JPS61209709A - Method for controlling crown of strip - Google Patents

Method for controlling crown of strip

Info

Publication number
JPS61209709A
JPS61209709A JP60050599A JP5059985A JPS61209709A JP S61209709 A JPS61209709 A JP S61209709A JP 60050599 A JP60050599 A JP 60050599A JP 5059985 A JP5059985 A JP 5059985A JP S61209709 A JPS61209709 A JP S61209709A
Authority
JP
Japan
Prior art keywords
crown
strip
flatness
value
learning control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60050599A
Other languages
Japanese (ja)
Other versions
JPH0513730B2 (en
Inventor
Yasunobu Hayama
葉山 安信
Junichi Nishizaki
純一 西崎
Kazunori Nagai
永井 一則
Fumio Watanabe
文夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP60050599A priority Critical patent/JPS61209709A/en
Publication of JPS61209709A publication Critical patent/JPS61209709A/en
Publication of JPH0513730B2 publication Critical patent/JPH0513730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the accuracy and flatness of a strip by estimating a sheet crown of intermediate stand, which makes a prescribed expression minimum, and deciding a peset value used for controlling the next coil shape based on a correcting quantity of learning control. CONSTITUTION:A crown meter 3 and a shape detector 6 are installed for a strip 2 to be rolled by a hot rolling mill 1. Further, a learning control part 9 is disposed, which is constituted of an interstand-sheet-crown estimation part 7 and a learning-correcting-quantity arithmetic part 8. A sheet crown is estimated by the part 7 so as to make an evaluation function, expressed by an expression (I), minimum, by using the measured values of the flatness and crown of strip 2, thereby obtaining a correcting quantity for learning control as a roll crown. Next, a preset value for shape controlling the next coil is decided 5 based on this correcting quantity. By this method, the accuracy and flatness of the strip 2 are improved even when rolling conditions are changed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、形状制御機能を有する熱間圧延機等による帯
板クラウンの学習制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a learning control method for a strip crown using a hot rolling mill or the like having a shape control function.

〈従来の技術〉 従来、形状制御機能を持つ圧延機による帯板クラウンの
制御方法として、前コイルで得られた帯板クラウン実測
値を基に目標値との誤差を算出し、これを基に目標帯板
クラウンの変更を行なうことにより、次コイルの形状制
御用操作量の設定値を修正し、帯板クラウンの精度向上
を図るようにしたものが知られている。その制御概念を
表す第2図に示すように、まず帯板クラウン推定式及び
帯板平坦度推定式をi=1.2.・・・、Nとして(N
は構成スタンド数)表すと、帯板クラウン推定式につい
ては Chi□ CL + ”1%1 + bil:i−1+
 diQi+eixiCR1・・・(1) であり、又、帯板平坦度推定式については・・・ (2
) である、但し、Ch、はi番目のスタンド出側の帯板ク
ラウン、ε1はi番目のスタンド出側の帯板平坦度、自
はi番目のスタンドにおける帯板クラウン推定式中の定
数項(圧延条件に基づく関数)、ε。はi番目のスタン
ドにおける帯板平坦度推定式中の定数項、Qiはi番目
のスタンドにおける形状制御操作量、hiはi番目のス
タンド出側の帯板板厚、OR,はi番目のスタンドにお
けるワークロールイニシャルクラウン、xiはi番目の
スタンドにおけるワークロールイニシャルクラウンを板
幅相当量に換算するための係数である。又、aiはクラ
ウン遺伝係数、biは帯板の入側平坦度の出側クラウン
への影響係数、diは形状制御操作量・の板クラウンへ
の影響係数、Qiは形状変化係数、fiは帯板の入側平
坦度の出側平坦度への影響係数、eiはワークロールイ
ニシャルクラウンの帯板クラウンへの影響係数である。
<Conventional technology> Conventionally, as a method of controlling the strip crown using a rolling mill with a shape control function, the error from the target value is calculated based on the actual measurement value of the strip crown obtained in the previous coil, and the error is calculated based on this. It is known that by changing the target strip crown, the set value of the manipulated variable for controlling the shape of the next coil is corrected, thereby improving the accuracy of the strip crown. As shown in FIG. 2, which shows the control concept, first, the equation for estimating the band crown and the estimating equation for the band flatness are calculated when i=1.2. ..., as N (N
is the number of constituent stands), and the band plate crown estimation formula is Chi□ CL + "1%1 + bil:i-1+
diQi+eixiCR1...(1), and the strip flatness estimation formula...(2
), where Ch is the strip crown on the exit side of the i-th stand, ε1 is the strip flatness on the exit side of the i-th stand, and is the constant term in the equation for estimating the strip crown on the i-th stand. (function based on rolling conditions), ε. is the constant term in the strip flatness estimation equation for the i-th stand, Qi is the shape control operation amount for the i-th stand, hi is the strip thickness at the exit side of the i-th stand, OR, is the i-th stand The work roll initial crown in the i-th stand, xi is a coefficient for converting the work roll initial crown in the i-th stand into an amount equivalent to the board width. In addition, ai is the crown genetic coefficient, bi is the influence coefficient of the inlet side flatness of the strip on the outlet side crown, di is the influence coefficient of the shape control operation amount on the plate crown, Qi is the shape change coefficient, and fi is the influence coefficient of the strip flatness on the outlet side crown. The coefficient of influence of the flatness on the inlet side of the plate on the flatness on the outlet side, ei, is the influence coefficient of the work roll initial crown on the strip crown.

タンプL・圧延機lにおいて圧延された帯板2のクラウ
ンはクラウンメータ3により計測され、その結果は学習
補正量演算部4に与えられる。この学習補正量演算部4
において帯板クラウンの目標値と実測値との誤差を基に
して例えば下記(3)式のような演算により目標値修正
量ChLRN’決定する。即ち、ChLRN(−1)を
前回の目標値修正量、Chjを目標帯板クラウン、Ch
を帯板クラウン実測値、kを学習ゲインとして ChLRN = kChLRN(−11+ (1−k)
 (Ch、−雨+++ (3)により目標値修正量Ch
LRNを算出する。そして、プリセット値決定部5にお
いては次コイルの目標板クラウンを上記のようにして得
られた目標値修正量ChLRNを加味し、14.、+ 
ChLRNとして中間スタンドで帯板平坦度の上下限値
及び帯板平坦度及び操作量上下限値を満たし、目標帯板
クラウンを達成する操作量Qiの組合せを求める。
The crown of the strip 2 rolled in the tamp L/rolling mill I is measured by a crown meter 3, and the result is given to a learning correction amount calculation section 4. This learning correction amount calculation unit 4
Based on the error between the target value and the actual measurement value of the band plate crown, the target value correction amount ChLRN' is determined by calculation such as the following equation (3). That is, ChLRN (-1) is the previous target value correction amount, Chj is the target band crown, and Ch
ChLRN = kChLRN(-11+ (1-k) where is the measured value of the strip crown and k is the learning gain.
(Ch, - rain +++ Target value correction amount Ch due to (3)
Calculate LRN. Then, in the preset value determination unit 5, the target plate crown of the next coil is determined by taking into account the target value correction amount ChLRN obtained as described above, and 14. , +
As ChLRN, a combination of manipulated variables Qi that satisfies the upper and lower limits of the strip flatness, the strip flatness, and the upper and lower limits of the manipulated variable at the intermediate stand and achieves the target strip crown is determined.

このようにして、熱間圧延機等で圧延を行う場合に前コ
イルで得られた帯板クラウン実測値を基に目標値との誤
差を得、これに基づいて目標帯板クラウンの変更を行い
1次コイルの形状制御用操作量設定値を修正して帯板ク
ラウンの学習制御を行う。
In this way, when rolling is performed using a hot rolling mill, etc., the error between the target value and the strip crown is obtained based on the actual measured value of the strip crown obtained in the previous coil, and the target strip crown is changed based on this. Learning control of the strip crown is performed by correcting the operation amount setting value for shape control of the primary coil.

〈発明が解決しようとする問題点) 槌果の制御方法にあっては、圧延条件が変わった場合に
精度不良が発生し、しかも帯板平坦度の精度向上に欠け
る面もある。つまり、帯板クラウン目標値と実測値との
誤差の中に入側の帯板クラウンの遺伝項が含まれており
、従来の方法では誤差の原因が最終スタンドの数式モデ
ルの推定不良によるものか、或いは入側の帯板クラウン
の誤差によるものなのか判断できず、このため圧延条件
が変わった場合に精度が悪くなる虞がある。又。
(Problems to be Solved by the Invention) In the method of controlling the mallet, poor accuracy occurs when the rolling conditions change, and furthermore, there is also a lack of improvement in the accuracy of the flatness of the strip. In other words, the genetic term of the entrance side strip crown is included in the error between the target strip crown value and the measured value, and in the conventional method, the cause of the error is due to a poor estimation of the final stand mathematical model. It cannot be determined whether this is due to an error in the strip crown on the entry side, or because of an error in the strip crown on the entry side, so there is a risk that the accuracy will deteriorate if the rolling conditions change. or.

(2)式自体に誤差がある場合には帯板平坦度の誤差の
補正がきかないことになる。
If there is an error in the equation (2) itself, the error in strip flatness cannot be corrected.

本発明は、圧延条件が変化した場合の精度の低下や帯板
平坦度の精度向上の困難性等の問題に鑑みてなされたも
ので、形状制御機能を有する圧延機を用いて例え圧延条
件が変わった場合でも精度不良の発生を防止し得ると共
に帯板平坦度も次第に改善し得る圧延制御方法を提供す
ることを目的とする。
The present invention was made in view of problems such as a decrease in precision when rolling conditions change and the difficulty in improving the precision of strip flatness. It is an object of the present invention to provide a rolling control method that can prevent the occurrence of poor precision even when the rolling stock changes, and can gradually improve the flatness of the strip.

〈問題点を解決するための手段〉 本発明に係る帯板クラウン制御方法は、形状制御機能を
有する圧延機により帯板平坦度と帯板クラウンの両方の
実測値を用い、 +w(ε−εN) (但し、Nは構成スタンド数、Chは帯板クラウンうと
する帯板クラウン、Ch、、ChNは所定の数式モデル
による帯板クラウン計算値、εNは所定の数式モデルに
よる帯板平坦度、 wH,wH,Wは重み係数である。
<Means for Solving the Problems> The strip crown control method according to the present invention uses actual measured values of both strip flatness and strip crown using a rolling mill having a shape control function, and calculates +w(ε−εN ) (However, N is the number of constituent stands, Ch is the strip crown to be formed, Ch,, ChN is the calculated value of the strip crown according to a predetermined mathematical model, εN is the strip flatness according to a predetermined mathematical model, wH , wH, W are weighting coefficients.

)が最小となるような中間スタンドでの帯板クラウンを
推定し、これより学習制御用補正量をロールクラウンと
して求め、この学習制御用補正量を基にして次コイルの
形状制御用プリセット値を決定するようにしたことを特
徴とするものである。
) is minimized, the correction amount for learning control is determined as a roll crown, and the preset value for shape control of the next coil is determined based on this correction amount for learning control. It is characterized in that it is determined.

〈実施例) 本発明方法を実現する圧延装置の一実施例の制御概念を
表す$1図に示すように、本実施例では帯板クラウン実
測値と数式モデルによる計算値との誤差が小さくなるよ
うに、又、中間スタンドにおいても数式モデルによる計
算値との差が小さくなるように中間スタンドでの帯板ク
ラウンを推定し、これから学習制御用補正量を求めるよ
うにしている。更に、この中間スタンドでの帯板クラウ
ンの推定に帯板クラウン実測値だけでなく。
<Example> As shown in Figure 1, which represents the control concept of an example of a rolling machine that implements the method of the present invention, in this example, the error between the actual measured value of the strip crown and the value calculated by the mathematical model is reduced. Similarly, the strip crown at the intermediate stand is estimated so that the difference from the value calculated by the mathematical model is small at the intermediate stand, and the learning control correction amount is determined from this. Furthermore, in order to estimate the band crown at this intermediate stand, we can use not only the measured value of the band crown.

帯板平坦度実測値も合わせて使用している上に、学習制
御用補正量を板幅に依存しない物理量であるワークロー
ルイニシャルクラウンに換算して求めるようにしている
In addition to using the actual measurement value of the strip flatness, the correction amount for learning control is calculated by converting it into the work roll initial crown, which is a physical quantity that does not depend on the strip width.

具体的には、クラウンメータ3と形状検出器6とを備え
、更に中間スタンド帯板クラウン推定部7と学習補正量
演算部8とから構成される学習制御部9が設けられてい
る。タンデム圧延機lにおいて圧延された帯板2のクラ
ウン及び平坦度は、クラウンメータ3及び形状検出器6
により計測され、夫々その結果は学習制御部9の中間ス
タンド帯板クラウン推定部7に与えられる。この中間ス
タンド帯板クラウン推定部7においては、帯板クラウン
実測値Chと帯板平坦度実測値εとを基にして例えば下
記の演算により、中間スタンドでの帯板クラウン推定値
を求めるようにするが、まず、評価関数を次の(0式で
表わされるFとし、この値が最小となるような中間スタ
ンドの帯板クラウンを推定する。
Specifically, a learning control section 9 is provided which includes a crown meter 3 and a shape detector 6, and further includes an intermediate stand strip crown estimation section 7 and a learning correction amount calculation section 8. The crown and flatness of the strip 2 rolled in the tandem rolling mill 1 are measured using a crown meter 3 and a shape detector 6.
The respective results are given to the intermediate stand strip crown estimation section 7 of the learning control section 9. The intermediate stand strip crown estimating unit 7 calculates the estimated strip crown value at the intermediate stand by, for example, the following calculation based on the strip crown actual value Ch and the strip flatness actual measurement value ε. First, let the evaluation function be F expressed by the following equation (0), and estimate the strip crown of the intermediate stand such that this value is the minimum.

+w(ε−ε♂)2       ・・・(4)但し、
Ch1〜ChN−1はこれから推定しようとする帯板ク
ラウンであり、又、ch−(:RNは前記(1)式によ
る帯板クラウン計算値、ε〆は(2)式による最終スタ
ンドでの帯板平坦度、町〜wH,Wは重み係数である。
+w(ε−ε♂)2...(4) However,
Ch1 to ChN-1 are the belt crowns to be estimated from now on, and ch-(:RN is the calculated value of the belt crown according to the above formula (1), and ε〆 is the belt crown at the final stand according to the formula (2). Plate flatness, town ~wH, W are weighting coefficients.

ここで。here.

Chi★= Ci ” aiCh44 ” l)iε4
−1” ” diQi+ eixlcH1+++ (5
) であり、Ciは(2)式によるi番目のスタンドにおけ
る帯板の出側平坦度である。なお、(5)。
Chi★= Ci ” aiCh44 ” l)iε4
−1” ” diQi+ eixlcH1+++ (5
), and Ci is the exit flatness of the strip in the i-th stand according to equation (2). In addition, (5).

(6)式中における自、ai等は既述したものと同じで
ある。上記目標関数下の値が最小なるChi・・・・・
・ChN−1の組合せを中間スタンドの帯板クラウン推
定値とする。即ち、iml、 2.・−、N−1として
を解くことにより 求めるのである。
In formula (6), au, ai, etc. are the same as described above. Chi where the value under the above objective function is the minimum...
- Let the combination of ChN-1 be the estimated belt crown value of the intermediate stand. i.e. iml, 2. It is found by solving for ・-, N-1.

次にこのようにして中間スタンドの帯板クラウンを推定
した後、学習制御用補正量をロールクラウンとして求め
るが、学習制御部9の学習補正量演算部8においては計
算値と推定値及び実測値とにより定義し、これがロール
メカニカルクラウンの推定不良によるものとみなし1次
の(9)式によりロールクラウン推定誤差C0FS i
を求めるのである。
Next, after estimating the strip crown of the intermediate stand in this way, the correction amount for learning control is determined as a roll crown, and the learning correction amount calculation section 8 of the learning control section 9 uses the calculated value, estimated value, and actual measurement value. Assuming that this is due to poor estimation of the roll mechanical crown, the roll crown estimation error C0FS i is calculated using the first-order equation (9).
We seek.

つまり、is+1.2.・・・、Nとしてであり、そし
て次コイルへの学習制御補正量をigl、 2.・・・
、Nとして CLRNi= kiCLRNi(−1) ” (1−k
ilCOFSi、、、 (10) とする、但し、(1G)式中においてCLRN i (
−1)は前回の学習制御補正量であり、kiはi番目の
スタンドにおける学習制御ゲインである。
That is, is+1.2. ..., N, and the learning control correction amount to the next coil is igl, 2. ...
, N as CLRNi=kiCLRNi(-1)'' (1-k
ilCOFSi, , (10) However, in formula (1G), CLRN i (
-1) is the previous learning control correction amount, and ki is the learning control gain at the i-th stand.

(lO)式により学習制御用補正量を求めたならば、こ
れを基にして次コイルの形状制御用プリセット値を決定
する。即ち、プリセット値決定部5において前記(1)
式のワークロールイニシャルクラウンOR,の値を(l
O)式によるCLR旧を使用し、 CRi+ C’LR
Niとして次コイルの操作量のプリセット値を決定する
のである。
Once the correction amount for learning control is determined by the equation (lO), the preset value for shape control of the next coil is determined based on this. That is, in the preset value determining section 5, the above (1)
The value of work roll initial crown OR, in the equation is (l
O) Using CLR old by formula, CRi+ C'LR
The preset value of the manipulated variable of the next coil is determined as Ni.

このようにして、帯板平坦度と帯板クラウンとの両方の
実測値を用いて(0式に示す関数の値が最小となるよう
中間スタンドでの帯板クラウンを中間スタンド帯板クラ
ウン推定部7で推定し、これより学習制御用補正量をロ
ールクラウンとして求め、学習補正量演算部8で求めた
この補正量を基にして次コイルの形状制御用プ1)セッ
ト値を決定する。学習制御用補正量は、帯板クラウン実
測値を計算値との誤差が小さくなるよう、且つ中間スタ
ンドにおいても計算値との差が小さくなるよう中間スタ
ンドでの帯板クラウンを推定してこれから求めるように
しており、しかもこの中間スタンドの帯板クラウンの推
定には、従来のように単に帯板クラウン実測値だけでな
く、帯板平坦実測値も合わせて使用しており、更に上記
学習制御補正量は板幅に依存しないワークロールイニシ
ャルクラウンに換算されている。従来のように、誤差の
原因が最終スタンドの数がモデルの推定不良によるもの
か、或いは入側の帯板クラウンの誤差によるものか判別
できないことに起因して圧延条件が変わった場合に精度
が悪くなるのを防ぐことができ、たとえ圧延条件が変わ
った場合でも精度不良が発生せず、しかも帯板平坦度も
次第に改善され、帯板クラウンだけでなく帯板平坦度の
精度向上も図ることができる。更に、学習補正量をロー
ルクラウン換算値としているため、板幅変更にも対応す
ることができる。
In this way, using the actual measured values of both the strip flatness and the strip crown, the strip crown estimator at the intermediate stand calculates the strip crown at the intermediate stand so that the value of the function shown in equation 0 is minimized. 7, and from this, the correction amount for learning control is determined as a roll crown, and based on this correction amount determined by the learning correction amount calculating section 8, the P1) set value for shape control of the next coil is determined. The correction amount for learning control is obtained by estimating the band crown at the intermediate stand so that the error between the actual measured value of the band crown and the calculated value is small, and the difference between the calculated value and the intermediate stand is also small. Moreover, to estimate the belt crown of this intermediate stand, we use not only the actual belt crown value as in the past, but also the actual belt flatness value, and also use the learning control correction described above. The amount is converted to the work roll initial crown, which is independent of the sheet width. As in the past, when the rolling conditions change due to the inability to determine whether the cause of the error is due to poor estimation of the number of final stands in the model or an error in the strip crown on the entry side, the accuracy is reduced. It is possible to prevent deterioration, and even if the rolling conditions are changed, accuracy defects do not occur, and the flatness of the strip is gradually improved, and the accuracy of not only the strip crown but also the strip flatness can be improved. Can be done. Furthermore, since the learning correction amount is a roll crown equivalent value, it is possible to cope with changes in board width.

なお、本発明は熱間圧延機の他に厚板圧延機やその他の
形状制御能力を有する圧延機にも適用することができる
Note that the present invention can be applied not only to hot rolling mills but also to plate rolling mills and other rolling mills having shape control capabilities.

(発明の効果〉 本発明に係る帯板クラウンの制御方法によると、圧延条
件が変わった場合でも精度不良の発生を防止でさ、帯板
クラウンだけでなく帯板平坦度の精度向上も図れる上、
板幅変更にも対応できる等の効果がある。
(Effects of the Invention) According to the strip crown control method according to the present invention, it is possible to prevent the occurrence of precision defects even when rolling conditions change, and it is possible to improve the precision of not only the strip crown but also the strip flatness. ,
It has the advantage of being able to accommodate changes in board width.

【図面の簡単な説明】 第1図は本発明の一実施例の制御概念図、第2図は従来
方法による場合の概念図である。 図  面  中、 lはタンデム圧延機、 2は帯板。 3はクラウンメータ。 5はプリセット値決定部、 6は形状検出器、 7は中間スタンド帯板クラウン推定部、8は学習補正量
演算部、 9は学習制御部である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of control according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a conventional method. In the drawing, 1 is a tandem rolling mill, and 2 is a strip. 3 is the crown meter. 5 is a preset value determining section, 6 is a shape detector, 7 is an intermediate stand strip crown estimation section, 8 is a learning correction amount calculation section, and 9 is a learning control section.

Claims (1)

【特許請求の範囲】 形状制御機能を有する圧延機により帯板平坦度と帯板ク
ラウンの両方の実測値を用い、 Σ^n^−^1_i_=_1w_i(■_i−C_h_
_i^*)^2+w_N(■−C_h__N^*)^2
+W(■−ε_N^*)^2 (但し、Nは構成スタンド数、■は帯板クラウン実測値
、■は帯板平坦度実測値、■_iは推定しようとする帯
板クラウン、C_h__i^*、C_h__N^*は所
定の数式モデルによる帯板クラウン計算値、ε_N^*
は所定の数式モデルによる帯板平坦度、w_i、w_N
、Wは重み係数である。)が最小となるような中間スタ
ンドでの帯板クラウンを推定し、これより学習制御用補
正量をロールクラウンとして求め、この学習制御用補正
量を基にして次コイルの形状制御用プリセット値を決定
するようにしたことを特徴とする帯板クラウン制御方法
[Claims] Using actual measured values of both strip flatness and strip crown using a rolling mill with a shape control function, Σ^n^-^1_i_=_1w_i(■_i-C_h_
_i^*)^2+w_N(■-C_h__N^*)^2
+W(■-ε_N^*)^2 (However, N is the number of constituent stands, ■ is the actual value of the strip crown, ■ is the actual value of the strip flatness, ■_i is the strip crown to be estimated, C_h___i^* , C_h___N^* is the band plate crown calculation value according to a predetermined mathematical model, ε_N^*
is the strip flatness according to a predetermined mathematical model, w_i, w_N
, W are weighting coefficients. ) is minimized, the correction amount for learning control is determined as a roll crown, and the preset value for shape control of the next coil is determined based on this correction amount for learning control. A band plate crown control method, characterized in that:
JP60050599A 1985-03-15 1985-03-15 Method for controlling crown of strip Granted JPS61209709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050599A JPS61209709A (en) 1985-03-15 1985-03-15 Method for controlling crown of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050599A JPS61209709A (en) 1985-03-15 1985-03-15 Method for controlling crown of strip

Publications (2)

Publication Number Publication Date
JPS61209709A true JPS61209709A (en) 1986-09-18
JPH0513730B2 JPH0513730B2 (en) 1993-02-23

Family

ID=12863431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050599A Granted JPS61209709A (en) 1985-03-15 1985-03-15 Method for controlling crown of strip

Country Status (1)

Country Link
JP (1) JPS61209709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110635A1 (en) * 1999-12-23 2001-06-27 Abb Ab Method and device for controlling flatness
WO2016046945A1 (en) * 2014-09-25 2016-03-31 東芝三菱電機産業システム株式会社 Flatness control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110635A1 (en) * 1999-12-23 2001-06-27 Abb Ab Method and device for controlling flatness
WO2016046945A1 (en) * 2014-09-25 2016-03-31 東芝三菱電機産業システム株式会社 Flatness control device
CN106457325A (en) * 2014-09-25 2017-02-22 东芝三菱电机产业***株式会社 Flatness control device
JPWO2016046945A1 (en) * 2014-09-25 2017-04-27 東芝三菱電機産業システム株式会社 Flatness control device
CN106457325B (en) * 2014-09-25 2018-06-29 东芝三菱电机产业***株式会社 Flatness control device

Also Published As

Publication number Publication date
JPH0513730B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JPS61209709A (en) Method for controlling crown of strip
JP2012217994A (en) Steel plate rolling control method, apparatus and program
JPS61209708A (en) Method for controlling crown of strip
JPS6224809A (en) Method for controlling sheet width in hot rolling
JP3205175B2 (en) Strip width control method in hot rolling
JP2626420B2 (en) Strip width control method for rolling mill
JPS63137510A (en) Strip thickness control method for hot continuous rolling mill
JPS59141310A (en) Method for estimating sheet thickness at outlet side in rolling mill
JP2661515B2 (en) Strip crown control method in hot rolling
JPH07227609A (en) Board thickness control method
JPH0663623A (en) Method for controlling and rolling plate width of thick plate
JPS60187413A (en) Rolling installation and its control method
JPS6240919A (en) Plate width control method for hot continuous rough rolling mill
JPH11244921A (en) Method for controlling meandering of tail end of sheet
JPS60227909A (en) Rolling condition setting and correcting system of continuous rolling mill
JPH04100625A (en) Method for automatically controlling sheet thickness
JPH10263658A (en) Flatness control method of rolled stock in hot finishing mill
JPH0371909A (en) Control method for plate width in hot continuous rolling
JPS6316805A (en) Rolling method
JPS61162220A (en) Plate thickness automatic control method
JPH05124B2 (en)
JPH0890030A (en) Method for controlling width of rolling stock
JPS6225447B2 (en)
JPS6186013A (en) Estimating method of plate flatness
JPH01228605A (en) Method for controlling sheet crown in continuous hot rolling mill

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term