JPS61209821A - Method of manufacturing bar type body of composite sintered material - Google Patents

Method of manufacturing bar type body of composite sintered material

Info

Publication number
JPS61209821A
JPS61209821A JP60049559A JP4955985A JPS61209821A JP S61209821 A JPS61209821 A JP S61209821A JP 60049559 A JP60049559 A JP 60049559A JP 4955985 A JP4955985 A JP 4955985A JP S61209821 A JPS61209821 A JP S61209821A
Authority
JP
Japan
Prior art keywords
material layer
composite material
layer
hard sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60049559A
Other languages
Japanese (ja)
Other versions
JPH0525617B2 (en
Inventor
Yuichiro Kono
鴻野 雄一郎
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60049559A priority Critical patent/JPS61209821A/en
Priority to EP85304135A priority patent/EP0168953B2/en
Priority to KR1019850004091A priority patent/KR920001585B1/en
Priority to CA000483612A priority patent/CA1286510C/en
Priority to DE8585304135T priority patent/DE3575092D1/en
Priority to AT85304135T priority patent/ATE49147T1/en
Publication of JPS61209821A publication Critical patent/JPS61209821A/en
Priority to US07/231,644 priority patent/US4880707A/en
Publication of JPH0525617B2 publication Critical patent/JPH0525617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P5/00Setting gems or the like on metal parts, e.g. diamonds on tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/011Micro drills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Drilling Tools (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a cylindrical body of a composite sintered material having a hard head part by boring a composite sintered body to form a small diameter cylindrical bodies in the thickness direction of the layer of material of a block by means of electric discharge machining using a pipe type electrode. CONSTITUTION:A fist material layer 21 for a hard sintered body containing 50% or more of diamond powder and a second material layer 22 which is joined to the first-material hard sintered body in the process of sintering the first material layer 21, are charged in one hot press container while being piled in a pressing direction. After that, the first material layer 21 is hot pressed at a high temperature and a high pressure and sintered, and the obtained hard sintered body is joined to the second material layer side, to form a composite material block 33 having a layer of hard sintered body with a certain thickness. And, by means of electric discharge machining using an electrode having an axially hollow cylindrical part, two or more cylindrical bodies 23 are cut off from the composite material block 33, in the thickness direction of material layer.

Description

【発明の詳細な説明】 11よ久漫j1! 本発明は硬質な頭部を有する複合材料棒状体、好ましく
は小径の円柱体の製造方法に関する。
[Detailed Description of the Invention] 11 Yo Kuman j1! The present invention relates to a method for manufacturing a composite rod-like body, preferably a small-diameter cylindrical body, with a hard head.

更に詳細には本発明は、ダイヤモンド焼結体或いは高圧
相窒化硼素焼結体の如き硬質な頭部と、該頭部と一体に
構成され、例えば超硬合金からなる支持部とを具備する
小断面の複合材料棒状体の製造方法に関する。
More specifically, the present invention provides a small device comprising a hard head such as a diamond sintered body or a high-pressure phase boron nitride sintered body, and a support part formed integrally with the head and made of, for example, a cemented carbide. The present invention relates to a method for manufacturing a cross-sectional composite material rod.

このような本発明の製造方法によって得られる複合材料
棒状体乃至は円柱体は、高性能な小径ドリルの素材或い
はドツトプリンタのヘッド部として用いることができる
The composite material rod-like body or cylindrical body obtained by the manufacturing method of the present invention can be used as a material for a high-performance small-diameter drill or as a head portion of a dot printer.

従来技術 超硬合金よりなるドリルが金属、非金属材料の穴あけ用
に多用されている。特に近年急激に需要が伸びているプ
リント基板の穴あけには直径1mm前後の超硬合金製ド
リルが使われている。
BACKGROUND OF THE INVENTION Drills made of cemented carbide are widely used for drilling holes in metal and non-metallic materials. In particular, cemented carbide drills with a diameter of around 1 mm are used for drilling holes in printed circuit boards, a demand for which has been growing rapidly in recent years.

プリント基板には各種の材料が使われているが、主とし
て用いられているのはガラス繊維にエポキシ樹脂を含浸
させた強化樹脂で、一般にガラエボ基板と称されている
Various materials are used for printed circuit boards, but the main one used is a reinforced resin made by impregnating glass fiber with epoxy resin, which is generally referred to as a glass-evo board.

このようなプリント基板の穴あけは剛性の高いドリルで
通常回転数5〜6万rpmの条件で行われているが、基
板に含まれるガラス繊維は超硬工具を非常に早く摩耗さ
せて、一般的に3000〜5000ヒツト(ヒツトとは
穴あけ回数のこと)で超硬ドリルは寿命となる。こうし
たドリル盤には自動工具交換装置がついており、寿命と
なったドリルは自動的に交換されるが、生産効率向上の
ためにはこの自動工具交換のための時間も問題であり、
ドリル寿命をのばして工具交換回数すなわち交換時間を
減少させるという要求が強い。
Drilling of such printed circuit boards is usually done using a highly rigid drill at a rotation speed of 50,000 to 60,000 rpm, but the glass fibers contained in the board wear out the carbide tool very quickly, A carbide drill reaches the end of its lifespan after 3,000 to 5,000 hits (hits refers to the number of holes drilled). These drill machines are equipped with an automatic tool changer, and the drill that has reached the end of its service life is automatically replaced, but the time required for automatic tool change is also an issue in order to improve production efficiency.
There is a strong demand to extend the life of the drill and reduce the number of tool changes, that is, the tool change time.

プリント基板の特性からみると、より耐熱性等を向上さ
せて高機能化を図りたいという要求も強く、このような
基板材料は実際に製造可能であるが、一般にこのような
高機能材料は難削で、従来の超硬合金ドリルでは非常に
短寿命となってしまい、このためこの基板材料の実用化
が出来ないのが実情である。
Looking at the characteristics of printed circuit boards, there is a strong demand for higher functionality by improving heat resistance, etc., and although it is actually possible to manufacture such board materials, it is generally difficult to produce such high-performance materials. Due to cutting, the life of conventional cemented carbide drills is extremely short, and the reality is that this substrate material cannot be put to practical use.

更に、通常のガラエボ基板に対してもより高能率の穴あ
けを行うため穴あけドリルの回転数の上昇が望まれてい
るが、これも従来の超硬合金製ドリルでは切削速度の上
昇と共に急激に寿命が低下してしまうためこの面から高
能率化を達成できない。
Furthermore, it is desired to increase the rotational speed of the drilling drill in order to drill holes with higher efficiency even on ordinary Gala Evo substrates, but this also means that the lifespan of conventional cemented carbide drills rapidly decreases as the cutting speed increases. Since this decreases, high efficiency cannot be achieved from this point of view.

一方、近年使用量が急激に増加しつつある焼結ダイヤモ
ンド工具は超硬工具に対して飛躍的に硬度が高く、耐摩
耗性が優れており、上記強化樹脂などの切削に於いては
非常な高性能を発揮する。
On the other hand, sintered diamond tools, whose usage has been rapidly increasing in recent years, are significantly harder and more wear resistant than carbide tools, and are extremely useful when cutting the reinforced resins mentioned above. Demonstrates high performance.

ところが第1図に示すように、この焼結ダイヤモンド工
具は焼結ダイヤモンド層11が超硬合金の支持部12に
貼り合わされた複合焼結体13からなる。
However, as shown in FIG. 1, this sintered diamond tool consists of a composite sintered body 13 in which a sintered diamond layer 11 is bonded to a support portion 12 of cemented carbide.

この複合焼結体13を使用してドリルを作製する場合に
は第2図に示すようにシャンク15の先端部に複合焼結
体13を何らかの方法により固着させて作らざるを得な
い。
When manufacturing a drill using this composite sintered body 13, the composite sintered body 13 must be fixed to the tip of the shank 15 by some method as shown in FIG.

ところがこのドリル先端部の径は1mm程度であり、こ
のような小径のものではシャンク15と余程強力な接合
強度をもたせないと接合後の刃先研削加工で接合部16
からはずれてしまい、良好なドリルが製造できない。特
に焼結ダイヤモンドは難研削であり、研削抵抗が高く、
通常の銀ロウ付は程度の強度では強度不足である。接合
強度の高い接合方法として例えば電子ビーム溶接が考え
られるが、電子ビーム溶接を実施するとなると、ドリル
の製造工程が複雑且つ原価が高くなり、高性能ドリルの
需要の近年の急激な増加に対応できなかった。
However, the diameter of the tip of this drill is about 1 mm, and if a drill with such a small diameter does not have a very strong joint strength with the shank 15, the joint 16 will be damaged by grinding the cutting edge after joining.
The drill will fall off, making it impossible to manufacture a good drill. Sintered diamond is particularly difficult to grind and has high grinding resistance.
Normal silver brazing is not strong enough. For example, electron beam welding can be considered as a bonding method with high bonding strength, but if electron beam welding were to be implemented, the drill manufacturing process would be complicated and the cost would be high, making it difficult to meet the rapid increase in demand for high-performance drills in recent years. There wasn't.

シャンク15との接合を強固にし且つドリル自体の切削
性を高めるには、ドリルの先端部全体が超硬合金で、そ
の頭部にダイヤモンドの如き硬質の焼結体を有するよう
に構成すると理想的である。
In order to strengthen the connection with the shank 15 and improve the cutting performance of the drill itself, it is ideal if the entire tip of the drill is made of cemented carbide, and the head part has a hard sintered body such as diamond. It is.

そのためには、硬質な頭部を有し、超硬合金からなる細
長の複合材料棒状体が必要である。しかしながら、従来
技術では、このような小断面で且つ軸長の大きい複合焼
結体を製造することができなかった。
For this purpose, an elongated composite rod made of cemented carbide with a hard head is required. However, with the conventional techniques, it has not been possible to manufacture a composite sintered body with such a small cross section and a large axial length.

すなわち、断面積に対し軸方向長さの大きい製品を製造
する場合、粉末材料を軸方向に加圧してホットプレスを
行っても、粉末材料層による圧力損失が大きく、軸方向
中央部分に必要な圧力がかからず、強固な焼結体が得ら
れないからである。
In other words, when manufacturing a product with a large axial length relative to its cross-sectional area, even if powder material is pressed in the axial direction and hot pressed, the pressure loss due to the powder material layer is large, and the required axial center portion is This is because no pressure is applied and a strong sintered body cannot be obtained.

これをさらに軸方向に加圧して高圧力のホットプレスを
行うと、ホットプレスのコンテナ内の圧力分布が極めて
変則的となるので座屈したり、曲がりなどの変形を起こ
し易く十分な寸法精度を持つ焼結体が得られない。
When this is further pressurized in the axial direction to perform high-pressure hot pressing, the pressure distribution inside the hot press container becomes extremely irregular, making it easy for deformations such as buckling and bending to occur. A sintered body cannot be obtained.

そのため、細長の焼結材料のホットプレスでは焼結材料
の軸方向が加圧方向と直角となるよう焼結材料を寝かせ
て配置していた。このような方式で、細長の複合材料の
ホットプレスをしても、異った材料層間の境界面に垂直
な方向での圧力は小さく、材料層間の十分な強度の接合
が得られなかった。
Therefore, in hot pressing of a long and narrow sintered material, the sintered material is laid down so that the axial direction of the sintered material is perpendicular to the pressing direction. Even when a long and narrow composite material is hot-pressed using this method, the pressure in the direction perpendicular to the interface between different material layers is small, and a bond with sufficient strength between the material layers cannot be obtained.

発明の目的 本発明は、上記従来技術の問題を解決することを目的と
し、更に詳細には、硬質焼結体の頭部を有し、該頭部と
支持部とが焼結処理により一体に接合されている小断面
且つ細長の複合材料棒状体、好ましくは小径の円柱体の
製造方法を提供し、これより耐摩耗性および剛性の優れ
たドリルを容易且つ安価に製造可能とすることを目的と
する。
OBJECT OF THE INVENTION The present invention aims to solve the problems of the prior art described above, and more specifically, the present invention has a head made of a hard sintered body, and the head and the support part are integrated by sintering. The purpose of the present invention is to provide a method for manufacturing a joined rod-like body of a composite material having a small cross section and an elongated shape, preferably a cylindrical body having a small diameter, so that a drill having excellent wear resistance and rigidity can be easily and inexpensively manufactured therefrom. shall be.

更に本発明の目的は、ガラエポ基板の如き難削性の基板
の穴あけを容易且つ高性能で実現する、長寿命のドリル
を低価格で提供することにある。
A further object of the present invention is to provide a long-life drill at a low price that can easily and efficiently drill holes in difficult-to-cut substrates such as glass epoxy substrates.

更に、本発明の目的は、ドツトプリンタのヘッドの如き
硬質の先端部を必要とする細長の部材を容易に製造し得
る中間製品としての小断面の複合材料棒状体の製造方法
を提供することにある。
Furthermore, it is an object of the present invention to provide a method for manufacturing a composite material rod-shaped body with a small cross section as an intermediate product that can easily manufacture an elongated member that requires a hard tip, such as a head of a dot printer. .

名贋企璽戎 本発明者らは、断面積の大きな複合材料ブロックのホッ
トプレスを行って複合焼結体ブロックを製造し、これを
パイプ状電極を用いた放電加工によりブロックの材料層
厚方向に小径の円柱体をくりぬキ、或いは電子ビーム、
レーザービーム、イオンビーム等の高収東性且つ高エネ
ルギーのビームで加工することにより棒状体をくりぬく
ことにより、小径で細長の、硬質な頭部を有する複合焼
結材料の円柱体または棒状体を与えることに成功したも
のである。
The present inventors hot-pressed a composite material block with a large cross-sectional area to produce a composite sintered block, which was then processed in the direction of the material layer thickness of the block by electric discharge machining using a pipe-shaped electrode. Hollow out a small diameter cylindrical body, or use an electron beam,
By hollowing out a rod-shaped body by processing with a high-yielding, high-energy beam such as a laser beam or ion beam, a cylinder or rod-shaped body of composite sintered material with a small diameter, elongated, and hard head can be made. It was a success in giving.

すなわち、本発明に従い、ダイヤモンド粉末または高圧
相窒化硼素粉末を50%以上含有する硬質焼結体用の第
1の材料層と、該第1の材料層の焼結過程で該第1の材
料の硬質焼結体と接合する第2の材料層とを同一のホッ
トプレスコンテナ内に加圧方向に重ねて装入し、 高温高圧下でホットプレスして該第1の材料層を焼結す
るとともに、得られた硬質焼結体を該第2の材料層側と
接合せしめて、所定厚さの硬質焼結体の層を有する複合
材料ブロックを形成し、該複合材料ブロックからパイプ
状電極を用いた放電加工により材料層厚方向に円柱体を
くりぬくことにより、該複合材料ブロックの材料層厚方
向厚さに対して175以下で且つ3mm以下の直径の断
面を有し、頭部に硬質焼結体を備える細長の複合材料円
柱体を2本以上切り取ることを特徴とする細長の複合材
料円柱体の製造方法が提供される。
That is, according to the present invention, a first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder; The hard sintered body and the second material layer to be joined are stacked in the same hot press container in the pressing direction, and hot pressed under high temperature and high pressure to sinter the first material layer. , the obtained hard sintered body is joined to the second material layer side to form a composite material block having a layer of hard sintered body with a predetermined thickness, and a pipe-shaped electrode is used from the composite material block. By hollowing out a cylindrical body in the material layer thickness direction by electric discharge machining, the composite material block has a cross section with a diameter of 175 or less and 3 mm or less relative to the material layer thickness direction, and a hard sintered head is formed. A method for manufacturing an elongated composite material cylinder is provided, which comprises cutting two or more elongated composite material cylinders each having a body.

さらに本発明に従うと、電子ビーム、レーザービーム、
イオンビームなどの高エネルギービーム加工により該複
合材料ブロックから材料層厚方向に接柱体をくりぬいて
もよい。
Further according to the present invention, an electron beam, a laser beam,
The tangent body may be hollowed out from the composite material block in the direction of the material layer thickness by high-energy beam processing such as an ion beam.

複合材料をホットプレスして焼結するに際し、本発明に
従うと、複合材料ブロックの軸方向長さは相当直径DB
の3倍、好ましくは2倍以下の必要がある。3倍を越え
る軸方向長さの複合材料ブロックのホットプレスを行う
と複合材料ブロック内の圧力分布が変則的となり、曲が
りなどを生ずる。本明細書中で、相当直径とは断面積の
等しい円の直径に換算した値を意味する。
When hot pressing and sintering the composite material, according to the present invention, the axial length of the composite material block is equal to the equivalent diameter DB.
3 times, preferably 2 times or less. If a composite material block with an axial length exceeding three times is hot-pressed, the pressure distribution within the composite material block will become irregular, resulting in bending or the like. In this specification, equivalent diameter means a value converted to the diameter of a circle having the same cross-sectional area.

ダイヤモンド粉末または高圧相窒化硼素粉末の平均粒度
は好ましくは30μm以下であり、この範囲の粒度のダ
イヤモンドまたは高圧相窒化硼素焼結体で耐摩耗性およ
び剛性に優れた複合焼結材料が得られる。
The average particle size of the diamond powder or high-pressure phase boron nitride powder is preferably 30 μm or less, and a composite sintered material with excellent wear resistance and rigidity can be obtained with a diamond or high-pressure phase boron nitride sintered body having a particle size in this range.

ただし、ダイヤモンド粉末を使用して切削工具のチップ
を作製するときは、平均粒度が10μmを越えるダイヤ
モンド粉末を原料として使用すると、この複合焼結材料
円柱体を加工して得た切削工具の切刃が鋭利に成形でき
ず、このため高性能とならないので、硬質焼結部は10
μm以下のダイヤモンドまたは高圧相窒化硼素からなる
のが好ましい。
However, when making cutting tool tips using diamond powder, if diamond powder with an average particle size exceeding 10 μm is used as a raw material, the cutting edge of the cutting tool obtained by processing this composite sintered material cylinder The hard sintered part cannot be formed sharply and therefore does not have high performance.
It is preferably made of sub-μm diamond or high-pressure phase boron nitride.

本発明の好ましい特徴に従うと、該硬質焼結部の軸方向
長さは0.3〜2mmである。
According to a preferred feature of the invention, the axial length of the hard sintered portion is between 0.3 and 2 mm.

第1の材料層がダイヤモンド粉末を主成分とするときは
、ダイヤモンド粉末単独、或いは70%以上のダイヤモ
ンドを含み、残部がFe、 CoまたはNiを主成分と
する結合材粉末を添加した混合粉末がある。ダイヤモン
ド粉末の第1の材料層の好ましい例としては、70%以
上のダイヤモンド粉末とWC−5〜15%Co粉末との
混合粉末である。
When the first material layer is mainly composed of diamond powder, it may be made of diamond powder alone or a mixed powder containing 70% or more of diamond, with the remainder being Fe, Co or Ni as the main component. be. A preferred example of the first material layer of diamond powder is a mixed powder of 70% or more diamond powder and WC-5 to 15% Co powder.

尚、第1の材料層の材料としてダイヤモンド単独の粉末
を使用する場合は、第1の材料層の焼結時に第2の材料
層の中の結合材成分が第1の材料層粉末中に溶浸するこ
とによって第1の材料層の焼結が達成される。
Note that when diamond alone powder is used as the material for the first material layer, the binder component in the second material layer is dissolved into the first material layer powder during sintering of the first material layer. Sintering of the first material layer is achieved by dipping.

第1の材料層が高圧相窒化硼素系の場合は、高圧相窒化
硼素粉末単独、或いは50%以上の高圧相窒化硼素に4
a、 5a、 6a族元素の炭化物、窒化物、炭窒化物
及びアルミニウムおよび/またはシリコンを結合材とし
て添加して焼結したものがある。
When the first material layer is high-pressure phase boron nitride-based, high-pressure phase boron nitride powder alone or 40% or more of high-pressure phase boron nitride powder is used.
There are sintered materials in which carbides, nitrides, carbonitrides of group a, 5a, and 6a elements, and aluminum and/or silicon are added as binders.

ここで、高圧相窒化硼素とは、立方晶型窒化硼素および
ウルツ鉱型窒化硼素を意味する。
Here, high-pressure phase boron nitride means cubic boron nitride and wurtzite boron nitride.

支持部を形成する第2の材料層は、いわゆる超硬合金す
なわち、周期律表第4a、 5a、 [3a族元素の炭
化物、窒化物、炭窒化物、硼化物、珪化物又はこれらの
相互固溶体炭化物をFe、 CoまたはNiの鉄族金属
で結合した焼結合金またはサーメットあるいはそれらの
粉末原料である。サーメットの1例としては、炭化物(
Mol l1l) CをNiまたはCOの鉄族金属で結
合したものがある。
The second material layer forming the support portion is made of a so-called cemented carbide, that is, a carbide, nitride, carbonitride, boride, silicide, or a mutual solid solution of elements of groups 4a, 5a, and 3a of the periodic table. These are sintered alloys or cermets made by bonding carbides with iron group metals such as Fe, Co, or Ni, or their powder raw materials. An example of cermet is carbide (
Mol l1l) There is one in which C is bonded with iron group metals such as Ni or CO.

更に別の第2の材料層としては、Wを80〜98重量%
含み、残余がNi−FeまたはNi −Fe−Cuから
なるいわゆるヘビー・メタルといわれる焼結合金、ある
いはその粉末原料がある。
Furthermore, as another second material layer, W is 80 to 98% by weight.
There is a sintered alloy called a so-called heavy metal consisting of Ni-Fe or Ni-Fe-Cu, or a powder raw material thereof.

第2の材料層は、既に焼結済みの固形超硬合金であって
もよく、或いは超硬合金材料の粉末であってもよい。し
かしながら、ホットプレスの際の取扱い上の便宜、さら
には高圧力の適用の容易性を考慮すると、焼結済みの超
硬合金ブロックを使用するのが好ましい。
The second material layer may be a solid cemented carbide that has already been sintered, or may be a powder of a cemented carbide material. However, considering handling convenience during hot pressing and ease of applying high pressure, it is preferable to use a sintered cemented carbide block.

本発明の複合材料棒状体或いは円柱体の製造方法の重要
な特徴の1つは、硬質焼結部と支持部との接合を硬質焼
結部の焼結過程で行うことにある。
One of the important features of the method for manufacturing a composite material rod or cylinder of the present invention is that the hard sintered part and the support part are joined during the sintering process of the hard sintered part.

従って、第2の材料層の成分は、第1の材料層の焼結過
程で第1の材料層と接合し得る材質であることが必要で
ある。
Therefore, the components of the second material layer need to be materials that can be bonded to the first material layer during the sintering process of the first material layer.

しかしながら、上記した硬質焼結部と支持部との成分の
範囲ではこのような組み合わせは無限にあり、ダイヤモ
ンドまたは高圧相窒化硼素の高圧力および高温度下のホ
ットプレスによる焼結過程で、上記したように支持部材
中の鉄系金属の結合材が溶浸して硬質焼結部と支持部と
の強固な接合    ′が容易に達成できる。従って、
このような硬質焼結部と支持部の成分の選択は当業者が
上記した範囲内で必要に応じて行うのが可能であること
は云うまでもない。更に高圧相窒化硼素粉末は上記した
ように単独でも焼結可能であり、支持部との接合はその
焼結過程で達成される。
However, within the range of the components of the hard sintered part and the support part mentioned above, there are infinite combinations, and in the sintering process of diamond or high-pressure phase boron nitride by hot pressing under high pressure and high temperature, the above-mentioned combinations are possible. As such, the ferrous metal binder in the support member is infiltrated, and a strong bond between the hard sintered part and the support part can be easily achieved. Therefore,
It goes without saying that those skilled in the art can select the components of the hard sintered part and the supporting part as necessary within the above-mentioned range. Further, the high-pressure phase boron nitride powder can be sintered alone as described above, and bonding with the support portion is achieved during the sintering process.

更に、本発明の1つの態様に従うと、上記第1の材料層
と第2の材料層との間に厚さ0.5mm以下の中間接合
層を配置してホットプレスを行う。
Furthermore, according to one aspect of the present invention, hot pressing is performed with an intermediate bonding layer having a thickness of 0.5 mm or less disposed between the first material layer and the second material layer.

中間接合層としては、70%未満の高圧相窒化硼素と残
部が周期律表第4a族のTi、 Zr5tlfの炭化物
、窒化物、炭窒化物あるいはホウ化物の1種もしくはこ
れらの混合物または相互固溶体化合物を主体としたもの
と、これにAIおよび/またはSiを0.1重量%以上
含有するものが好ましい。
The intermediate bonding layer is made of less than 70% high-pressure phase boron nitride and the remainder is one of carbides, nitrides, carbonitrides, or borides of Ti, Zr5tlf in group 4a of the periodic table, or a mixture thereof or a mutual solid solution compound. It is preferable to use a material mainly consisting of , and a material containing 0.1% by weight or more of AI and/or Si.

更に、本発明の1つの態様に従うと、上記第2の材料層
、すなわち支持部が軸方向に2以上の材料層から構成さ
れる。このような1例として、第2の材料層の支持側の
層がW(ニーCoであり、硬質な頭部側の層が炭化物(
Mo、 w) CをNiまたはCoの鉄族金属で結合し
たサーメットからなるものがある。
Furthermore, according to one aspect of the invention, the second material layer, ie the support section, is comprised of two or more material layers in the axial direction. As one such example, the layer on the support side of the second material layer is W (nee Co), and the layer on the hard head side is made of carbide (Co).
There are cermets made of Mo, w) C bonded with iron group metals such as Ni or Co.

更に、第1の材料層を第2の材料層の上下に配置し、ホ
ットプレスを行い、得られる複合材料ブロックを同軸方
向の小断面の棒状体または円柱体にくりぬいて上下の両
端に硬質な頭部を有する棒状体を製造することも出来る
Furthermore, the first material layer is placed above and below the second material layer, hot-pressed, and the resulting composite material block is coaxially hollowed out into a small cross-section rod or cylindrical body, and a hard material is placed at both the upper and lower ends. It is also possible to produce a rod-shaped body with a head.

次に本発明の製造方法により得られる複合焼結材料円柱
体の形状を説明する。
Next, the shape of the composite sintered material cylinder obtained by the manufacturing method of the present invention will be explained.

添付の第3図(a)および(b) は本発明の製造方法
によって得られる複合材料円柱体の例の斜視図である。
The attached FIGS. 3(a) and 3(b) are perspective views of examples of composite material cylinders obtained by the manufacturing method of the present invention.

第3図(a)に示す複合焼結材料円柱体では硬質焼結部
21が支持部22と直接に接合されている。
In the composite sintered material cylindrical body shown in FIG. 3(a), the hard sintered part 21 is directly joined to the support part 22.

他方、第3図(ハ)に示す複合焼結材料円柱体では、硬
質焼結部21と支持部22とが中間接合層24を介して
接合されている。
On the other hand, in the composite sintered material cylindrical body shown in FIG.

しかしながら、本発明の電子ビーム、レーザビーム、イ
オンビーム等の高エネルギービームにより複合材料ブロ
ックからくりぬかれる複合材料棒状体は円柱形に限定さ
れず、角柱形であってもよいことは勿論である。
However, the composite material rod-shaped body hollowed out from the composite material block by a high-energy beam such as an electron beam, laser beam, or ion beam according to the present invention is not limited to a cylindrical shape, but may of course be prismatic.

本発明の方法で得られる複合焼結材料円柱体または棒状
体は3mm以下の直径または相当直径を有する断面であ
る。3mmを越える直径または相当直径の断面の複合材
料円柱体または棒状体はプリント基板の穴あけドリル用
素材としては不適格であり、また研削して使用するにし
ても研削代が大きくなり不経済である。
The composite sintered material cylinders or rods obtained by the method of the invention have a cross section with a diameter or equivalent diameter of 3 mm or less. A cylindrical or rod-shaped composite material having a cross section with a diameter exceeding 3 mm or an equivalent diameter is unsuitable as a material for a drill for drilling holes in printed circuit boards, and even if it is used after grinding, the grinding cost becomes large and it is uneconomical. .

また、硬質焼結部21の軸方向の長さは0,3〜2mm
の範囲である。0.3mm未満では、ドリル先端部とし
て使用した場合には切削性の向上を期待できず、2mm
を越える長さでは高価なダイヤモンド粉末等を多量に使
用することになり不経済である。
Moreover, the length of the hard sintered part 21 in the axial direction is 0.3 to 2 mm.
is within the range of If it is less than 0.3 mm, no improvement in cutting performance can be expected when used as the tip of a drill;
If the length exceeds 100 mm, a large amount of expensive diamond powder etc. will be used, which is uneconomical.

また3mmを越える直径の円柱体または棒状体は本発明
の方法以外の従来方法でも比較的良品質のものを製造可
能である。
Further, cylinders or rods having a diameter exceeding 3 mm can be manufactured with relatively good quality by conventional methods other than the method of the present invention.

更に、・支持部22の長さは硬質焼結部21の長さの5
倍以上であることが必要である。ドリルを作製する場合
に、ドリルの切羽長さを確保し、末端をシャンクに埋込
む必要があるので、上記の通り、5倍以上の長さの支持
部が必要となる。
Furthermore, the length of the supporting part 22 is 5 times the length of the hard sintered part 21.
It needs to be at least twice as large. When manufacturing a drill, it is necessary to ensure the length of the face of the drill and embed the end in the shank, so as described above, a support portion that is five times or more long is required.

次に、この本発明の製造方法により得られた複合材料棒
状体または円柱体をドリルに適用した例を第4図に示す
Next, FIG. 4 shows an example in which a rod-shaped or cylindrical composite material obtained by the manufacturing method of the present invention is applied to a drill.

第4図(a)に示す如く、ドリルのシャンク25の先端
に、複合材料棒状体(図示の例では円柱体)とはゾ同−
径の孔26を穿設する。この孔26に複合材料棒状体2
3の支持部側端部を押し込み、固定する。
As shown in FIG. 4(a), a composite material rod-like body (a cylindrical body in the illustrated example) is attached to the tip of the shank 25 of the drill.
A hole 26 of the same diameter is drilled. Composite material rod 2 is inserted into this hole 26.
Push in the side end of the support part No. 3 and fix it.

このとき、孔26内にロウ材を滴下しておき、ロウ付け
してもよい。
At this time, brazing material may be dropped into the hole 26 and brazing may be performed.

この第4図(a)に示す如く、シャンクに固定された複
合材料棒状体23を刃付は加工し、第4図(b)に示す
如きドリルを得た。
As shown in FIG. 4(a), the composite material rod-shaped body 23 fixed to the shank was machined to have a cutting edge, thereby obtaining a drill as shown in FIG. 4(b).

次に、第3図および第4図に示す複合材料棒状体のくり
ぬき方法を説明すると、上述の如くホットプレスして得
られた複合焼結体ブロック33は、第5図(a)に示す
如く、厚さ1mmのダイヤモンド焼結体層31と、これ
に接合した超硬合金層32とからなり、中間接合層を含
む場合では第5図(社)に示す如くダイヤモンド焼結体
層31と超硬合金層32と中間接合層を介して接合され
ている。
Next, to explain the method of hollowing out the composite material rod-shaped body shown in FIGS. 3 and 4, the composite sintered body block 33 obtained by hot pressing as described above is as shown in FIG. 5(a). , consists of a diamond sintered body layer 31 with a thickness of 1 mm and a cemented carbide layer 32 bonded to this, and when an intermediate bonding layer is included, as shown in FIG. It is bonded to the hard metal layer 32 via an intermediate bonding layer.

これらの複合焼結体ブロックを第6図に示す如く、複合
焼結体ブロックと同軸方向の相当直径3mm以下の断面
の円柱体からパイプ状電極を用いた放電加工により円柱
体としてくりぬき、第3図(a)およびら)に示す如き
硬質の頭部を有する複合材料円柱体を得る。
As shown in FIG. 6, these composite sintered blocks are hollowed out as a cylindrical body by electric discharge machining using a pipe-shaped electrode from a cylindrical body having a cross section with an equivalent diameter of 3 mm or less in the coaxial direction of the composite sintered body blocks. A composite material cylindrical body having a hard head as shown in Figures (a) and (a) is obtained.

このパイプ状電極を用いる放電加工法では、電極と複合
焼結体ブロックの被加工個所との間に一定の間隙を保持
しながら、電極と複合焼結体ブロックとの間に高電圧を
印加したり、或いはパイプ状電極と複合焼結体ブロック
を絶縁液中に対向させて配置し、電圧を印加して行う。
In this electric discharge machining method using a pipe-shaped electrode, a high voltage is applied between the electrode and the composite sintered block while maintaining a constant gap between the electrode and the processed part of the composite sintered body block. Alternatively, the pipe-shaped electrode and the composite sintered block are placed facing each other in an insulating liquid, and a voltage is applied.

第7図は本発明の方法で使用するパイプ状電極を示す。FIG. 7 shows a pipe-shaped electrode used in the method of the invention.

第7図(a)に示す電極は3本の円柱体を同時にくりぬ
くために使用するものであり、支持部40に3本のパイ
プ状電極41a、  41b、  41cが垂直に取り
つけられている。パイプ状電極41は第7図(b)に示
すように中空円筒体からなり、その上方部にガス抜き穴
42が設けられて、放電により気化したガス状材料の逃
げ穴を構成している。
The electrode shown in FIG. 7(a) is used to hollow out three cylindrical bodies at the same time, and three pipe-shaped electrodes 41a, 41b, and 41c are vertically attached to the support portion 40. As shown in FIG. 7(b), the pipe-shaped electrode 41 is made of a hollow cylindrical body, and a gas vent hole 42 is provided in the upper part of the pipe-shaped electrode 41, thereby forming an escape hole for the gaseous material vaporized by the discharge.

第8図は多数本のパイプ状電極を備える電極手段を示し
、第8図(a)はその側面図、第8図(社)は複合焼結
体ブロックと電極の配置を示す平面図である。本発明の
方法で使用するパイプ状電極でこれらに限定されず、複
合焼結体ブロックから円筒体をくりぬけるものであれば
任意の構造のものでもよい。例えば、蜂の巣状の電極を
用いてもよい。
Fig. 8 shows an electrode means comprising a large number of pipe-shaped electrodes, Fig. 8(a) is a side view thereof, and Fig. 8 (Company) is a plan view showing the arrangement of the composite sintered block and the electrodes. . The pipe-shaped electrode used in the method of the present invention is not limited to these, but may be of any structure as long as it can be hollowed out from a cylindrical body from a composite sintered block. For example, a honeycomb-shaped electrode may be used.

しかしながら、パイプ状電極を用いる放電加工法自体は
本発明の直接の対象をなさず、それ自体公知なので、こ
れ以上の説明をしない。
However, the electric discharge machining method itself using a pipe-shaped electrode is not a direct object of the present invention and is known per se, so no further explanation will be given.

一方、電子ビーム、レーザビーム、イオンビーム等の収
束が高く、高エネルギーのビームで加工するときは任意
断面の棒状体を複合焼結体ブロックからくりぬくが、こ
れらの高エネルギービーム加工自体も本発明の直接の対
象ではなく、それ自体公知であるのでこれ以上説明をし
ない。
On the other hand, when processing with a highly convergent, high-energy beam such as an electron beam, laser beam, or ion beam, a rod-shaped body with an arbitrary cross section is hollowed out from a composite sintered block, and the present invention also applies to these high-energy beam processes. Since this is not a direct subject of this and is known per se, no further explanation will be given.

以下、実施例により本発明の製造方法を説明する。ただ
し、これらの実施例は本発明の単なる例示であって、本
発明の範囲を何等制限するものではない。
Hereinafter, the manufacturing method of the present invention will be explained with reference to Examples. However, these Examples are merely illustrative of the present invention, and do not limit the scope of the present invention in any way.

尚、本明細書中では%の表示は、特別に示さない限り容
量パーセントで示す。
In this specification, % is expressed in volume percent unless otherwise specified.

実施例1 外径18mm、内径14mm 、高さ15mmのWC−
12%Co超硬合金製リング、外径14mm、高さ12
mmのWC−12%Co超硬合金製円柱ブロック、外径
14mm、厚さ0.5mmのWC−12%Co超硬合金
製円板と粒径0.5μmのダイヤモンド粉末85%と残
余が粒径0,5μm以下のWC−15%Co超硬合金粉
末よりなる混合粉末を用意した。
Example 1 WC- with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
12% Co cemented carbide ring, outer diameter 14 mm, height 12
mm WC-12% Co cemented carbide cylindrical block, outer diameter 14 mm, thickness 0.5 mm WC-12% Co cemented carbide disk, and 85% diamond powder with particle size 0.5 μm and the remainder being grains. A mixed powder made of WC-15% Co cemented carbide powder having a diameter of 0.5 μm or less was prepared.

超合金リングの内径に超合金円柱ブロックを挿入し、超
硬合金リング内面と超硬合金円柱ブロックの上面とで形
成される直径14mm S深さ3mmの凹所に前記混合
ダイヤモンド粉末を充填後加圧して、混合粉末の高さを
1.5μmとし、超硬合金円板で蓋をした後、超高圧焼
結装置中に配置し、圧力55kb、温度1370℃の条
件で15分間焼結を行った。冷却後、減圧して取り出し
た封入容器の上部超硬合金円板を研削により除去すると
高さ12mmの超硬合金支持部の上面に厚さ1mmの焼
結ダイヤモンド層が接合して形成され周囲に超硬合金製
リングがやはり支持部及び焼結ダイヤモンド層に結合し
た複合体ブロックが得られた。
A superalloy cylindrical block is inserted into the inner diameter of the superalloy ring, and the mixed diamond powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the top surface of the cemented carbide cylindrical block. After pressing the mixed powder to a height of 1.5 μm and capping it with a cemented carbide disk, it was placed in an ultra-high pressure sintering device and sintered for 15 minutes at a pressure of 55 kb and a temperature of 1370°C. Ta. After cooling, the upper cemented carbide disk of the enclosure was removed by depressurization and removed by grinding, and a 1 mm thick sintered diamond layer was bonded to the top surface of the 12 mm high cemented carbide support, forming a layer around it. A composite block was obtained in which the cemented carbide ring was also bonded to the support and to the sintered diamond layer.

この複合体ブロックを第6図に示すように、パイプ状電
極を備える放電加工機に装着し、放電加工して、複合体
ブロックの軸方向より直径1mm。
As shown in FIG. 6, this composite block was mounted on an electrical discharge machine equipped with a pipe-shaped electrode and subjected to electrical discharge machining to obtain a diameter of 1 mm in the axial direction of the composite block.

長さ13mmの丸棒で支持体部はWC−12%Co超硬
合金よりなり、その一端に長さ1mmの焼結ダイヤモン
ド層が固着形成された円柱体をくりぬいた。
The support part was made of WC-12% Co cemented carbide using a round rod having a length of 13 mm, and a cylindrical body having a sintered diamond layer having a length of 1 mm fixedly formed on one end thereof was hollowed out.

実施例2 それぞれWC−12%Co超硬合金よりなる■外径18
mm、内径14mm 、高さ20mmのリング、■外径
14mm 。
Example 2 ■Outer diameter 18 each made of WC-12%Co cemented carbide
mm, inner diameter 14mm, height 20mm ring, outer diameter 14mm.

高さl gmmの円柱ブロック、■外径14開、厚さ0
.5mmの円板と、粒径3μmのダイヤモンド粉末90
%と残余がCo粉末よりなる混合粉末、粒径3μmの高
圧相窒化硼素(以下、立方晶型窒化硼素をCBNと略記
する)粉末60%と残余が(TiN−10重量%At)
の組成の粉末よりなる混合粉末を用意した。
Cylindrical block with height l gmm, outer diameter 14, thickness 0
.. 5mm disk and 90 diamond powders with a particle size of 3μm
% and the remainder is Co powder, 60% of high-pressure phase boron nitride (hereinafter cubic boron nitride is abbreviated as CBN) powder with a particle size of 3 μm and the remainder is (TiN-10% by weight At).
A mixed powder consisting of powders having the composition was prepared.

超硬合金製円柱ブロックの上面に前記CBN混合粉末を
溶媒に溶かしたものを厚さ50μmに塗付した後、溶媒
を加熱除去し、この処理を行った超硬合金円柱ブロック
を超硬リング内径に挿入した。
After applying a solution of the CBN mixed powder in a solvent to a thickness of 50 μm on the top surface of a cemented carbide cylindrical block, the solvent was removed by heating, and the cemented carbide cylindrical block subjected to this treatment was adjusted to the inside diameter of the cemented carbide ring. inserted into.

次に、超硬合金リング内面とCBN混合粉末を塗付した
超硬合金円柱ブロックの上面とで形成される凹所に前記
ダイヤモンド混合粉末を充填した後、加圧成型して厚さ
1.8mmのダイヤモンド混合粉末層を形成した後、超
硬合金円板で蓋をした。
Next, after filling the recess formed by the inner surface of the cemented carbide ring and the upper surface of the cemented carbide cylindrical block coated with the CBN mixed powder, the diamond mixed powder was press-molded to a thickness of 1.8 mm. After forming a layer of diamond mixed powder, the lid was covered with a cemented carbide disk.

次にこの容器を超高圧焼結装置中に配置し、圧力55k
b、温度1400℃で10分間焼結を行った後、冷却、
減圧して容器を取り出した。容器の上部超硬合金円板を
研削除去すると高さ18mmの超硬合金支持体の上面に
厚さ1.2mmの焼結ダイヤモンド層が厚さ25μmの
焼結CBN層を介して接合され、周囲に超硬合金リング
が支持体及び焼結ダイヤモンド層に結合した複合体ブロ
ックが得られた。
Next, this container was placed in an ultra-high pressure sintering device, and the pressure was 55k.
b. After sintering at a temperature of 1400°C for 10 minutes, cooling;
The pressure was reduced and the container was taken out. When the upper cemented carbide disk of the container is removed by grinding, a sintered diamond layer with a thickness of 1.2 mm is bonded to the top surface of the cemented carbide support with a height of 18 mm via a sintered CBN layer with a thickness of 25 μm. A composite block was obtained in which a cemented carbide ring was bonded to a support and a sintered diamond layer.

この複合体ブロックをパイプ状電極を備える放電加工機
に装着し、パイプ状電極により複合体の軸方向より直径
21711Tl、長さ19.2mmの丸棒で支持体部は
WC−12%Co超硬合金よりなり、その一端に長さ1
.2mmの焼結ダイヤモンド層が厚さ25μmの焼結C
BN界面層を介して接合形成された円柱体をくりぬいた
This composite block was mounted on an electric discharge machine equipped with a pipe-shaped electrode, and the support part was made of WC-12% Co carbide using a round bar with a diameter of 21711Tl and a length of 19.2 mm from the axial direction of the composite. It is made of alloy and has a length of 1 at one end.
.. 2 mm thick sintered diamond layer with 25 μm thick sintered C
The cylindrical body bonded through the BN interface layer was hollowed out.

実施例3 (Mo2、Wり)C−11%Co超硬合金よりなり、上
面に直径20mm、深さ3mmの円形凹所を有する外径
24mm、高さ25mmの円柱ブロック、外径20mm
、厚さ0.5mmのWC−12%Co超硬合金製円板と
粒径0.5μmのダイヤモンド粉末80%と残余が粒径
0.5μm以下のWC−15%Co超硬合金粉末よりな
るダイヤモンド混合粉末を用意した。
Example 3 (Mo2, W) A cylindrical block made of C-11% Co cemented carbide, 24 mm in outer diameter and 25 mm in height, with a circular recess of 20 mm in diameter and 3 mm in depth on the top surface, 20 mm in outer diameter.
, consisting of a 0.5 mm thick WC-12% Co cemented carbide disk, 80% diamond powder with a grain size of 0.5 μm, and the remainder WC-15% Co cemented carbide powder with a grain size of 0.5 μm or less. A diamond mixed powder was prepared.

このダイヤモンド混合粉末を前記超硬合金円柱ブロック
の上面凹所に充填後加圧して高さ2.3mlTlのダイ
ヤモンド混合粉末層を形成した。次にこの上に超硬合金
円板で蓋をした後、超高圧焼結装置内に配置し、圧力5
5kb、温度1400℃で15分間焼結した。
This diamond mixed powder was filled into the recess on the upper surface of the cemented carbide cylindrical block and pressurized to form a diamond mixed powder layer with a height of 2.3 mlTl. Next, after covering this with a cemented carbide disk, it is placed in an ultra-high pressure sintering device, and the pressure is 5
5kb, and sintered at a temperature of 1400°C for 15 minutes.

焼結後、封入容器を取り出し、上面の超硬合金蓋を研削
除去すると上面円形凹所に厚さ1.5+++mの焼結ダ
イヤモンド層を有し、これが周囲の(Mo2、W、)C
ニー11%Co合金容器に強固に接合した複合体ブロッ
クが得られた。
After sintering, the sealed container is taken out and the cemented carbide lid on the top surface is ground and removed, and a sintered diamond layer with a thickness of 1.5 +++ m is found in the circular recess on the top surface, which is surrounded by (Mo2, W,)C.
A composite block was obtained that was firmly bonded to the knee 11% Co alloy container.

この複合体ブロックを電子ビーム加工機に装着し、電子
ビームにより複合体ブロックの軸方向より直径2mm、
長さ23.5mmの丸棒で支持体部は(Mat、W3)
Cニー11%Co超硬合金よりなり、その一端に長さ1
.5mmの焼結ダイヤモンド層が固着形成された棒状体
をくりぬいた。
This composite block was mounted on an electron beam processing machine, and the electron beam was used to cut the composite block into a diameter of 2 mm from the axial direction.
The support part is a round bar with a length of 23.5 mm (Mat, W3)
C knee is made of 11% Co cemented carbide, with a length of 1 at one end.
.. A rod-shaped body on which a 5 mm thick sintered diamond layer was firmly formed was hollowed out.

実施例4 外径18mm、内径14mm 、高さ15mmのWC−
12%C。
Example 4 WC- with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
12%C.

超硬合金リング、外径14mm 、高さ12mmの96
重量%w−3重量%Ni −1重量%Cu合金よりなる
円柱ブロック、外径14mm 、厚さ0.5mmのWC
−12%Co超硬合金円板と粒径3μmのCB N85
%と残余がT1No、a□粉末とAI粉末を重量比で8
0:20として混合した後、1000℃で30分真空炉
内で加熱処理を行った後、0.3μmに粉砕した粉末と
よりなるCBN混合粉末を用意した。
Cemented carbide ring, outer diameter 14mm, height 12mm 96
Cylindrical block made of wt%w-3wt%Ni-1wt%Cu alloy, outer diameter 14mm, thickness 0.5mm WC
-12% Co cemented carbide disk and CB N85 with grain size of 3 μm
% and the remainder is T1No, the weight ratio of a□ powder and AI powder is 8
After mixing at a ratio of 0:20, heat treatment was performed in a vacuum furnace at 1000° C. for 30 minutes, and a CBN mixed powder was prepared, which consisted of a powder that was pulverized to 0.3 μm.

超硬合金リングの内径にW合金円柱ブロックを挿入して
、超硬合金リング内面とW合金円柱ブロック上面とで形
成される直径14mm 、深さ3mmの凹所に前記CB
N混合粉末を充填し、加圧して高さ1、7mmのCBN
混合粉末層を形成した。次いで、超硬合金円板をかぶせ
て蓋をし、超硬合金容器全体を超高圧焼結装置中に配置
し、しかる後圧力50kb、温度1250℃で20分間
焼結を行った。
A W alloy cylindrical block is inserted into the inner diameter of the cemented carbide ring, and the CB is inserted into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the upper surface of the W alloy cylindrical block.
Filled with N mixed powder and pressurized to form CBN with a height of 1.7 mm.
A mixed powder layer was formed. Next, a cemented carbide disk was placed on the container and the lid was closed, and the entire cemented carbide container was placed in an ultra-high pressure sintering device, and then sintered at a pressure of 50 kb and a temperature of 1250° C. for 20 minutes.

焼結後、超硬合金容器を取り出し、上面のWC−12%
Co超硬合金蓋を研削除去すると高さ12mmのW合金
支持部の上面に厚さ1mmの焼結CBN層が接合して形
成され周囲に超硬合金製リングが支持体および焼結CB
N層に接合した複合体ブロックが得られた。
After sintering, take out the cemented carbide container and remove the WC-12% on the top surface.
When the Co cemented carbide lid is ground and removed, a 1 mm thick sintered CBN layer is bonded to the top surface of the 12 mm high W alloy support, and a cemented carbide ring is placed around the support and the sintered CB.
A composite block bonded to the N layer was obtained.

この複合体ブロックをイオンビーム加工機に配置し、イ
オンビームにより複合体ブロックの軸方向より直径1m
m、長さ13mmの丸棒で支持部は96重量%w−3重
量%N1−1重量%Cu合金よりなり、その一端に長さ
1mmの焼結CBNが固着形成された棒状体をくりぬい
た。
This composite block is placed in an ion beam processing machine, and the ion beam is applied to the composite block in a diameter of 1 m from the axial direction.
m, a round bar with a length of 13 mm, the support part is made of a 96 wt% w-3 wt% N1-1 wt% Cu alloy, and a rod-shaped body with a 1 mm long sintered CBN fixedly formed at one end was hollowed out. .

11貫1 外径40mm、内径36+nm、高さ40mmのWC−
12%C。
11 pieces 1 WC- with outer diameter 40mm, inner diameter 36+nm, height 40mm
12%C.

超硬合金リング、外径36mm、高さ34mmのWC−
12%Co超硬合金円柱ブロック、外径36mm、厚さ
0.5叩のWC−12%Co超硬合金円板と粒径3μm
のCBN粉末粉末6檀 組成の粉末よりなるCBN混合粉末を用意した。
Cemented carbide ring, outer diameter 36mm, height 34mm WC-
12% Co cemented carbide cylindrical block, outer diameter 36 mm, thickness 0.5 mm WC-12% Co cemented carbide disk and grain size 3 μm
A CBN mixed powder consisting of a powder having a composition of 6 CBN powders was prepared.

まずCBN混合粉末を直径36mm,厚さ2. 5mm
の円板に加圧成型し、前記超硬合金リングの内径に下部
より超硬合金円板、CBN成型体、超硬合金円柱ブロッ
ク、CBN成型体、超硬合金円板の順に積層配置し、セ
ットした容器全体を超高圧焼結装置中に配置して圧力4
0kb,温度1200℃で20分間焼結した。
First, the CBN mixed powder was made into a diameter of 36 mm and a thickness of 2. 5mm
pressure molded into a disc, and stacked the cemented carbide disc, CBN molded body, cemented carbide cylindrical block, CBN molded body, and cemented carbide disc in the order from the bottom on the inner diameter of the cemented carbide ring, Place the entire set container in an ultra-high pressure sintering device and press 4
It was sintered for 20 minutes at a temperature of 0 kb and 1200°C.

焼結後取り出し、上下の超硬合金蓋を研削除去すると高
さ3 4mmの超硬合金円柱ブロックの上下面に直径3
6mm,厚さ1. 5mmの焼結CBN層が固着形成さ
れ、更に周囲が超硬合金リングでお右われた複合体ブロ
ックが得られた。
When taken out after sintering and the top and bottom cemented carbide lids are ground and removed, a diameter 3.
6mm, thickness 1. A composite block was obtained in which a 5 mm sintered CBN layer was firmly formed and further surrounded by a cemented carbide ring.

次に、この複合体ブロックをレーザー加工機に装着し、
レーザービームにより複合体ブロック軸方向より、直径
2.5mm,長さ37mmの丸棒でその両端に長さ1.
 5mmの焼結CBN層が固着形成されものをくりぬい
た。
Next, attach this composite block to a laser processing machine,
A round bar with a diameter of 2.5 mm and a length of 37 mm is pierced with a length of 1.5 mm at both ends by a laser beam from the axial direction of the composite block.
A 5 mm sintered CBN layer was firmly formed and hollowed out.

この丸棒を更に長さ方向中央部で切断2分することによ
り直径2. 5mm,長さ1 8mmの丸棒で支持部は
WC−12%Co超硬合金よりなり一端に長さ1.5m
mの焼結CBN層が固着形成された棒状体が得られた。
This round bar is further cut into two parts at the center in the longitudinal direction, resulting in a diameter of 2. A round bar with a diameter of 5 mm and a length of 18 mm, the support part of which is made of WC-12%Co cemented carbide, and a length of 1.5 m at one end.
A rod-shaped body having m sintered CBN layers firmly formed thereon was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の複合ダイヤモンド焼結体の構造を示
す。 第2図は従来技術の複合焼結体を刃先に固着したドリル
を示す。 第3図(a)及び0))はそれぞれ本発明の方法によっ
て製造される複合焼結材料円柱体の例を示す。 第4図(a)は本発明の方法によって得られた複合材料
円柱体を使用してドリルを作る方法を図示し、第4図(
b)はそのドリルを示す。 第5図(a)は本発明の方法に従い得られた複合材料ブ
ロックの1例を示し、第5図(b)は中間接合部を有す
る複合材料ブロックの例を示す。 第6図は、本発明に従い複合材料ブロックから円柱体を
くりぬく位置を示す。 第7図は本発明の方法で使用するパイプ状電極を示し、
第7図(a)は3本の円柱体を同時にくりぬくために使
用する電極の概略図であり、第7図(b)はそのうちの
一本のパイプ状電極の概略図である。 第8図は多数本のパイプ状電極を備える電極手段を示し
、第8図(a)はその側面図、第8図(b)は複合焼結
体ブロックと電極の配置を示す平面図である。 (主な参照番号) 11・・・従来のダイヤモンド工具の焼結ダイヤモンド
層、12・・・超硬合金製の支持部、13・・・従来の
複合焼結ダイヤモンドのチップ、15・・ ・シャンク
、 21・・・本発明方法による複合焼結材料円柱体の硬質
焼結部、22・・・支持部、23・・・本発明の複合焼
結材料円柱体、24・・・中間接合部、31・・・複合
材料ブロックの硬質焼結部、32・・・支持部、33・
・・複合材料ブロック、34・・・中間接合部、 40・・・電極の支持部、 41(41a141b143c)・・・パイプ状電極、
42・・・ガス抜き穴、 特許出願人 住友電気工業株式会社 代 理 人 弁理士 新居 正彦 (α)(b) 23:竹Δすa4S臂糖巴4卦体 第7図 第8図 手続補正書(自発) 昭和60年7月4日 1、事件の表示  昭和60年特許願第49559号2
、発明の名称 複合焼結材料棒状体の製造方法 3、補正をする者 事件との関係  特許出願人 住 所 大阪市東区北浜5丁目15番地名 称 (21
3)住友電気工業株式会社4、代理人 住 所 ■101東京都千代田区東神田1−10−76
、補正命令の日付 (自発) 7、補正の対象 (1)明細書の特許請求の範囲の欄仝 (2〕明細書の発明の詳細な説明の欄 8、補正の内容 (1)、特許請求の範囲を別紙の通り補正する。 (2)、明細書第13頁第1行乃至第2行に記載の“1
15以下で・・・・・を備える”を「1/6以下で且つ
3mm以下の直径の断面を有する硬質焼結体を頭部に備
える」と補正する。 特許請求の範囲 (1)  ダイヤモンド粉末または高圧相窒化硼素粉末
を50%以上含有する硬質焼結体用の第1の材料層と、
該第1の材料層の焼結過程で該第1の材料の硬質焼結体
と接合する第2の材料層とを同一のホットプレスコンテ
ナ内に加圧方向に重ねて装入し、高温高圧下でホットプ
レスして該第1の材料層を焼結するとともに、得られた
硬質焼結体を該第2の材料層側と接合せしめて、所定厚
さの硬質焼結体の層を有する複合材料プロ・Iりを形成
し、軸方向の中空円筒部分を有する電極を用いた放電加
工により該複合材料ブロックから材料層厚方向に円柱体
をくりぬくことにより、該複合材料ブロックの材料層厚
方向厚さに対して1/6以下で且つ3mm以下の直径の
断面を有工玉硬質焼結体を頭部に備える細長の複合材料
円柱体を2本以上切り取ることを特徴とする細長の複合
材料円柱体の製造方法。 (2)  上記硬質焼結部のダイヤモンド粉末または高
圧相窒化硼素粉末は平均粒度30μm以下であることを
特徴とする特許請求の範囲第1項記載の細長の複合材料
円柱体の製造方法。 (3)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料円柱
体の製造方法。 (4)上記第2の材料層は、周期律表第4a、 5a、
 6a族元素の炭化物又はこれらの相互固溶体炭化物を
鉄族金属で結合した超硬合金であることを特徴とする特
許請求の範囲第1項乃至第3項のいずれかに記載の細長
の複合材料円柱体の製造方法。 (5)上記第2の材料層は、Wを80〜98重1%含み
、残余がNi−FeまたはNi−Fe−Cuからなる合
金であることを特徴とする特許請求の範囲第1項乃至第
3項のいずれかに記載の細長の複合材料円柱体の製造方
法。 (6)上記第1の材料層と第2の材料層との間に厚さが
0,5n+mJJ下の中間接合層を配置してホットプレ
スを行うことを特徴とする特許請求の範囲第1項乃至第
5項のいずれかに記載の細長の複合材料円柱体の製造方
法。 (7)上記した軸方向の中空円筒部分を有する電極はパ
イプ状電極であることを特徴とする特許請求の範囲第1
項乃至第6項のいずれかに記載の細長の複合材料円柱体
の製造方法。 (8)ダイヤモンド粉末または高圧相窒化硼素粉末を5
0%以上含有する硬質焼結体用の第1の材料層と、該第
1の材料層の焼結過程で該第1の材料の硬質焼結体と接
合する第2の材料層とを同一のホットプレスコンテナ内
に加圧方向に重ねて装入し、高温高圧下でホットプレス
して該第1の材料層を焼結するとともに、1等られた硬
質焼結体を該第2の材料層側と接合せしめて、所定厚さ
の硬質焼結体の層を有する複合材料ブロックを形成し、
電子ビーム、レーザービーム、イオンビームなどの高エ
ネルギービーム加工により該複合材料ブロックから材料
層厚方向に接柱体をくりぬ(ことにより、該複合材料ブ
ロックの材料層厚方向厚さに対して1/6以下で且つ3
non以下の相当直径の断面を有工玉硬質焼結体を頭部
に備える細長の複合材料棒状体を2本以上切り取ること
を特徴とする細長の複合材料棒状体の製造方法。 (9)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第8項記載の細長の複合材料棒状
体の製造方法。 αQ 上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第8項記載の細長の複合材料棒状
体の製造方法。 (11)  上記第2の材料層は、周期律表第4a、 
5a。 6a族元累の炭化物又はこれらの相互固溶体炭化物を鉄
族金属で結合した超硬合金であることを特徴とする特許
請求の範囲第8項乃至第1O項のいずれかに記載の細長
の複合材料棒状体の製造方法。 (12)  上記第2の材料層は、Wを80〜98重量
%含み、残余がNi−FeまたはN 1−Fe−Cuか
らなる合金であることを特徴とする特許請求の範囲第8
項乃至第1O項のいずれかに記載の細長の複合材料棒状
体の製造方法。 (13)  上記第1の材料層と第2の材料層との間に
厚さが0.5mm以下の中間接合層を配置してホットプ
レスを行うことを特徴とする特許請求の範囲第8項乃至
第12項のいずれかに記載の細長の複合材料棒状体の製
造方法。
FIG. 1 shows the structure of a conventional composite diamond sintered body. FIG. 2 shows a drill in which a conventional composite sintered body is fixed to the cutting edge. Figures 3(a) and 0)) respectively show examples of composite sintered material cylinders produced by the method of the invention. FIG. 4(a) illustrates a method of making a drill using the composite material cylinder obtained by the method of the present invention, and FIG.
b) shows the drill. FIG. 5(a) shows an example of a composite material block obtained according to the method of the invention, and FIG. 5(b) shows an example of a composite material block with an intermediate joint. FIG. 6 shows the location of hollowing out a cylinder from a composite block according to the invention. FIG. 7 shows a pipe-shaped electrode used in the method of the present invention,
FIG. 7(a) is a schematic diagram of an electrode used to simultaneously hollow out three cylindrical bodies, and FIG. 7(b) is a schematic diagram of one of the pipe-shaped electrodes. Fig. 8 shows an electrode means comprising a large number of pipe-shaped electrodes, Fig. 8(a) is a side view thereof, and Fig. 8(b) is a plan view showing the arrangement of the composite sintered body block and the electrodes. . (Main reference numbers) 11...Sintered diamond layer of conventional diamond tool, 12...Cemented carbide support part, 13...Conventional composite sintered diamond tip, 15...Shank , 21... Hard sintered part of the composite sintered material cylinder according to the method of the present invention, 22... Supporting part, 23... Composite sintered material cylinder of the present invention, 24... Intermediate joint part, 31... Hard sintered part of composite material block, 32... Support part, 33...
... Composite material block, 34 ... Intermediate joint part, 40 ... Electrode support part, 41 (41a141b143c) ... Pipe-shaped electrode,
42...Gas vent hole, Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Masahiko Arai (α) (b) 23: Bamboo ΔS a4S 臂萴tomoe 4 trigram Figure 7 Figure 8 Procedural amendment (Voluntary) July 4, 1985 1. Indication of the incident 1985 Patent Application No. 49559 2
, Name of the invention, Method for manufacturing composite sintered material rod-shaped body 3, Relationship with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21)
3) Sumitomo Electric Industries Co., Ltd. 4, Agent address: 1-10-76 Higashikanda, Chiyoda-ku, Tokyo 101
, Date of amendment order (voluntary) 7. Subject of amendment (1) Claims column of the specification (2) Detailed explanation of the invention column 8 of the specification, Contents of amendment (1), Patent claims amend the range as shown in the attached sheet.
15 or less and..." is corrected to "the head is equipped with a hard sintered body having a cross section of 1/6 or less and a diameter of 3 mm or less". Claims (1) A first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder;
In the sintering process of the first material layer, the hard sintered body of the first material and the second material layer to be bonded are stacked in the pressing direction in the same hot press container, and are heated at high temperature and high pressure. The first material layer is sintered by hot pressing at the bottom, and the obtained hard sintered body is joined to the second material layer to form a hard sintered body layer with a predetermined thickness. The material layer thickness of the composite material block is reduced by forming a composite material block and hollowing out a cylindrical body in the material layer thickness direction from the composite material block by electrical discharge machining using an electrode having a hollow cylindrical portion in the axial direction. An elongated composite characterized by cutting out two or more elongated composite material cylinders each having a head made of a hard sintered ball with a cross section of 1/6 or less of the direction thickness and a diameter of 3 mm or less. Method of manufacturing material cylinder. (2) The method for manufacturing an elongated composite material cylinder according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less. (3) The method for manufacturing an elongated composite material cylinder according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less. (4) The second material layer is made of materials from periodic table 4a, 5a,
The elongated composite material cylinder according to any one of claims 1 to 3, which is a cemented carbide made by bonding carbides of Group 6a elements or their mutual solid solution carbides with iron group metals. How the body is manufactured. (5) The second material layer is an alloy containing 80 to 98 W and 1% by weight, with the remainder being Ni-Fe or Ni-Fe-Cu. 4. A method for producing an elongated composite material cylinder according to any one of Item 3. (6) An intermediate bonding layer having a thickness of 0.5n+mJJ or less is arranged between the first material layer and the second material layer, and hot pressing is performed. 6. A method for producing an elongated composite material cylinder according to any one of items 5 to 6. (7) Claim 1, wherein the electrode having the hollow cylindrical portion in the axial direction is a pipe-shaped electrode.
7. A method for manufacturing an elongated composite material cylinder according to any one of items 6 to 6. (8) Diamond powder or high pressure phase boron nitride powder
The first material layer for the hard sintered body containing 0% or more and the second material layer bonded to the hard sintered body of the first material in the sintering process of the first material layer are the same. The first material layer is sintered by hot pressing under high temperature and high pressure, and the first hard sintered body is stacked in the pressing direction in a hot press container. bonding with the layer side to form a composite material block having a layer of hard sintered body with a predetermined thickness;
A tangential column is hollowed out in the material layer thickness direction from the composite material block by high-energy beam machining such as an electron beam, laser beam, or ion beam. /6 or less and 3
1. A method for manufacturing an elongated composite material rod, the method comprising cutting two or more elongated composite material rods each having a head made of a hard sintered ball having a cross section with an equivalent diameter equal to or less than non. (9) The method for manufacturing a slender composite material rod according to claim 8, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less. αQ The method for producing an elongated composite material rod according to claim 8, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less. (11) The second material layer is made of material from periodic table 4a,
5a. The elongated composite material according to any one of claims 8 to 1O, characterized in that it is a cemented carbide made by bonding carbides of group 6a elements or their mutual solid solution carbides with an iron group metal. Method for manufacturing a rod-shaped body. (12) Claim 8, wherein the second material layer contains 80 to 98% by weight of W, with the remainder being an alloy consisting of Ni-Fe or N1-Fe-Cu.
A method for producing an elongated composite material rod according to any one of Items 1 to 1O. (13) Claim 8, characterized in that hot pressing is performed with an intermediate bonding layer having a thickness of 0.5 mm or less disposed between the first material layer and the second material layer. 13. A method for producing an elongated composite material rod according to any one of items 12 to 12.

Claims (13)

【特許請求の範囲】[Claims] (1)ダイヤモンド粉末または高圧相窒化硼素粉末を5
0%以上含有する硬質焼結体用の第1の材料層と、該第
1の材料層の焼結過程で該第1の材料の硬質焼結体と接
合する第2の材料層とを同一のホットプレスコンテナ内
に加圧方向に重ねて装入し、高温高圧下でホットプレス
して該第1の材料層を焼結するとともに、得られた硬質
焼結体を該第2の材料層側と接合せしめて、所定厚さの
硬質焼結体の層を有する複合材料ブロックを形成し、軸
方向の中空円筒部分を有する電極を用いた放電加工によ
り該複合材料ブロックから材料層厚方向に円柱体をくり
ぬくことにより、該複合材料ブロックの材料層厚方向厚
さに対して1/5以下で且つ3mm以下の直径の断面を
有し、頭部に硬質焼結体を備える細長の複合材料円柱体
を2本以上切り取ることを特徴とする細長の複合材料円
柱体の製造方法。
(1) Diamond powder or high pressure phase boron nitride powder
The first material layer for the hard sintered body containing 0% or more and the second material layer bonded to the hard sintered body of the first material in the sintering process of the first material layer are the same. The first material layer is sintered by hot pressing under high temperature and high pressure, and the obtained hard sintered body is placed in the second material layer. A composite material block having a hard sintered body layer of a predetermined thickness is formed by joining the sides, and the material layer is removed from the composite material block in the thickness direction by electric discharge machining using an electrode having a hollow cylindrical portion in the axial direction. By hollowing out a cylindrical body, an elongated composite material having a cross section with a diameter of 1/5 or less and 3 mm or less with respect to the thickness in the material layer thickness direction of the composite material block, and having a hard sintered body at the head part. A method for producing an elongated composite material cylindrical body, the method comprising cutting out two or more cylindrical bodies.
(2)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料円柱
体の製造方法。
(2) The method for manufacturing an elongated composite material cylinder according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less.
(3)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料円柱
体の製造方法。
(3) The method for manufacturing an elongated composite material cylinder according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less.
(4)上記第2の材料層は、周期律表第4a、5a、6
a族元素の炭化物又はこれらの相互固溶体炭化物を鉄族
金属で結合した超硬合金であることを特徴とする特許請
求の範囲第1項乃至第3項のいずれかに記載の細長の複
合材料円柱体の製造方法。
(4) The second material layer is made of materials 4a, 5a, and 6 of the periodic table.
The elongated composite material cylinder according to any one of claims 1 to 3, which is a cemented carbide made by bonding carbides of Group A elements or their mutual solid solution carbides with iron group metals. How the body is manufactured.
(5)上記第2の材料層は、Wを80〜98重量%含み
、残余がNi−FeまたはNi−Fe−Cuからなる合
金であることを特徴とする特許請求の範囲第1項乃至第
3項のいずれかに記載の細長の複合材料円柱体の製造方
法。
(5) The second material layer contains 80 to 98% by weight of W, and the remainder is an alloy consisting of Ni-Fe or Ni-Fe-Cu. A method for manufacturing an elongated composite material cylinder according to any one of Item 3.
(6)上記第1の材料層と第2の材料層との間に厚さが
0.5mm以下の中間接合層を配置してホットプレスを
行うことを特徴とする特許請求の範囲第1項乃至第5項
のいずれかに記載の細長の複合材料円柱体の製造方法。
(6) Hot pressing is performed by disposing an intermediate bonding layer having a thickness of 0.5 mm or less between the first material layer and the second material layer, as claimed in claim 1. 6. A method for producing an elongated composite material cylinder according to any one of items 5 to 6.
(7)上記した軸方向の中空円筒部分を有する電極はパ
イプ状電極であることを特徴とする特許請求の範囲第1
項乃至第6項のいずれかに記載の細長の複合材料円柱体
の製造方法。
(7) Claim 1, wherein the electrode having the hollow cylindrical portion in the axial direction is a pipe-shaped electrode.
7. A method for manufacturing an elongated composite material cylinder according to any one of items 6 to 6.
(8)ダイヤモンド粉末または高圧相窒化硼素粉末を5
0%以上含有する硬質焼結体用の第1の材料層と、該第
1の材料層の焼結過程で該第1の材料の硬質焼結体と接
合する第2の材料層とを同一のホットプレスコンテナ内
に加圧方向に重ねて装入し、高温高圧下でホットプレス
して該第1の材料層を焼結するとともに、得られた硬質
焼結体を該第2の材料層側と接合せしめて、所定厚さの
硬質焼結体の層を有する複合材料ブロックを形成し、電
子ビーム、レーザービーム、イオンビームなどの高エネ
ルギービーム加工により該複合材料ブロックから材料層
厚方向に棒柱体をくりぬくことにより、該複合材料ブロ
ックの材料層厚方向厚さに対して1/5以下で且つ3m
m以下の相当直径の断面を有し、頭部に硬質焼結体を備
える細長の複合材料棒状体を2本以上切り取ることを特
徴とする細長の複合材料棒状体の製造方法。
(8) Diamond powder or high pressure phase boron nitride powder
The first material layer for the hard sintered body containing 0% or more and the second material layer bonded to the hard sintered body of the first material in the sintering process of the first material layer are the same. The first material layer is sintered by hot pressing under high temperature and high pressure, and the obtained hard sintered body is placed in the second material layer. A composite material block having a hard sintered body layer of a predetermined thickness is formed by joining the sides, and the composite material block is processed in the direction of the material layer thickness by high-energy beam processing such as an electron beam, laser beam, or ion beam. By hollowing out the rod body, the thickness of the composite material block is 1/5 or less in the material layer thickness direction and 3 m.
1. A method for manufacturing an elongated composite material rod, which comprises cutting two or more elongated composite material rods having a cross section with an equivalent diameter of m or less and having a hard sintered body at the head.
(9)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第8項記載の細長の複合材料棒状
体の製造方法。
(9) The method for manufacturing a slender composite material rod according to claim 8, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less.
(10)上記硬質焼結部のダイヤモンド粉末または高圧
相窒化硼素粉末は平均粒度10μm以下であることを特
徴とする特許請求の範囲第8項記載の細長の複合材料棒
状体の製造方法。
(10) The method for producing an elongated composite material rod according to claim 8, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less.
(11)上記第2の材料層は、周期律表第4a、5a、
6a族元素の炭化物又はこれらの相互固溶体炭化物を鉄
族金属で結合した超硬合金であることを特徴とする特許
請求の範囲第8項乃至第10項のいずれかに記載の細長
の複合材料棒状体の製造方法。
(11) The second material layer is made of materials 4a and 5a of the periodic table,
The elongated composite material rod shape according to any one of claims 8 to 10, which is a cemented carbide made by bonding carbides of group 6a elements or their mutual solid solution carbides with iron group metals. How the body is manufactured.
(12)上記第2の材料層は、Wを80〜98重量%含
み、残余がNi−FeまたはNi−Fe−Cuからなる
合金であることを特徴とする特許請求の範囲第8項乃至
第10項のいずれかに記載の細長の複合材料棒状体の製
造方法。
(12) The second material layer contains 80 to 98% by weight of W, and the remainder is an alloy consisting of Ni-Fe or Ni-Fe-Cu. 11. A method for producing an elongated composite material rod according to any one of Item 10.
(13)上記第1の材料層と第2の材料層との間に厚さ
が0.5mm以下の中間接合層を配置してホットプレス
を行うことを特徴とする特許請求の範囲第8項乃至第1
2項のいずれかに記載の細長の複合材料棒状体の製造方
法。
(13) Claim 8, characterized in that hot pressing is performed with an intermediate bonding layer having a thickness of 0.5 mm or less disposed between the first material layer and the second material layer. to the first
A method for producing an elongated composite material rod according to any one of Item 2.
JP60049559A 1984-06-12 1985-03-13 Method of manufacturing bar type body of composite sintered material Granted JPS61209821A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60049559A JPS61209821A (en) 1985-03-13 1985-03-13 Method of manufacturing bar type body of composite sintered material
EP85304135A EP0168953B2 (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
KR1019850004091A KR920001585B1 (en) 1984-06-12 1985-06-11 Stick compositie materials and process for preparation thereof
CA000483612A CA1286510C (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
DE8585304135T DE3575092D1 (en) 1984-06-12 1985-06-11 ROD FROM COMPOSITE MATERIALS AND METHOD FOR THEIR PRODUCTION.
AT85304135T ATE49147T1 (en) 1984-06-12 1985-06-11 ROD MADE OF COMPOSITE MATERIALS AND METHOD FOR ITS MANUFACTURE.
US07/231,644 US4880707A (en) 1984-06-12 1988-08-10 Stick of composite materials and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049559A JPS61209821A (en) 1985-03-13 1985-03-13 Method of manufacturing bar type body of composite sintered material

Publications (2)

Publication Number Publication Date
JPS61209821A true JPS61209821A (en) 1986-09-18
JPH0525617B2 JPH0525617B2 (en) 1993-04-13

Family

ID=12834557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049559A Granted JPS61209821A (en) 1984-06-12 1985-03-13 Method of manufacturing bar type body of composite sintered material

Country Status (1)

Country Link
JP (1) JPS61209821A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192032A (en) * 1987-08-27 1989-04-11 Imi Titanium Ltd Manufacture of composite component and composite component section detached from composite component
JP2014531967A (en) * 2011-08-23 2014-12-04 エレメント シックス リミテッド Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate
GB2527938A (en) * 2014-07-01 2016-01-06 Element Six Uk Ltd Superhard constructions & methods of making same
GB2531657A (en) * 2014-10-21 2016-04-27 Element Six (Uk) Ltd Superhard constructions & methods of making same
CN110539007A (en) * 2018-05-28 2019-12-06 上海名古屋精密工具股份有限公司 Blank having a hard material and use thereof for producing a tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61506A (en) * 1984-06-12 1986-01-06 Sumitomo Electric Ind Ltd Manufacture of rod-shaped body of composite sintered material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61506A (en) * 1984-06-12 1986-01-06 Sumitomo Electric Ind Ltd Manufacture of rod-shaped body of composite sintered material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192032A (en) * 1987-08-27 1989-04-11 Imi Titanium Ltd Manufacture of composite component and composite component section detached from composite component
JP2014531967A (en) * 2011-08-23 2014-12-04 エレメント シックス リミテッド Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate
GB2527938A (en) * 2014-07-01 2016-01-06 Element Six Uk Ltd Superhard constructions & methods of making same
US10329848B2 (en) 2014-07-01 2019-06-25 Element Six (Uk) Limited Superhard constructions and methods of making same
GB2531657A (en) * 2014-10-21 2016-04-27 Element Six (Uk) Ltd Superhard constructions & methods of making same
GB2531657B (en) * 2014-10-21 2018-02-21 Element Six (Uk) Ltd Superhard constructions & methods of making same
CN110539007A (en) * 2018-05-28 2019-12-06 上海名古屋精密工具股份有限公司 Blank having a hard material and use thereof for producing a tool

Also Published As

Publication number Publication date
JPH0525617B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
CA1286510C (en) Stick of composite materials and process for preparation thereof
US4686080A (en) Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same
EP0418078B1 (en) Composite abrasive compacts
US6511265B1 (en) Composite rotary tool and tool fabrication method
JP4045014B2 (en) Polycrystalline diamond tools
EP0180243B1 (en) Composite sintered material having sandwich structure
EP0272081B1 (en) High hardness composite sintered compact
US20050210755A1 (en) Doubled-sided and multi-layered PCBN and PCD abrasive articles
KR20030048005A (en) Method of producing an abrasive product containing diamond
JPH09194909A (en) Composite material and its production
JP2594785B2 (en) Diamond crystal-sintered carbide composite polycrystal
JPS61209821A (en) Method of manufacturing bar type body of composite sintered material
JPS62142704A (en) Composite sintered material
CN110114176A (en) Tool
JPS61506A (en) Manufacture of rod-shaped body of composite sintered material
CN102049583A (en) Method for manufacturing composite welding blade
JPH049754B2 (en)
JP2004510884A (en) Abrasive and wear-resistant materials
JPS61152308A (en) Small-sized twist drill made of hard sintered material
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JP4960126B2 (en) Brazing cBN tool
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPH0742489B2 (en) Abrasion resistant parts with tool or hard head made of composite sintered material
JP2877254B2 (en) High hardness composite sintered body for tools