforced membrane as described above) is heated and softened and pressurized, the reinforcing cloth is impregnated with an ion exchange resin solution or dispersion, and then the solvent is removed and the membrane is formed. Examples include the tightening casting method.

熔融成形法による場合、温度としては100〜350℃
程度、圧力としては0.2〜100 kg/c層2程原
2程度採用され、バッチ操作に適した方法としては平板
プレス法あるいは真空プレス法が、また連続操作に適し
た方法としては加熱金属ロールと加熱ゴムロールとを使
用する連続ロールプレス法がそれぞれ例示される。バッ
チ法、連続法において、円滑な操作を行なう上でポリエ
ステル、ポリイミド、フッ素樹脂などの耐熱樹脂からな
るフィルムあるいは耐熱紙を離型材料として使用するこ
とが好ましい。このようにして補に電解隔膜としての特
性改善、主として電解電圧の低減などの目的で膜面上に
さらに多孔層を形成せしめることも可能である。
When using the melt molding method, the temperature is 100 to 350°C
The degree and pressure are about 0.2 to 100 kg/c layer 2, and the flat plate press method or vacuum press method is suitable for batch operation, and the heated metal press method is suitable for continuous operation. Continuous roll press methods using rolls and heated rubber rolls are exemplified, respectively. In a batch method or a continuous method, it is preferable to use a film or heat-resistant paper made of a heat-resistant resin such as polyester, polyimide, or fluororesin as a release material for smooth operation. In this way, it is also possible to further form a porous layer on the membrane surface for the purpose of improving the properties of the electrolytic diaphragm, mainly reducing the electrolytic voltage.

本発明においては、補強用布を有するイオン交換樹脂膜
中の補強用布の糸交点の厚みを加水分解前において全体
の厚みの局以下とすることが、ピンホールもしくはクラ
ック発生防止の観点から好ましい態様である。
In the present invention, it is preferable from the viewpoint of preventing pinholes or cracks that the thickness of the thread intersection of the reinforcing cloth in the ion exchange resin membrane having the reinforcing cloth is less than or equal to the overall thickness before hydrolysis. It is a mode.

[実施例] 実施例1 ポリテトラフルオロエチレン(PTFE)よりなるlO
デニールのモノフィラメント4本およびポリエステルよ
りなるlOデニールのモノフィラメント4木を引きそろ
えて撚ったデニール数80のマルチフィラメントをたて
糸とし、PTFEよりなる10デニールのモノフィラメ
ント8本およびポリエステルよりなる10デニールのモ
ノフィラメント8本を引きそろえて撚ったデニール数1
80のマルチフィラメントをよこ糸とし、10、たて糸
40/よこ糸20.たて糸80/よこ糸40のからみ織
り布を得た。
[Example] Example 1 IO made of polytetrafluoroethylene (PTFE)
4 denier monofilaments and 4 lO denier monofilaments made of polyester. 80 denier multifilaments made of twisted wood are used as warp yarns. 8 10 denier monofilaments made of PTFE and 8 10 denier monofilaments made of polyester. Denier number 1 made by aligning and twisting books
80 multifilament as weft, 10, warp 40/weft 20. A leno weave fabric with warp yarns of 80/weft yarns of 40 was obtained.

いずれの場合にも、目すれかなく、補強布として使用可
能であった。
In either case, there were no scratches and the fabric could be used as a reinforcing fabric.

比較例1 実施例1において、ポリエステルのlOデニールのモノ
フィラメントの代りに、PTFEよりなるlOデニール
のモノフィラメントを用いる以外は、実施例1と同様に
してたて糸のデニール数80.よこ糸のデニール数16
0のPTFEのみからなる、糸密度(本/インチ)を各
々たて糸20/よこ糸lOを得た。この布は目ずれが生
じ。
Comparative Example 1 The warp yarn had a denier of 80 in the same manner as in Example 1, except that a 10 denier monofilament made of PTFE was used instead of the 10 denier monofilament made of polyester. Weft denier number 16
A yarn density (strands/inch) of 20 warp yarns/10 weft yarns was obtained, each consisting of only 0 PTFE. This cloth has some misalignment.

補強布として使用できなかった。It could not be used as a reinforcing cloth.

実施例2 PTFEよりなる8デニールのモノフィラメントおよび
ポリエステルの4デニールのモノフィラメントを引きそ
ろえて撚ったデニール数80のマルチフィラメントをた
て糸とし、よこ糸は8デニールのPTFEのモノフィラ
メントおよびポリエステルの4デニールのモノフィラメ
ントを引きそろえた160デニールの糸を用い、糸密度
を各々たて糸24本/インチ、よこ糸12木/インチの
からみ織り布を得た。
Example 2 A multifilament with a denier number of 80 made by aligning and twisting an 8-denier monofilament of PTFE and a 4-denier monofilament of polyester was used as the warp, and a weft was made of an 8-denier PTFE monofilament and a 4-denier monofilament of polyester. Using 160 denier threads, a leno weave fabric having a thread density of 24 warp threads/inch and 12 weft threads/inch was obtained.

たて糸およびよこ糸のポリエステルの含有率は5%、 
15%、30%、80%である。含有率5%のものはや
や目ずれが生じたが、15%以上のものは目ずれが生じ
なかった。
The polyester content of warp and weft is 5%;
They are 15%, 30%, and 80%. When the content was 5%, some misalignment occurred, but when the content was 15% or more, no misalignment occurred.

実施例3 PTFEよりなる10デニールのモノフィラメント8本
、ポリエステルよりなる5デニールのモノフィラメント
12本を引きそろえて撚ったデニール数140のマルチ
フィラメントを用い、縦横の糸密度(本/インチ)がい
ずれも60,80゜100の平織り布を得た。いずれの
場合も目すれかなく補強布として使用可能であった。
Example 3 A multifilament with a denier number of 140 made by twisting 8 monofilaments of 10 denier made of PTFE and 12 monofilaments of 5 denier made of polyester was used. A plain weave cloth of 60, 80° and 100° was obtained. In either case, the fabric could be used as a reinforcing fabric without any scratches.

比較例3 PTFEよりなる10デニールのモノフィラメントを1
4本引きそろえて撚ったデニール数140のマルチフィ
ラメントを用い、縦横の糸密度(木/インチ)が、いず
れも80の平織り布を得たがこの布は目ずれが生じ、補
強布として使用できなかった。
Comparative Example 3 10 denier monofilament made of PTFE
Using multifilament with a denier number of 140 made by twisting four filaments together, a plain weave cloth with a thread density (wood/inch) of 80 in the vertical and horizontal directions was obtained, but this cloth had misalignment and was used as a reinforcing cloth. could not.

実施例4 C2F4とCF2=CFO(CFz)+COOCH3と
の共重合体であって、イオン交換容量(AR)が1.3
5ミリ当量/グラム乾燥樹脂のポリマーをTダイ押出し
法により成形し、厚さ150 ILのフィルムAを得た
Example 4 A copolymer of C2F4 and CF2=CFO(CFz)+COOCH3 with an ion exchange capacity (AR) of 1.3
The polymer at 5 meq/g dry resin was molded by T-die extrusion to obtain a film A having a thickness of 150 IL.

ついで、20cmX 20cmに切り取ったフィルムA
に実施例2に記載した4種の補強布を重ね、各々2軸延
伸ポリエステルの間に挟み、平板プレス機を用いて、3
0kg/cm2,180℃テ10分間プL/スした後、
冷却し、離型用ポリエステルフィルムを剥して布強化膜
を得た。かくして得られた補強布入りおよび全く補強し
てないフィルムA膜を90℃の25%水酸化ナトリウム
水溶液中に16時間浸漬して加水分解した後、該膜の引
裂強度を、室温で測定した。
Next, cut out the film A to 20cm x 20cm.
The four types of reinforcing fabrics described in Example 2 were stacked on top of each other, sandwiched between each layer of biaxially stretched polyester, and pressed using a flat plate press.
0kg/cm2, after 10 minutes of heating at 180℃,
After cooling, the release polyester film was peeled off to obtain a cloth reinforced film. The thus obtained films A with reinforced fabric and without any reinforcement were immersed in a 25% aqueous sodium hydroxide solution at 90° C. for 16 hours to be hydrolyzed, and then the tear strength of the films was measured at room temperature.

その結果を下表に示す。The results are shown in the table below.

膜 補強布の有無 ポリエステ 引裂強度(g)″″八
へ率 A     無                  
100gB     有          5   
   1800gC有          15   
   1800gD     有          
30      1300gE     有     
    ea        800g実施例5 PTFEよりなる10デニールのモノフィラメントおよ
びポリエステルからなる5デニールのモノフィラメント
を各々50%づつ含有するデニール数100,200,
300.及び400の混紡糸を得た。
Membrane Presence of reinforcing cloth Polyester Tear strength (g) ``8'' ratio A None
100gB Yes 5
1800gC 15
1800gD Yes
30 1300gE Yes
ea 800g Example 5 Denier number 100, 200, containing 50% each of a 10 denier monofilament made of PTFE and a 5 denier monofilament made of polyester.
300. and 400 blended yarns were obtained.

鎖糸を用い、たて糸およびよこ糸のデニール数が各々1
00,200,300.及び400からなる縦横の糸密
度60木/インチ平織布E、F、G、Hを作成した。
Using chain yarn, warp yarn and weft yarn each have a denier of 1.
00,200,300. Plain woven fabrics E, F, G, and H having a yarn density of 60 wood/inch in the warp and width were prepared.

これらの織布をカレンダーロールにて扁平比0.25と
なるように扁平化した。
These woven fabrics were flattened using a calendar roll to have a flatness ratio of 0.25.

上記4種の平織布を用い実施例4に記載したと同様にし
てフィルムAを重ね合せ、補強布入加電圧でピンホール
検査したところ膜H′はピンホールが発生し、膜E′、
F′、G’はピンホールがなかった。膜E′、F’ 、
G’は実施例4と同一条件で加水分解して各々E″、F
″、G″の膜を得た。
Film A was superimposed using the four types of plain woven fabrics described above in the same manner as described in Example 4, and pinhole inspection was performed using a voltage applied to the reinforcing cloth. Pinholes were found in film H', film E',
There were no pinholes in F' and G'. Membranes E', F',
G' was hydrolyzed under the same conditions as in Example 4 to give E'' and F, respectively.
″, G″ films were obtained.

1記のごとく加水分解した各々の補強イオン交換膜から
70■X8cmのサンプルを切り出し、I r02−R
uO2/T i02陽極および低過電圧陰極をもつ電解
槽にセットして90°C120A/dm2 にて電解を
行なった。陽極側の塩水濃度を3.5Nに保ち、陰極側
には水を供給しながら生成苛性ソーダー濃度を35重量
%に保持した。2日後の電解槽の電圧4iE’膜テ3.
13V、F’膜テ3.14V、G’膜−t?3.18V
 ’t’あった。
A 70 x 8 cm sample was cut out from each reinforced ion exchange membrane hydrolyzed as described in 1.
It was set in an electrolytic tank having a uO2/Ti02 anode and a low overvoltage cathode, and electrolysis was performed at 90°C and 120A/dm2. The concentration of salt water on the anode side was maintained at 3.5N, and the concentration of produced caustic soda was maintained at 35% by weight while supplying water to the cathode side. Electrolytic cell voltage 4iE' membrane te after 2 days 3.
13V, F' membrane te 3.14V, G' membrane -t? 3.18V
There was a 't'.

[発明の効果] 以上のとおり、本発明は特定の補強布により補強された
、特にハロゲン化アルカリ電解用に適したパーフルオロ
カーボン系イオン交換膜を提供するものであり、これに
より膜の低抵抗化を損なうことなく機械的強度とくに耐
引裂性が改善され、電槽装着時の膜の破損が効果的に防
止され、低電圧高電流効率での長期間の電解操業が可能
となる。
[Effects of the Invention] As described above, the present invention provides a perfluorocarbon-based ion exchange membrane reinforced with a specific reinforcing cloth and particularly suitable for halogenated alkali electrolysis, thereby reducing the resistance of the membrane. Mechanical strength, especially tear resistance, is improved without compromising the performance, effectively preventing membrane damage when attached to a battery case, and enabling long-term electrolytic operation at low voltage and high current efficiency.

Claims (6)

【特許請求の範囲】[Claims] (1)補強用布を有するイオン交換膜において、該補強
布がフルオロポリマーの糸および電解使用下において溶
解性を有する犠牲糸の混紡糸からなる補強布であること
を特徴とする補強されたイオン交換膜。
(1) An ion exchange membrane having a reinforcing cloth, characterized in that the reinforcing cloth is a reinforcing cloth made of a blended yarn of a fluoropolymer yarn and a sacrificial yarn that is soluble under electrolytic use. Exchange membrane.
(2)補強布が混紡糸からなる布であって、該糸のデニ
ール数が20〜350であり、かつ糸密度(本/インチ
)が10〜200であり、さらに糸の断面の扁平比が0
.9〜0.1である特許請求の範囲(1)の膜。
(2) The reinforcing fabric is a fabric made of blended yarn, the denier of the yarn is 20 to 350, the yarn density (strands/inch) is 10 to 200, and the cross-sectional aspect ratio of the yarn is 0
.. 9 to 0.1.
(3)混紡糸がマルチフィラメントおよび/またはモノ
フィラメントのフルオロポリマーの糸およびマルチフィ
ラメントおよび/またはモノフィラメントの犠牲糸から
なるマルチフィラメントである特許請求の範囲(1)又
は(2)の膜。
(3) The membrane of claim (1) or (2), wherein the blended yarn is a multifilament consisting of a multifilament and/or monofilament fluoropolymer yarn and a multifilament and/or monofilament sacrificial yarn.
(4)犠牲糸の含有割合が7〜70%である特許請求の
範囲(1)、(2)又は(3)の膜。
(4) The membrane according to claim (1), (2) or (3), wherein the sacrificial thread content is 7 to 70%.
(5)犠牲糸がポリエステル、ポリアミド、アクリルま
たはセルロースである特許請求の範囲(1)〜(4)の
いずれかの膜。
(5) The membrane according to any one of claims (1) to (4), wherein the sacrificial yarn is polyester, polyamide, acrylic, or cellulose.
(6)イオン交換膜の交換基がカルボン酸基および/ま
たはスルホン酸基である特許請求の範囲(1)〜(5)
のいずれかの膜。
(6) Claims (1) to (5) in which the exchange group of the ion exchange membrane is a carboxylic acid group and/or a sulfonic acid group.
any membrane.
JP5026085A 1985-03-15 1985-03-15 Fortified ion-exchange membrane Pending JPS61211344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026085A JPS61211344A (en) 1985-03-15 1985-03-15 Fortified ion-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026085A JPS61211344A (en) 1985-03-15 1985-03-15 Fortified ion-exchange membrane

Publications (1)

Publication Number Publication Date
JPS61211344A true JPS61211344A (en) 1986-09-19

Family

ID=12854006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026085A Pending JPS61211344A (en) 1985-03-15 1985-03-15 Fortified ion-exchange membrane

Country Status (1)

Country Link
JP (1) JPS61211344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756328B2 (en) * 2000-09-11 2004-06-29 Asahi Kasei Kabushiki Kaisha Reinforced cation exchange membrane and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756328B2 (en) * 2000-09-11 2004-06-29 Asahi Kasei Kabushiki Kaisha Reinforced cation exchange membrane and production process thereof

Similar Documents

Publication Publication Date Title
US4437951A (en) Membrane, electrochemical cell, and electrolysis process
EP0119080B1 (en) Reinforced membrane, electrochemical cell, and electrolysis process
US5384019A (en) Membrane reinforced with modified leno weave fabric
US5264100A (en) Fluorine-containing cation exchange membrane for electrolysis having a protruding porous base reinforcing material on one side thereof
US4872958A (en) Ion exchange membrane for electrolysis
US4990228A (en) Cation exchange membrane and use
JPS59174627A (en) No-reinforced membrane, electrochemical cell and electrolysis
US4988364A (en) Coated cation exchange yarn and process
US6756328B2 (en) Reinforced cation exchange membrane and production process thereof
CA1266020A (en) Ion exchange membrane reinforced with perfluoropolymer leno cloth
JPH02279732A (en) Toughened cation exchange membrane and its preparation
JPH07233267A (en) Fabric-reinforced film
US4996098A (en) Coated cation exchange fabric and process
JPH0458822B2 (en)
CA1223842A (en) Reinforced electrolytic membrane with sulfonate and carboxylate layers
JPS61211344A (en) Fortified ion-exchange membrane
JPS6040459B2 (en) Reinforced ion exchange membrane
JPS59172524A (en) Reinforcing cloth for ion exchange resin membrane
CA2010843A1 (en) Cation exchange membrane reinforced with a cation exchange fabric
JPH0142292B2 (en)
JPS63113029A (en) Electrolytic ion exchange membrane
JP2022145529A (en) Cation exchange membrane and electrolysis tank
CA1273899A (en) Reinforced polymer membrane for electrolysis with sacrificial reinforcement elements on one surface
JPH03217427A (en) Reinforced ion exchange membrane
JPS61281890A (en) Fluorine-containing ion exchange membrane for electrolysis