JPS6121124B2 - - Google Patents

Info

Publication number
JPS6121124B2
JPS6121124B2 JP56019606A JP1960681A JPS6121124B2 JP S6121124 B2 JPS6121124 B2 JP S6121124B2 JP 56019606 A JP56019606 A JP 56019606A JP 1960681 A JP1960681 A JP 1960681A JP S6121124 B2 JPS6121124 B2 JP S6121124B2
Authority
JP
Japan
Prior art keywords
breaker
filter ring
diameter hole
filter
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56019606A
Other languages
Japanese (ja)
Other versions
JPS57133039A (en
Inventor
Hisahiko Fukase
Akihiro Nomura
Sadahiko Shintani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56019606A priority Critical patent/JPS57133039A/en
Publication of JPS57133039A publication Critical patent/JPS57133039A/en
Publication of JPS6121124B2 publication Critical patent/JPS6121124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/694Cylindrical or conical filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプラスチツク押出機の先端に設けられ
るプラスチツク押出機用ブレーカに関する。 ブレーカは押出機の背圧を調節し可塑化・混練
を良くする絞りとしての機能を有すると共に未溶
融ペレツトの通過或は粉砕機の刃の破片、くぎ、
ボルト等押出機のホツパーから混入したものの通
過を阻止するフイルタとしての機能も有する。前
記未溶融ペレツトの通過は可塑化不良の原因とな
り、粉砕機の刃等の通過は、押出機先端に連続す
るブロー成形用ヘツド、Tダイ等流路断面の狭少
な部分に到つてダイス内壁、リツプ部を損傷せし
めると共に製品にも混入して製品不良の原因とな
る。 この為従来からブレーカに第1図イ,ロに示す
円孔2を多数穿設した円板1を使用するとか、該
円板1に加え円板の前面にスクリーンと呼ばれる
金網を設けることにより、細い異物、未溶融物を
塞き止めている。 然し、斯かる方法であると以下の問題があつ
た。 先ず円板1が単独で使用される場合について述
べると、塞き止めたい混入物の大きさは、ダイス
のリツプ厚さ等から決定され、円孔2の大きさも
その塞き止めるべき混入物の大きさから求められ
る。従つて微細な混入物を塞き止める様円孔2を
小さくすると流路抵抗が増大し、樹脂の過熱がお
きる為低樹脂温で良可塑化な状態で押出すことが
困難となる。又、円孔2は未溶物等により目詰り
することが考えられるが、斯かる場合前記した不
具合が助長されると共に背圧が上り、押出量が減
少し、最悪の場合はブレーカが破壊することもあ
る。流路抵抗を減少させ、目詰りによる不具合を
防止するには円孔2の数を増せばよいが、円板1
は高い背圧を受け、該圧力に耐えるものでなけれ
ばならない為、円孔の数を増せば強度確保の為板
厚が厚くなり円孔単体の流路抵抗が増大するとい
う相予盾した結果を招く。又、ブレーカの径を大
きくして、円孔数を増すことも考えられるが、受
圧面が増加するため板厚を厚くせざるを得ないと
いう前記したと同様な不具合がある。従つて、上
記したブレーカでは目詰りを起しやすく流路抵抗
を小さくすることが困難であり、ブレーカ部の分
解清掃を余儀なくされる。又、この分解清掃は数
日毎という頻度でありラインの中断による経済的
損失は莫大なものである。 次に、金網を円板1の前に置いた構造のブレー
カについて述べると、この構造では円孔2を比較
的大きくあけられる利点はあるが、金網が破れ易
く、信頼性を上げるには常に金網を交換して目詰
り、破損をチエツクする必要があり、この場合も
ライン中断による経済的損失は免れ得ないもので
ある。 本発明は斯かる不具合を解消すべくなしたもの
であつて、上流側に小径孔を貫通すると共に下流
側に所要深さの大径穴を穿設したリテーナに、周
面に突起物が設けられ少なくとも一方の端面にス
ペーサ部が設けられたフイルターリングを所要数
嵌装し、且周面に突起物が設けられた固定ブロツ
クを前記大径穴に嵌着してフイルターリングを固
定したことを特徴とするものである。 以下図面を参照しつつ本発明の実施例を説明す
る。 第2図は本発明に係るブレーカの断面図を示
し、第3図イ,ロはブレーカに使用されるフイル
ターリングの正面図並びに側断面図を示してい
る。 両端に連結用フランジ3を張出さしめ、一端側
(下流側B)より大径穴4を所要深さに穿設し、
他端側(上流側A)より小径孔5を貫通せしめて
なるリテーナ6の前記大径穴4に所要数のフイル
ターリング7を軸心方向に順次嵌装すると共にフ
イルターリング7と同外径の固定ブロツク8を着
脱可能に嵌着してフイルターリング7を固定す
る。前記フイルターリング7は前記小径孔5と同
径の内径及び大径穴4より小径なる外径を有して
おり、その両外縁部は適宜な面取加工を施して樹
脂の滞溜を防止している。更にフイルターリング
7の一端面には所要箇所にスペーサ部9を突設
し、外周面の円周等分箇所に突起部10を設け、
フイルターリング7を図示の如く嵌装するとフイ
ルターリング7間及びフイルターリング7と大径
穴4との間に間隙11及び流路12が形成される
様にする。又、固定ブロツク8はそのフイルター
リング7側に円錐突起物13を形成し、反フイル
ターリング7側を円錐型に形成した中実円盤状を
しており、フイルターリング7側の端面及び外周
面にフイルターリング7に設けたと同様スペーサ
部9′及び突起部10′を設ける。而して、前記ス
ペーサ部9,9′の突出高さは、該スペーサ部
9,9′によつて形成される間隙11が所望の絞
り効果を発揮する様又所望大の混入物を塞き止め
得る様決定する。 次に上記の如く構成したブレーカの作用につい
て説明する。 上流側Aより流入した溶融樹脂14は分岐して
それぞれ間隙11を通過し、流路12で再び合流
して下流側Bに流出する。又、前記固定ブロツク
8の円錐突起物13は溶融樹脂14の軸心方向の
流れを滑らかに半径方向の流れへと交換せしめ滞
溜を防止するものである。 以上溶融樹脂14は間隙11の流れ過程に於い
て絞られ、間隙11は押出機の背圧を所要の値に
保持すると共に溶融樹脂中の混入物を塞き止め
る。 尚、上記構成のブレーカでは絞り機能、フイル
ターリング機能、流路抵抗等をほとんど自在に変
化させることができる。 即ち、絞り機能を増大させるには間隙11の半
径方向の長さ(フイルターリング7の端面幅)を
長くすればよく、フイルタリング機能を変化させ
る場合はスペーサ部9の高さ或はスペーサ部9の
突設間隔(スペーサ部9の突設数)を変化させれ
ばよく、流路抵抗を減少させるにはフイルターリ
ング7の数を増すまたは間隙11の半径方向の長
さを短くすればよい。又、フイルターリング7の
強度を大きくする場合はリングの半径方向の肉厚
と幅を増すことによつて可能である。 次に本発明に係るリング型ブレーカと従来の円
板型ブレーカとの性能比較を下記表に於いて行
う。 尚、表に於いて対象樹脂は超高分子量ポリエチ
レン、シヨーレツクスS4551H樹脂温度210℃、流
量139c.c./Sであり、比較すべき円板型ブレーカの
円板の有効径70〓mm板厚30mm、円板に穿設した孔
径は入口、出口部で10〓mm最小部2.1〓mm、孔数
31であり、一方リング型ブレーカのリング内径
70〓mm、リング間隙2.1mである。又、表中間隙
の数としてあるのはフイルターリング7の使用数
によつて決定され、有効孔面積率とは円孔、或は
間隙の総合面積とブレーカの入口面積との比を表
わしている。
The present invention relates to a breaker for a plastic extruder installed at the tip of the plastic extruder. The breaker functions as a throttle that adjusts the back pressure of the extruder and improves plasticization and kneading, and also allows unmolten pellets to pass through or to prevent fragments of the crusher blade, nails, etc.
It also functions as a filter to prevent things that have entered the hopper of the extruder, such as bolts, from passing through. The passage of the unmelted pellets causes poor plasticization, and the passage of the blades of the crusher, etc., reaches the narrow section of the flow path such as the blow molding head and T-die, which are continuous with the extruder tip, and the inner wall of the die, It not only damages the lip but also gets mixed into the product, causing product defects. For this reason, it has been conventionally possible to use a disc 1 with a large number of circular holes 2 as shown in Figure 1 A and B in the breaker, or to provide a wire mesh called a screen on the front of the disc in addition to the disc 1. Prevents thin foreign matter and unmelted matter. However, this method has the following problems. First, regarding the case where the disk 1 is used alone, the size of the contaminant to be blocked is determined from the lip thickness of the die, etc., and the size of the circular hole 2 is also determined by the size of the contaminant to be blocked. Determined based on size. Therefore, if the circular hole 2 is made smaller in order to block the fine contaminants, the flow path resistance will increase and the resin will be overheated, making it difficult to extrude the resin in a well-plasticized state at a low resin temperature. In addition, it is possible that the circular hole 2 becomes clogged with undissolved materials, but in such a case, the above-mentioned problems will be exacerbated, the back pressure will increase, the extrusion amount will decrease, and in the worst case, the breaker will break. Sometimes. In order to reduce the flow path resistance and prevent problems due to clogging, it is sufficient to increase the number of circular holes 2, but the number of circular holes 2 can be increased.
is subjected to high back pressure and must be able to withstand this pressure, so increasing the number of circular holes increases the thickness of the plate to ensure strength, which results in an increase in the flow resistance of each circular hole. invite. It is also conceivable to increase the diameter of the breaker and increase the number of circular holes, but this increases the pressure-receiving surface and causes the same problem as described above in that the plate thickness has to be increased. Therefore, the above-mentioned breaker is easily clogged and it is difficult to reduce the flow path resistance, and the breaker section must be disassembled for cleaning. Moreover, this disassembly and cleaning is carried out every few days, and the economic loss caused by interruption of the line is enormous. Next, let's talk about a breaker with a structure in which a wire mesh is placed in front of the disk 1. Although this structure has the advantage that the circular hole 2 can be made relatively large, the wire mesh is easy to tear, and it is necessary to always use a wire mesh in front of the disk 1 to improve reliability. It is necessary to replace the line and check for clogging and damage, and in this case too, economic losses due to line interruption are unavoidable. The present invention has been made to solve such problems, and is provided with a retainer that has a small-diameter hole penetrated on the upstream side and a large-diameter hole of a required depth on the downstream side, and a protrusion is provided on the circumferential surface of the retainer. The filter ring is fixed by fitting a required number of filter rings each having a spacer portion on at least one end surface thereof, and fitting a fixing block having a protrusion on the circumferential surface into the large diameter hole. This is a characteristic feature. Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a sectional view of a breaker according to the present invention, and FIGS. 3A and 3B show a front view and a side sectional view of a filter ring used in the breaker. Connecting flanges 3 are extended from both ends, and a large diameter hole 4 is drilled to the required depth from one end (downstream side B).
A required number of filter rings 7 are sequentially fitted in the axial direction into the large diameter hole 4 of the retainer 6, which is formed by penetrating the small diameter hole 5 from the other end side (upstream side A), and has the same outer diameter as the filter ring 7. A fixing block 8 is removably fitted to fix the filter ring 7. The filter ring 7 has an inner diameter that is the same as the small diameter hole 5 and an outer diameter that is smaller than the large diameter hole 4, and both outer edges thereof are chamfered appropriately to prevent resin from accumulating. ing. Furthermore, spacer portions 9 are provided protrudingly at required locations on one end surface of the filter ring 7, and protrusions 10 are provided at locations equally spaced around the circumference of the outer peripheral surface.
When the filter rings 7 are fitted as shown, a gap 11 and a flow path 12 are formed between the filter rings 7 and between the filter ring 7 and the large diameter hole 4. Further, the fixed block 8 has a conical protrusion 13 formed on the side of the filter ring 7, and has a solid disk shape with the side opposite to the filter ring 7 formed into a conical shape. Similar to the filter ring 7, a spacer portion 9' and a protrusion 10' are provided. The protruding height of the spacer parts 9, 9' is set so that the gap 11 formed by the spacer parts 9, 9' can exert a desired squeezing effect and can block a desired amount of contaminants. Decide how to stop it. Next, the operation of the breaker configured as described above will be explained. The molten resin 14 flowing from the upstream side A branches and passes through the respective gaps 11, joins together again at the flow path 12, and flows out to the downstream side B. Further, the conical protrusion 13 of the fixed block 8 smoothly exchanges the axial flow of the molten resin 14 into a radial flow and prevents stagnation. As described above, the molten resin 14 is squeezed during the flow process through the gap 11, and the gap 11 maintains the back pressure of the extruder at a desired value and blocks contaminants in the molten resin. In addition, in the breaker having the above configuration, the throttling function, filtering function, flow path resistance, etc. can be changed almost freely. That is, in order to increase the throttling function, it is sufficient to increase the radial length of the gap 11 (the width of the end face of the filter ring 7), and to change the filtering function, the height of the spacer part 9 or the length of the spacer part 9 can be increased. What is necessary is to change the protrusion interval (the number of protrusions of the spacer portions 9), and to reduce the flow path resistance, the number of filter rings 7 may be increased or the length of the gap 11 in the radial direction may be shortened. Further, the strength of the filter ring 7 can be increased by increasing the thickness and width of the ring in the radial direction. Next, a performance comparison between the ring type breaker according to the present invention and a conventional disc type breaker is shown in the table below. In addition, in the table, the target resin is ultra-high molecular weight polyethylene, Shorex S4551H resin temperature 210℃, flow rate 139c.c./S, and the effective diameter of the disk of the disk type breaker to be compared is 70〓mm and the plate thickness is 30mm. , the diameter of the hole drilled in the disc is 10〓mm at the inlet and outlet, and 2.1〓mm at the minimum part, the number of holes
31, while the ring inner diameter of the ring type breaker
70〓mm, ring gap 2.1m. In addition, the number of gaps between the front and the front is determined by the number of filter rings 7 used, and the effective pore area ratio represents the ratio of the total area of circular holes or gaps to the inlet area of the breaker. .

【表】 上記表により、本発明のリング型のものは最小
流路幅が2.1mmと同じで1間隙数であつても従来
の円板型のものと比べ有効孔面積率は4倍もとれ
8間隙数では100%以上の有効面積率となり、円
板型に比べ30倍も大きく圧力抵抗も飛躍的に減少
していることが分る。即ち本発明のブレーカでは
目詰りに対して圧倒的に強く、強度的にも優れて
いることが明らかである。 以上述べた如く本発明によれば、 (i) 開口面積率を大きく場合によつては100%以
上とすることができるので目詰りを起しにく
く、清掃周期を大幅に長くすることができる、 (ii) 小さい間隙としても有効孔面積を大きくとれ
るので圧力抵抗が小さく樹脂の発熱を防止し
得、未可塑化物の混入を防止した低温良可塑化
押出しができる、 (iii) 有効孔面積を変化させないで、フイルターリ
ングを軸方向及び半径方向に厚くできるため、
破壊強度を著しく強くできる、 等の優れた効果を発揮する。
[Table] According to the above table, the ring type of the present invention has the same minimum flow path width of 2.1 mm and the effective pore area ratio is four times that of the conventional disc type even if the number of gaps is 1. With 8 gaps, the effective area ratio is over 100%, which is 30 times larger than that of the disc type, and it can be seen that the pressure resistance has been dramatically reduced. That is, it is clear that the breaker of the present invention is overwhelmingly resistant to clogging and has excellent strength. As described above, according to the present invention, (i) since the opening area ratio can be increased to 100% or more in some cases, clogging is less likely to occur and the cleaning cycle can be significantly lengthened; (ii) Even if the gap is small, the effective pore area can be large, so the pressure resistance is small and the heat generation of the resin can be prevented, allowing low-temperature good plasticization extrusion that prevents the contamination of unplasticized materials. (iii) The effective pore area can be changed. The filter ring can be made thicker in the axial and radial directions without
It exhibits excellent effects such as significantly increasing breaking strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロは従来のブレーカに使用される円
板の平面図及びその断面図、第2図は本発明に係
るブレーカの断面図、第3図イ,ロは本発明に係
るブレーカに使用するフイルターリング及びその
断面図である。 6はリテーナ、7はフイルターリング、8は固
定ブロツク、11は間隙、12は流路を示す。
Figure 1 A and B are a plan view and a sectional view of a disc used in a conventional breaker, Figure 2 is a sectional view of a breaker according to the present invention, and Figure 3 A and B are a cross-sectional view of a disc used in a conventional breaker. It is a filter ring used and its sectional view. 6 is a retainer, 7 is a filter ring, 8 is a fixed block, 11 is a gap, and 12 is a flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 上流側に小径孔を貫通すると共に下流側に所
要深さの大径穴を穿設したリテーナに、周面に突
起物が設けられ少なくとも一方の端面にスペーサ
部が設けられたフイルターリングを所要数嵌装
し、且周面に突起物が設けられた固定ブロツクを
前記大径穴に嵌着してフイルターリングを固定し
たことを特徴とするプラスチツク押出機用ブレー
カ。
1. A retainer that has a small diameter hole penetrated on the upstream side and a large diameter hole of the required depth on the downstream side is required to have a filter ring with protrusions on the circumferential surface and a spacer part on at least one end surface. A breaker for a plastic extruder, characterized in that a filter ring is fixed by fitting several fixing blocks each having protrusions on the circumferential surface into the large diameter hole.
JP56019606A 1981-02-13 1981-02-13 Breaker for plastic extruder Granted JPS57133039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56019606A JPS57133039A (en) 1981-02-13 1981-02-13 Breaker for plastic extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56019606A JPS57133039A (en) 1981-02-13 1981-02-13 Breaker for plastic extruder

Publications (2)

Publication Number Publication Date
JPS57133039A JPS57133039A (en) 1982-08-17
JPS6121124B2 true JPS6121124B2 (en) 1986-05-26

Family

ID=12003850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56019606A Granted JPS57133039A (en) 1981-02-13 1981-02-13 Breaker for plastic extruder

Country Status (1)

Country Link
JP (1) JPS57133039A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1178951B (en) * 1984-05-31 1987-09-16 Mario Beolchi FILTER FOR INJECTOR NOZZLES PARTICULARLY FOR INJECTION MOLDING EQUIPMENT OF PLASTIC MATERIALS AND INJECTOR NOZZLE EQUIPPED WITH SUCH FILTER
DE19854242A1 (en) * 1997-11-27 1999-08-05 Wil Man Polymer Filtration Gmb Fluid filter especially for molten polymer
CN101985242A (en) * 2010-07-15 2011-03-16 王维东 Screw extruder filter plate

Also Published As

Publication number Publication date
JPS57133039A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US5370456A (en) Continuous kneading apparatus provided with rotatable kneading members and fixed kneading members
EP3572206B1 (en) Cooling device with a cooling gas ring and a flow deflection device
GB1595850A (en) Extruder with multi-channel wave screw
JPS608213B2 (en) Extrusion method for high viscosity linear polyolefin materials
US4324493A (en) Mixer-cooler device for the extrusion of thermoplastic foams
JPH05131524A (en) Extrusion molding machine for rubber material
KR100431365B1 (en) A tubular calibration unit for machines for extruding plastic strings such as pipes
US4356140A (en) Extrusion method with short cycle multichannel wave screw
JPS6121124B2 (en)
JPH091630A (en) Kneading extruder
US4260350A (en) Filter for high viscosity liquids
US6585001B2 (en) Flow through ring valve for plastic extruding systems
JP4279975B2 (en) Desolvation method by twin screw dewatering extruder and twin screw dewatering extruder
AT505894B1 (en) GRANULATING DEVICE AND GRANULAR PLATE
US9796115B1 (en) Extruder screw
WO2021017103A1 (en) Asymmetric co-rotating multi-screw extrusion device and extruder and processing method thereof
US11639016B2 (en) Shearing part
JPS582056B2 (en) Thermoplastic resin molding screw
JPH0213148Y2 (en)
JP3295379B2 (en) Strand die for extruder and method for preventing dies from forming
JPS60262622A (en) Extruder
JPH04189106A (en) Double-screw kneading extruder
DE2428321A1 (en) Mixer insert for thermoplastic and unreacted elastomeric materials - esp for boundary layers of centrally-fed film blowing heads
JP4321329B2 (en) Die for resin molding and method for manufacturing resin molded product
JPH05237913A (en) Screw for high kneading