JPS61209349A - Method for detecting damaged position of corrosion-proof film of embedded metal pipe - Google Patents

Method for detecting damaged position of corrosion-proof film of embedded metal pipe

Info

Publication number
JPS61209349A
JPS61209349A JP4939785A JP4939785A JPS61209349A JP S61209349 A JPS61209349 A JP S61209349A JP 4939785 A JP4939785 A JP 4939785A JP 4939785 A JP4939785 A JP 4939785A JP S61209349 A JPS61209349 A JP S61209349A
Authority
JP
Japan
Prior art keywords
corrosion
metal pipe
ground
proof film
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4939785A
Other languages
Japanese (ja)
Inventor
Makoto Kawakami
誠 川上
Osahisa Shimizu
清水 長久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4939785A priority Critical patent/JPS61209349A/en
Publication of JPS61209349A publication Critical patent/JPS61209349A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To detect the damage position of a corrosion-proof film with high accuracy, by applying AC voltage with specific frequency between a metal pipe embedded in the ground in a state coated with a corrosion-proof film and an opposed electrode and detecting potential difference of the surface of the earth by two wheel electrodes of a detection apparatus. CONSTITUTION:A metal pipe 2, to which a corrosion-proof film 1 was applied, is embedded in the ground and AC voltage with signal frequency of 1-19Hz is applied between the metal pipe 2 and an opposed electrode 6 by a transmission apparatus 7. Two wheeled electrodes 8 comprising conductive sponge rubber are provided to a detection apparatus 12 and the direction of the wheel electrodes 8 are arranged in the longitudinal direction of the metal pipe 2. The earth's surface potential generated between the wheel electrodes 8 is detected by a display apparatus 11 through a filter 9 and an amplifier 10. Because AC voltage with specific signal frequency is applied and commercial frequency or noise of the other AC or DC component is removed from the detected earth's surface potential to detect a wave from the detected earth's surface potential to detect a wave form pattern, the damage position of the corrosion- proof film can be easily detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ・この発明は、地中に埋設した金属管類の外面に施され
た防食被覆の損傷位置を検出する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] - This invention relates to a method for detecting the position of damage to an anticorrosive coating applied to the outer surface of metal pipes buried underground.

〔従来技術〕[Prior art]

一般に、地中に敷設する鋼管等の金属管は、外面にアス
ファルト等の瀝青質あるいはポリエチレン等の熱可塑性
樹脂の塗覆装を施し腐食を防止している。上記防食被覆
が何等かの原因により金属面に達する損傷を受け、その
金属面が土壌等の電解質と直接接すると、その部分が腐
食する。特に、損傷部が酸素濃淡差などのある環境や、
電鉄の迷走電流の影響を受ける環境に存在すると金属管
は異常に速い速度で腐食し腐食孔を生じる惧れかある。
Generally, metal pipes such as steel pipes laid underground are coated with bituminous material such as asphalt or thermoplastic resin such as polyethylene on the outer surface to prevent corrosion. If the above-mentioned anti-corrosion coating is damaged for some reason and reaches the metal surface, and that metal surface comes into direct contact with an electrolyte such as soil, that portion will corrode. Especially when the damaged area is in an environment where there is a difference in oxygen concentration,
If metal pipes exist in an environment affected by stray currents of electric railways, there is a risk that metal pipes will corrode at an abnormally high rate and cause corrosion holes.

このように、地中埋設管の防食被覆を完全な状態に維持
することは、腐食事故を防止する上で極めて重要である
As described above, maintaining the corrosion-resistant coating of underground pipes in a perfect condition is extremely important in preventing corrosion accidents.

衆知の通シ、地中埋設管の防食被覆の損傷程度は絶縁抵
抗を測定することにより容易に推定でき、その損傷位置
は電位法を応用して検出できることが知られている。
It is well known that the degree of damage to the anticorrosive coating of underground pipes can be easily estimated by measuring insulation resistance, and that the location of damage can be detected by applying the potential method.

その位置検出方法の原理について、信号源の種類別にす
なわち第4図および第5図に直流法を、第6図および第
7図に交流法をそれぞれ示し説明する。
The principle of the position detection method will be explained by the type of signal source, ie, the DC method is shown in FIGS. 4 and 5, and the AC method is shown in FIGS. 6 and 7, respectively.

第4図および第5図の場合は、地中に埋設した防食被覆
金属管乙における金属管2と地盤に埋設した対極6の間
に直流電源13および間欠波発生器1.lからなる直流
式信号源により信号電圧を印加し、また第6図および第
7図の場合は、前記金属管2と対極6との間に交流式信
号源7により信号電圧を印加する。通常、信号電圧とし
ては、直流法では間欠波を使用し、交流法では数十ない
し750 I(zの周波数を使用する。
In the case of FIGS. 4 and 5, a DC power supply 13 and an intermittent wave generator 1. In the case of FIGS. 6 and 7, a signal voltage is applied between the metal tube 2 and the counter electrode 6 by an AC signal source 7. Usually, as a signal voltage, an intermittent wave is used in the DC method, and a frequency of several tens to 750 I (z) is used in the AC method.

そして防食被覆金属管3における被覆損傷部4と対極6
との間に通じる電流によって被覆損傷部4を中心に電位
変化18を生じるので、地表面に配置した2つの電極1
5および電圧計16を使用して電位差19を測定するか
、あるいは地表面に配置した2つの車輪電極8とフィル
タ9.A、C−D、C変換器171表示装置11とを使
用して電位差19を測定する。
Then, the coating damage part 4 and the counter electrode 6 in the anti-corrosion coated metal tube 3
Since a potential change 18 is generated around the damaged coating part 4 due to the current flowing between the two electrodes 1 placed on the ground surface,
5 and a voltmeter 16 to measure the potential difference 19, or two wheel electrodes 8 and a filter 9 placed on the ground surface. A, CD, C converter 171 and display device 11 are used to measure the potential difference 19.

この電位変化は、理論的に次式から求められるこ七が知
られている。
It is known that this potential change can be calculated theoretically from the following equation.

土壌の平均抵抗率 :ρ(Ohm −m )損傷部に通
じる電流: i (A) 損傷部の埋設深さ : h (rrL)とすれば損傷部
直上から水平距離X (fi)離れた点の電位変化は、 fi V =       (Vott )     ”・−
Il12π〆て+h” 111式から、水平距離X (tFt)を中心にa/2
(m)離した2を極間の電位差は、次式で表すことがで
きる。
Average resistivity of soil: ρ (Ohm - m) Current flowing through the damaged area: i (A) Burial depth of the damaged area: h (rrL), then the point at a horizontal distance X (fi) from directly above the damaged area The potential change is fi V = (Vott) ”・−
Il12π〆+h” From formula 111, a/2 centering on horizontal distance X (tFt)
(m) The potential difference between the separated two electrodes can be expressed by the following formula.

(Vott)・・・・・・(2) 第5図の電位変化18および電位差19け(!1゜(2
1式から求めたもので、電位差の極性の反転部が損傷部
4を示す。一方、第7図では、通常、交流検出信号を直
流に変換するので電位差19は図のような波形となシ、
2つの極大部の間の凹部が損傷部4を示す。
(Vott)...(2) Potential change 18 and potential difference 19 (!1°(2)
It is obtained from Equation 1, and the part where the polarity of the potential difference is reversed indicates the damaged part 4. On the other hand, in FIG. 7, since the AC detection signal is usually converted to DC, the potential difference 19 does not have the waveform as shown in the figure.
The recess between the two maxima indicates the damaged area 4.

しかしながら、上述の方法は、 (1)  検出信号に地盤の自然電位や商用周波および
その逓倍の誘導電圧等が重畳し、フィルタ9を通しても
ノイズを完全に排除することが難しい。
However, in the above method, (1) the natural potential of the ground, the induced voltage of the commercial frequency and its multiple, etc. are superimposed on the detection signal, and it is difficult to completely eliminate noise even through the filter 9;

(2)  アスファルト舗装面においては、信号源イン
ピーダンスが非常に大きいため、前述のノイズが一層大
きく、かつ検出信号が微弱である。
(2) On an asphalt pavement surface, the signal source impedance is very large, so the above-mentioned noise is even larger and the detection signal is weak.

(3)通常、検出電極には飽和硫゛酸銅電極等の照合電
極あるいは鉄電極等を使用するが、これらの電極はアス
ファルト舗装面に適用することが困難である。
(3) Normally, a reference electrode such as a saturated copper sulfate electrode or an iron electrode is used as the detection electrode, but these electrodes are difficult to apply to asphalt pavement surfaces.

(4)交流法においては、A、C−D、C変換するため
S/N比が低下する。
(4) In the AC method, the S/N ratio decreases due to A, CD, and C conversion.

等の問題があって、理想的な信号波形を得ることが難し
い。また第6図の場合、実際には第8図に示すような電
位差19の波形が得られるので、被覆損傷部の位置検出
の確実性が低いという欠点がある。
Due to these problems, it is difficult to obtain an ideal signal waveform. Furthermore, in the case of FIG. 6, since the waveform of the potential difference 19 as shown in FIG. 8 is actually obtained, there is a drawback that the reliability of detecting the position of the damaged coating is low.

このように、従来の損傷位置検出方法は、その精度が悪
く確実性に欠けるため地中に埋設された防食被覆金属管
における防食被覆に損傷部が存在しても、その位置を検
出して補修することは非常に難しい。
In this way, conventional damage location detection methods have low accuracy and lack reliability, so even if there is a damaged part in the anti-corrosion coating of a metal pipe with anti-corrosion coating buried underground, it is difficult to detect the location and repair it. very difficult to do.

〔発明の目的、構成〕[Purpose and structure of the invention]

この発明は、上述の問題点を解決して、被覆損傷位置を
容易にかつ正確に知ることができる方法を提供するもの
である。この発明の要旨とするところは、外面に防食被
覆1を施して地中に敷設した金属管2の被覆損傷部4と
、地盤5に埋設した対極6との間に、発信装置7にょシ
、信号周波数が1〜19Hzの交流電圧を印加し、金属
管2の長手方向に間隔をおいて並ぶ2つの車輪電極8と
フィルタ9と増巾器10と表示装置11とを備えている
検出装置12を金属管2の直上の地表面に活って移動し
7て、検出装置12における2つの車輪電極8により、
地表面の電位差を検出し、その検出信号を、フィルタ9
に通して信号周波数以外の直流分および交流分のノイズ
を除去したのち、増巾器10により増巾し、77zでそ
の増巾した信号を直流に変換することyx<表示装置1
1に表示し、その表示された波形パターンから防食被覆
損傷位置を検出することを特徴とする埋設金属管類の防
食被覆損傷位置検出方法にある。
The present invention solves the above-mentioned problems and provides a method that allows the location of coating damage to be easily and accurately determined. The gist of this invention is that a transmitting device 7 is installed between a damaged coating portion 4 of a metal pipe 2 which is laid underground with an anti-corrosion coating 1 applied to its outer surface and a counter electrode 6 buried in the ground 5. A detection device 12 applies an AC voltage with a signal frequency of 1 to 19 Hz and includes two wheel electrodes 8 arranged at intervals in the longitudinal direction of the metal tube 2, a filter 9, an amplifier 10, and a display device 11. is moved to the ground directly above the metal tube 2, and the two wheel electrodes 8 in the detection device 12 detect the
Detects the potential difference on the ground surface and sends the detected signal to the filter 9
yx<display device 1
1, and detecting the damaged position of the corrosion-resistant coating of buried metal pipes from the displayed waveform pattern.

〔実施例〕〔Example〕

次にこの発明を図示の例によって、詳細に説明する。 Next, the present invention will be explained in detail using illustrated examples.

第1図はこの発明を実施する場合に用いる防食被覆損傷
位置検出装置を示すものであって、鋼管からなる金属管
2の外面に前述のような防食被覆1を施して構成した防
食被覆金属管3が地中に埋設され、かつ地盤5に埋設し
た対極6と金属管2とが発信装置7を介して接続され、
地表面を防食被覆金属管3に清って移動される検出装置
12は防食被覆金属管長手方向に間隔をおいて配置され
た2つの導電性スポンジゴム車輪からなる車輪電極8と
、その車輪電極8にフィルタ9と増巾器10を介して接
続された平衡記録計または直配式オシログラフ等の表示
装置11とを備えている。
FIG. 1 shows an anti-corrosion coating damage position detecting device used when carrying out the present invention, which is an anti-corrosion coated metal tube constructed by applying the above-mentioned anti-corrosion coating 1 to the outer surface of a metal tube 2 made of a steel pipe. 3 is buried underground, and a counter electrode 6 buried in the ground 5 and the metal tube 2 are connected via a transmitting device 7,
The detection device 12, which is moved while cleaning the ground surface over the anti-corrosion coated metal pipe 3, has a wheel electrode 8 consisting of two conductive sponge rubber wheels arranged at intervals in the longitudinal direction of the anti-corrosion coated metal pipe, and a wheel electrode 8. 8, a filter 9 and a display device 11 such as a balance recorder or a direct-connected oscilloscope connected via an amplifier 10.

第1図に示す装置において、発信装置7により金属管2
と対極乙の間に信号電圧を印加する。この信号電圧には
、上述のil+ 、 +21の問題および2つの電極が
発生する電位等のノイズを容易に排除可能な周波数とし
て、実験から1〜19Hzの周波数帯が適していること
を確認している。
In the device shown in FIG.
A signal voltage is applied between the electrode A and the counter electrode B. Experiments have confirmed that a frequency band of 1 to 19 Hz is suitable for this signal voltage, as it can easily eliminate the problems of il+ and +21 mentioned above and noise such as the potential generated by the two electrodes. There is.

予め散水したアスファルト舗装面において、導電性スポ
ンジゴム車輪を使用した車輪電極8を走行させたとき検
出されるノイズは、実験からおよそ表−1のような種類
および性状であることが確認された。
It was confirmed through experiments that the noise detected when the wheel electrode 8 using a conductive sponge rubber wheel was run on an asphalt pavement surface sprinkled with water in advance was of the types and properties shown in Table 1.

は〕車輪電極の発生するノイズは車輪の周期に一致した
周波数のノイズ このノイズを減衰傾度48 (dB/オクターブ)ノイ
ズレベル約0.6 (mV rms )の特性tもつフ
ィルタ9に入力して、各遮断周波数におけるノイズ通過
量の関係を求めると、第3図のように示すことができる
] The noise generated by the wheel electrodes is noise with a frequency that matches the wheel period.This noise is input to a filter 9 having a characteristic t with an attenuation slope of 48 (dB/octave) and a noise level of approximately 0.6 (mV rms). The relationship between the amount of noise passing at each cut-off frequency can be determined as shown in FIG. 3.

第3図において、21および22は、48(dB/オク
ターブ)、また23および24は、24(dB/オクタ
ーブ)のフィルタを用いたときのノイズ通過量をそれぞ
れ示している。
In FIG. 3, 21 and 22 indicate the amount of noise passed when using a filter of 48 (dB/octave), and 23 and 24 indicate the amount of noise passed when using a filter of 24 (dB/octave), respectively.

云うまでもなく検出装置の分解能は、検出信号に含まれ
るノイズが小さいほど優れるが、実用的に許容できるノ
イズの大きさは検出信号と同程度か、あるいは、それ以
下である。この理由は、検出信号よシノイズが大きいと
、ノイズの変動が検出信号波形を歪めるため損傷位置の
判別を困難にするからである。
Needless to say, the resolution of the detection device is better as the noise contained in the detection signal is smaller, but the noise that can be practically tolerated is on the same level as the detection signal or smaller. The reason for this is that if the noise is larger than the detection signal, fluctuations in the noise will distort the detection signal waveform, making it difficult to determine the damage position.

第3図において、ノイズ通過量がフィルタのノ。In Fig. 3, the amount of noise passing through the filter is determined by the amount of noise passed through the filter.

イズレペル以下の1〜19Hzの周波数帯が、損傷位置
の判別に適していることが分かる。なお、前述の特性を
もったフィルタは市販品で容易に入手可能である。
It can be seen that the frequency band of 1 to 19 Hz below Izlepel is suitable for determining the damage position. Incidentally, filters having the above-mentioned characteristics are easily available as commercial products.

いま、通電電流によって生じる地表面電位の変化を、通
電スポンジゴム等を使用した車輪電極を用いて連続して
検出する。検出信号はフィルタを用いて不要なノイズを
排除し、かつ、上述(4)のよりなS/、比が低下する
A、C−D、C変換を行なわず、信号周波数に十分応答
性をもった平衡記録計、あるいは直、記式オシログラフ
等の表示装置11に直接記録する。
Now, changes in ground potential caused by the applied current are continuously detected using wheel electrodes made of energized sponge rubber or the like. The detection signal uses a filter to eliminate unnecessary noise, and has sufficient responsiveness to the signal frequency without performing A, CD, or C conversion that reduces the S/, ratio described in (4) above. The data are recorded directly on a display device 11 such as an equilibrium recorder or a direct oscillograph.

第2図に示すように、このような方法で得られる電位差
19の表示波形は、(2)式の電位差Vdを理想的な連
続波形で表示することができる。即ち、損傷部の直上(
X=0)で電位差はo、xyjXoから少し増加した点
で極大値を示し、さらに増加すると除徐に減衰する独特
の波形パターンが得られ、これよシ容易に損傷位置を判
断することができる。
As shown in FIG. 2, the display waveform of the potential difference 19 obtained by such a method can display the potential difference Vd of equation (2) in an ideal continuous waveform. That is, directly above the damaged area (
At X=0), the potential difference shows a maximum value at a point slightly increased from o, xyj .

第8図は第6図に示す従来方法、第9図は第1図に示す
この発明の方法による実験から得た表示−波形をそれぞ
れ示している。
FIG. 8 shows display waveforms obtained from experiments using the conventional method shown in FIG. 6, and FIG. 9 shows waveforms obtained from experiments using the method of the present invention shown in FIG. 1.

第9図は(2)式で示した地表面電位差Vdを忠実に表
現12、また表示装置11に表示される第9図(で示す
波形は、被覆損傷位置20を中心とする扇形でかつ縦線
を密にした極めて立体的な波形であり、そのため従来法
に比べて被覆損傷位置20を容易に判断することができ
る。
FIG. 9 faithfully represents the ground surface potential difference Vd shown by equation (2) 12, and the waveform shown in FIG. It is a very three-dimensional waveform with dense lines, and therefore the coating damage position 20 can be determined more easily than in the conventional method.

この発明による方法は、地中埋設管に限らず、地中埋設
ケーブルあるいはケーブル保護管の防食被覆の損傷位置
を高精度、かつ高能率で検出することができる。また検
出電極に飽和せ東電極等の照合電極、あるいは金属電極
を使用することにより、海底に敷設された上記地中埋設
ケーブルあるいはケーブル保護管の防食被覆の損傷位置
を検出することができる。
The method according to the present invention is not limited to underground pipes, but can detect damaged positions of anticorrosion coatings of underground cables or cable protection pipes with high precision and high efficiency. Furthermore, by using a reference electrode such as a saturated east electrode or a metal electrode as the detection electrode, it is possible to detect the position of damage to the anticorrosive coating of the underground cable or cable protection pipe laid on the seabed.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、外面に防食被覆1を施して地中に敷
設した金属管2の被覆損傷部4と、地盤5に埋設した対
極6との間に、発信装置7により交流電圧を印加し、金
属管2の長手方向に間隔をおいて並ぶ2つの車輪電極8
とフィルタ9と増巾器10と表示装置11とを備えてい
る検出装置12を金属管2の直上の地表面に唱って移動
して、検出装置12における2つの車輪電極8により、
地表面の電位差を検出するに際し、特に信号周波数が1
〜19Hzの交流電圧を印加するので、前記各車輪電極
8により検出した信号から、特に問題となる商用周波数
および他の交流分のノイズと直流分のノイズとを容易に
除去することができ、そのため防食被覆の損傷位置を容
易にかつ高精度で検出することができ、さらに検出信号
をA、C−D、C変換することなく表示装置11に表示
するので、その表示装置11に表示される波形は被覆損
傷位置20を中心とする扇形でかつ縦線を密にした極め
て立体的な波形であ勺、そのため従来法に比べて被覆損
傷位置20を容易に判断することができる等の効果が得
られる。
According to this invention, an alternating current voltage is applied by the transmitter 7 between the damaged coating part 4 of the metal pipe 2 which is laid underground with the anticorrosion coating 1 applied to the outer surface and the counter electrode 6 buried in the ground 5. , two wheel electrodes 8 arranged at intervals in the longitudinal direction of the metal tube 2
A detection device 12 equipped with a filter 9, an amplifier 10, and a display device 11 is moved to the ground directly above the metal tube 2, and the two wheel electrodes 8 in the detection device 12 are used to detect
When detecting the potential difference on the ground surface, especially when the signal frequency is 1
Since an AC voltage of ~19 Hz is applied, commercial frequency and other AC noises and DC noise, which are particularly problematic, can be easily removed from the signals detected by each wheel electrode 8. The damaged position of the anti-corrosion coating can be detected easily and with high accuracy, and since the detected signal is displayed on the display device 11 without A, CD, or C conversion, the waveform displayed on the display device 11 is The waveform is a sector-shaped waveform centered on the coating damage position 20 and has a very three-dimensional waveform with dense vertical lines. Therefore, compared to the conventional method, it is possible to easily determine the coating damage position 20, etc. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施する場合に用いる防食被覆損傷
位置検出装置を示す側面図、第2図はその装置による検
出波形を示す図、第3図はこの発明における1〜19H
zの信号電圧およびその前後の周波数について減衰傾度
24および48dB/オクターブの特性をもったフィル
クーを使用したときに、各遮断周波数におけるノイズ通
過量の関係を表した相関図である。 第4図は従来の防食被覆損傷位置検出装置の一例を示す
側面図、第5図はその装置によるノイズを含まない理想
的な検出波形を示す図、第6図は従来゛の防食被覆損傷
位置検出装置の他の一例を示す側面図、第7図はその装
置によるノイズを含まない理想的な検出波形を示す図で
ある。 WJs図およびWJ9図は実験によって得られた波形で
あって、第8図は第6図、第7図に示す方法に従来使用
されている信号電圧(30Hz)を使用して得られた波
形を示す図、第9図は第6図、第7図に示す方法にこの
発明の範囲内に属する信号電圧を使用して得られた波形
を示す図である。 図において、1は防食被覆、2は金属管、3は防食被覆
金属管、4け被覆損傷部、5は地盤、6は対極、7は発
信装置、8は車輪電極、9はフィルタ、10は増巾器、
11は表示装置、12け検出装置、19は電位差、20
は表示波形が示す被覆損傷部である。 策5図 第9図
Fig. 1 is a side view showing a corrosion protection coating damage position detecting device used when carrying out this invention, Fig. 2 is a diagram showing detected waveforms by the device, and Fig. 3 is a diagram showing 1 to 19H in this invention.
FIG. 7 is a correlation diagram showing the relationship between the amount of noise passing at each cutoff frequency when a filter having characteristics of an attenuation slope of 24 and 48 dB/octave is used for the signal voltage z and the frequencies before and after it. Fig. 4 is a side view showing an example of a conventional anti-corrosion coating damage position detection device, Fig. 5 is a diagram showing an ideal detection waveform that does not include noise by the device, and Fig. 6 is a conventional anti-corrosion coating damage position detection device. FIG. 7 is a side view showing another example of the detection device, and is a diagram showing an ideal detection waveform free of noise by the device. Figures WJs and WJ9 are waveforms obtained through experiments, and Figure 8 shows the waveform obtained using the signal voltage (30Hz) conventionally used in the method shown in Figures 6 and 7. FIG. 9 shows waveforms obtained using the method shown in FIGS. 6 and 7 with signal voltages that fall within the scope of the present invention. In the figure, 1 is an anti-corrosion coating, 2 is a metal tube, 3 is a metal tube with an anti-corrosion coating, 4 is a damaged part of the coating, 5 is the ground, 6 is a counter electrode, 7 is a transmitter, 8 is a wheel electrode, 9 is a filter, and 10 is a amplifier,
11 is a display device, 12 is a detection device, 19 is a potential difference, 20
is the coating damage area indicated by the displayed waveform. Measure 5 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 外面に防食被覆1を施して地中に敷設した金属管2の被
覆損傷部4と、地盤5に埋設した対極6との間に、発信
装置7により、信号周波数が1〜19Hzの交流電圧を
印加し、金属管2の長手方向に間隔をおいて並ぶ2つの
車輪電極8とフィルタ9と増巾器10と表示装置11と
を備えている検出装置12を金属管2の直上の地表面に
沿つて移動して、検出装置12における2つの車輪電極
8により、地表面の電位差を検出し、その検出信号を、
フィルタ9に通して信号周波数以外の直流分および交流
分のノイズを除去したのち、増巾器10により増巾し、
次いでその増巾した信号を直流に変換することなく表示
装置11に表示し、その表示された波形パターンから防
食被覆損傷位置を検出することを特徴とする埋設金属管
類の防食被覆損傷位置検出方法。
An alternating current voltage with a signal frequency of 1 to 19 Hz is applied by a transmitter 7 between a damaged part 4 of a metal pipe 2 which has been laid underground with an anti-corrosion coating 1 on its outer surface and a counter electrode 6 buried in the ground 5. A detection device 12 comprising two wheel electrodes 8 arranged at intervals in the longitudinal direction of the metal tube 2, a filter 9, an amplifier 10, and a display device 11 is placed on the ground directly above the metal tube 2. moving along the ground, the two wheel electrodes 8 in the detection device 12 detect the potential difference on the ground surface, and the detection signal is
After passing through a filter 9 to remove DC and AC noise other than the signal frequency, the signal is amplified by an amplifier 10,
Next, the amplified signal is displayed on a display device 11 without converting it into direct current, and the corrosion-proof coating damage position is detected from the displayed waveform pattern. .
JP4939785A 1985-03-14 1985-03-14 Method for detecting damaged position of corrosion-proof film of embedded metal pipe Pending JPS61209349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4939785A JPS61209349A (en) 1985-03-14 1985-03-14 Method for detecting damaged position of corrosion-proof film of embedded metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4939785A JPS61209349A (en) 1985-03-14 1985-03-14 Method for detecting damaged position of corrosion-proof film of embedded metal pipe

Publications (1)

Publication Number Publication Date
JPS61209349A true JPS61209349A (en) 1986-09-17

Family

ID=12829899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4939785A Pending JPS61209349A (en) 1985-03-14 1985-03-14 Method for detecting damaged position of corrosion-proof film of embedded metal pipe

Country Status (1)

Country Link
JP (1) JPS61209349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054562A1 (en) * 1997-05-29 1998-12-03 Profile Technologies, Inc. Pipe testing apparatus and method
US6472883B1 (en) 1995-03-14 2002-10-29 Profile Technologies, Inc. Detection of surface anomalies in elongate conductive members by pulse propagation analysis
JP2010266342A (en) * 2009-05-15 2010-11-25 Jfe Engineering Corp Metal corrosion diagnostic method
JP2012181130A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion position specification method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472883B1 (en) 1995-03-14 2002-10-29 Profile Technologies, Inc. Detection of surface anomalies in elongate conductive members by pulse propagation analysis
WO1998054562A1 (en) * 1997-05-29 1998-12-03 Profile Technologies, Inc. Pipe testing apparatus and method
GB2342454A (en) * 1997-05-29 2000-04-12 Profile Technologies Inc Pipe testing apparatus and method
GB2342454B (en) * 1997-05-29 2001-11-21 Profile Technologies Inc Pipe testing apparatus and method
JP2010266342A (en) * 2009-05-15 2010-11-25 Jfe Engineering Corp Metal corrosion diagnostic method
JP2012181130A (en) * 2011-03-02 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion position specification method and system

Similar Documents

Publication Publication Date Title
US10883918B2 (en) Multielectrode probes for monitoring fluctuating stray current effects and AC interference on corrosion of buried pipelines and metal structures
CN104532264B (en) Method and device for evaluating pipeline external damage and cathodic protection effect
JPH049469B2 (en)
JPS6488242A (en) Method of detecting damage to anti- corrosion protective layer and measuring apparatus for implementing the same
JPH0387669A (en) Method and apparatus for monitoring safety of metal structural body
JPS61209349A (en) Method for detecting damaged position of corrosion-proof film of embedded metal pipe
CN204455294U (en) Device for evaluating external damage and cathodic protection effect of pipeline
Lu et al. Application of a Digital Signal Analyzer to the easurementTofF Power System Ground Impedances
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP5565288B2 (en) Current density estimation method, apparatus, and anticorrosion management method, apparatus for coating damage part of underground pipe
JP3007390B2 (en) Measuring method and measuring device for coating coverage area of underground pipe
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JPS6183951A (en) Damaged position locating method of corrosion preventive cover of buried metallic pipe
JP6501128B2 (en) Metal pipe corrosion prediction system and method thereof
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
JPS63191049A (en) Detection of anticorrosion cover damage position for buried metal pipes
JP2958071B2 (en) Evaluation method of cathodic protection effect of underground pipes
JP4106202B2 (en) Corrosion protection damage detection method for buried metal pipes using integration means
JPH0367219B2 (en)
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP2019144253A (en) Electrode for high frequency ac electrical exploration
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
SU938214A1 (en) Device for locating damage of pipe-line insulation
JPS6281557A (en) Apparatus for detecting flaw on piping