JPS61208255A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS61208255A
JPS61208255A JP60049972A JP4997285A JPS61208255A JP S61208255 A JPS61208255 A JP S61208255A JP 60049972 A JP60049972 A JP 60049972A JP 4997285 A JP4997285 A JP 4997285A JP S61208255 A JPS61208255 A JP S61208255A
Authority
JP
Japan
Prior art keywords
electrode
insulating film
cell plate
substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60049972A
Other languages
Japanese (ja)
Inventor
Satoru Maeda
哲 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60049972A priority Critical patent/JPS61208255A/en
Priority to EP86103362A priority patent/EP0194682B1/en
Priority to DE8686103362T priority patent/DE3677030D1/en
Publication of JPS61208255A publication Critical patent/JPS61208255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve resistance to a soft-error by forming a cell plate electrode while being adjoined to an inter-cell isolation insulating film and shaping an electrode consisting of polycrystalline silicon into a groove reaching the surface of a substrate formed to the electrode. CONSTITUTION:An inter-cell isolation insulating film 12 is shaped to the surface of a substrate 11, cell plate electrodes 161, 162 composed of polycrystalline silicon are formed into memory cell regions surrounded by the isolation insulating film through first insulating films 151, 152. An opening is bored between the cell plate electrodes 161 and 162 to form a hole 17, and second insulating films 181, 182 are shaped onto the inner surface of the hole and the surfaces of said cell plate electrodes 161, 162. An electrode 19 consisting of polycrystalline silicon is formed into the hole 17 and the upper sections of the cell plate electrodes 161, 162. According to such a constitution, capacitor capacitor capacitance can be made larger than the conventional plane capacitors by treble or quintuple, thus improving resistance to a soft-error.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体記憶装置に関し、特にキャパシタを改
良したダイナミックRAM (dRAM)のメモリセル
に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device, and particularly to a dynamic RAM (dRAM) memory cell with an improved capacitor.

〔発明の技術的背景〕[Technical background of the invention]

近年、dRAMは集積度が一層向上しており、これに伴
うで益々メモリセルのキャパシタ面積が小さくなってい
る。かかるdRAMでは、α線によるンフトエラーを防
止するためにはメモリセルのキャパシタ容量として最低
限50〜60fFの値が必要となる。
In recent years, the degree of integration of dRAM has been further improved, and as a result, the area of the capacitor of the memory cell has become smaller and smaller. In such a dRAM, the capacitor capacity of the memory cell needs to have a minimum value of 50 to 60 fF in order to prevent a phasing error due to alpha rays.

このようなことから、最近、第2図に示すように半導体
基板に溝を設けることににより、キャパシタ容量を増大
させることが試みられている。即ち、第2図中の1は例
えばp型シリコン基板であリ、この基板1表面にはセル
間分離絶縁膜2が設けられている。この分離絶縁m2で
囲まれた基板1領域(メモリセル領域)の表面には、ゲ
ート酸化ryA3を介して例えば多結晶シリコンからな
るトランスファーゲート電極4が設けられている。前記
メモリセル領域の基板1の一部には、溝5が開口されて
いる。この溝5内面を含む基板1表面には、キャパシタ
酸化膜6が形成されており、かつ該キャパシタ酸化膜6
上には例えば多結晶シリコンからなるキャパシタ電極7
が設けられている。
For this reason, attempts have recently been made to increase the capacitance of a capacitor by providing a groove in a semiconductor substrate as shown in FIG. That is, 1 in FIG. 2 is, for example, a p-type silicon substrate, and an inter-cell isolation insulating film 2 is provided on the surface of this substrate 1. A transfer gate electrode 4 made of, for example, polycrystalline silicon is provided on the surface of the substrate 1 region (memory cell region) surrounded by this isolation m2 via a gate oxide ryA3. A groove 5 is opened in a part of the substrate 1 in the memory cell area. A capacitor oxide film 6 is formed on the surface of the substrate 1 including the inner surface of the groove 5.
On top is a capacitor electrode 7 made of polycrystalline silicon, for example.
is provided.

このキャパシタ電極7は、前記セル間分離絶縁膜2上に
延出され、複数のメモリセル領域に厘って配置されてい
る。更に、前記トランスファーゲート電極4の両側の基
板1表面にはソース、ドレインとなるn4型拡散領域8
.9が設けられている。
This capacitor electrode 7 extends over the intercell isolation insulating film 2 and is arranged over a plurality of memory cell regions. Further, on the surface of the substrate 1 on both sides of the transfer gate electrode 4, there are n4 type diffusion regions 8 which become sources and drains.
.. 9 is provided.

こうしたdRAMでは、溝5の内面にキャパシタを形成
することができるため、キャパシタの面積増大を招くこ
となく、実効的にキャパシタ容量を増加させることがで
きる。
In such a dRAM, since a capacitor can be formed on the inner surface of the trench 5, the capacitance of the capacitor can be effectively increased without increasing the area of the capacitor.

〔背景技術の問題点〕[Problems with background technology]

ところで、dRAMの集積度を更に向上させ、かつキャ
パシタ容量を一定値以上に保つようにしてソフトエラー
を防止するためには、前述した第2図示の構造では溝の
深さを深くする必要が必る。
By the way, in order to further improve the degree of integration of dRAM and to prevent soft errors by keeping the capacitor capacitance above a certain value, it is necessary to increase the depth of the groove in the structure shown in the second diagram. Ru.

例えば、溝の開口部をaμmxaμmの正方形パターン
、深さを14mとすると、溝の表面積は4ah+82と
なる。この場合、1個の溝当りの容量を所定値に維持し
つつ開口部の面積を微細化していくと、深さhをより深
くする必要がおる。
For example, if the opening of the groove is a square pattern of a μm x a μm and the depth is 14 m, the surface area of the groove is 4ah+82. In this case, if the area of the opening is made finer while maintaining the capacitance per groove at a predetermined value, the depth h needs to be made deeper.

しかしながせら、溝の深さを深くしようとすると、溝内
面の洗浄の問題等が大きくなり量産技術の点から相当困
難となる。
However, if an attempt is made to increase the depth of the groove, problems such as cleaning the inner surface of the groove will become serious, making it considerably difficult from the point of view of mass production technology.

一方、キャパシタ酸化膜の膜厚を薄くすることにより、
キャパシタ容量を一定値以上に保ことか考えられる。し
かしながら、キャパシタ酸化膜の膜厚は溝のエツジにお
ける電界集中によるトンネル電流等のリーク特性の劣化
を防止する観点から自ずと限界があり、あまり薄くする
ことができない。
On the other hand, by reducing the thickness of the capacitor oxide film,
One possibility is to keep the capacitor capacity above a certain value. However, there is a limit to the thickness of the capacitor oxide film from the viewpoint of preventing deterioration of leak characteristics such as tunnel current due to electric field concentration at the edge of the trench, and it cannot be made very thin.

〔発明の目的〕[Purpose of the invention]

本発明は、量産化が容易で、ソフトエラーに対する耐性
が高く、かつ高集積化を達成した半導体記憶装置を提供
しようとするものである。
The present invention aims to provide a semiconductor memory device that is easy to mass produce, has high resistance to soft errors, and achieves high integration.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体基板の表面に設けられた
セル間分離絶縁膜と、この分離絶縁膜で囲まれた前記基
板領域表面に第1の絶縁膜を介して設けられたセルプレ
ート電極と、このセルプレート電極及び第1の絶縁膜を
貫通するホールと、少なくとも前記セルプレート上及び
ホール内に第2の絶縁膜を介して設けられ、一部が該ホ
ールを通して前記基板に接続した電極とを具備したこと
を特徴とするものである。かかる本発明によれば、既述
の如くソフトエラーに対する耐性が高く、かつ高集積化
を達成した半導体記憶装置を得ることができる。
The present invention includes an intercell isolation insulating film provided on the surface of a semiconductor substrate of a first conductivity type, and a cell plate provided on the surface of the substrate region surrounded by the isolation insulating film via a first insulating film. an electrode, a hole penetrating the cell plate electrode and the first insulating film, and at least provided on the cell plate and in the hole via a second insulating film, and a part of the cell plate electrode is connected to the substrate through the hole. The device is characterized by comprising an electrode. According to the present invention, as described above, it is possible to obtain a semiconductor memory device that has high resistance to soft errors and achieves high integration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して説明する。 Embodiments of the present invention will be described below with reference to FIG.

図中の11は、例えばp型シリコン基板であり、この基
板11表面にはセル間分離絶縁#I412が設けられて
いる。この分離絶縁膜12で囲まれた基板11領域(メ
モリセル領域)の表面の一部には、ゲート酸化膜13を
介して例えば多結晶シリコンからなるトランスファーゲ
ート電極14が設けられている。前記メモリセル領域の
基板11表面には、第1の絶縁膜としての熱酸化vA 
151.152を介して例えば多結晶゛シリコンからな
るセルプレート電極161,162が設けられている。
Reference numeral 11 in the figure is, for example, a p-type silicon substrate, and an inter-cell isolation insulator #I412 is provided on the surface of this substrate 11. A transfer gate electrode 14 made of, for example, polycrystalline silicon is provided on a part of the surface of the substrate 11 region (memory cell region) surrounded by this isolation insulating film 12 with a gate oxide film 13 interposed therebetween. On the surface of the substrate 11 in the memory cell area, a thermally oxidized vA is applied as a first insulating film.
Cell plate electrodes 161 and 162 made of polycrystalline silicon, for example, are provided through electrodes 151 and 152.

このセルプレート電極161.162は、一端側が前記
トランスファーゲート電極14と所定路離隔てて配置さ
れていると共に、他端側か前記セル間分離絶縁膜12上
に延出されている。なお、前記トランスファーゲート電
極14とセルプレート電極161.162とは同一のプ
ロセスにより形成される。また、前記セルプレート電極
161.162と熱酸化膜151.152に亙ってホー
ル17が開口されている。前記セルプレート電極161
.162の大部分の表面及び前記ホール17内に第2の
絶縁膜としての例えばCVO−S i 02膜181.
182を介して例えば多結晶シリコンからなる電極19
が設けられている。この電極19は、前記ホール17を
通して前記基板11表面に形成されたn+型拡散領域2
0に接続されている。なお、この電極19には電圧は印
加されず、フローティング状態となっている。更に、前
記トランスファーゲート電極14の両側の基板11表面
にはソース、ドレインとなるn+型拡散領域21.22
が設けられている。
The cell plate electrodes 161 and 162 are arranged such that one end side thereof is spaced apart from the transfer gate electrode 14 by a predetermined distance, and the other end side extends onto the cell isolation insulating film 12. Note that the transfer gate electrode 14 and the cell plate electrodes 161 and 162 are formed by the same process. Further, a hole 17 is opened across the cell plate electrode 161, 162 and the thermal oxide film 151, 152. The cell plate electrode 161
.. For example, a CVO-S i 02 film 181 .
An electrode 19 made of polycrystalline silicon, for example, is connected via 182.
is provided. This electrode 19 is connected to an n+ type diffusion region 2 formed on the surface of the substrate 11 through the hole 17.
Connected to 0. Note that no voltage is applied to this electrode 19 and it is in a floating state. Further, on the surface of the substrate 11 on both sides of the transfer gate electrode 14, n+ type diffusion regions 21 and 22 which become the source and drain are formed.
is provided.

このような構成によれば、セルプレート電極161.1
62に所定の電圧を印加することにより、1つのメモリ
セルでのキャパシタ容量は、セルプレート電極161.
162と基板11間の熱酸化膜151.152と、セル
プレート電極161.162と電極19(7)fJ(7
)  CVD−3i02膜181.1B2の容量の和と
なる。その結果、従来の平面キャパシタの容量よりも3
〜5倍のキャパシタ容量の増大を達成できる。従って、
α線等により発生する基板中の少数キャリアが及ぼす影
響を極めて小ざくでき、ソフトエラーに対する耐性を向
上できる。
According to such a configuration, the cell plate electrode 161.1
By applying a predetermined voltage to cell plate electrodes 161 .
The thermal oxide film 151.152 between 162 and the substrate 11, and the cell plate electrode 161.162 and the electrode 19(7)fJ(7
) is the sum of the capacitances of the CVD-3i02 film 181.1B2. As a result, the capacitance of a conventional planar capacitor is 3
~5 times increase in capacitor capacity can be achieved. Therefore,
The influence of minority carriers in the substrate generated by α rays, etc. can be minimized to a minimum, and resistance to soft errors can be improved.

また、本発明のメモリセルでは基板に溝を形成していな
いため、溝内の洗浄等の問題を解消でき、量産化が容易
となる。
Further, since the memory cell of the present invention does not have a groove formed in the substrate, problems such as cleaning inside the groove can be solved, and mass production becomes easy.

なお、上記実施例ではN極19を基板11表面とホール
17を通して接続する場合、該基板11にn+型拡散領
域20を形成したが、該拡散領域を形成せずに基板に電
極を直接接続するようにしてもよい。但し、n+型拡散
領域20を形成することにより、電極19からの基板1
への不純物の混入、汚染等を防止できる。
In addition, in the above embodiment, when the N electrode 19 is connected to the surface of the substrate 11 through the hole 17, the n+ type diffusion region 20 is formed on the substrate 11, but the electrode is directly connected to the substrate without forming the diffusion region. You can do it like this. However, by forming the n+ type diffusion region 20, the substrate 1 from the electrode 19
It is possible to prevent contamination, contamination, etc. from being mixed with impurities.

上記実施例では、第2の絶縁膜としてCVD−3iO2
を使用したが、これに限定されない。例えば、シリコン
窒化膜や、セルプレート電極を多結晶シリコンで形成し
た場合、熱酸化処理で形成された酸化膜を使用したり、
又は該酸化膜とシリコン窒化膜との複合膜を使用しても
よい。
In the above embodiment, CVD-3iO2 is used as the second insulating film.
was used, but is not limited to this. For example, if a silicon nitride film or a cell plate electrode is formed of polycrystalline silicon, an oxide film formed by thermal oxidation treatment may be used.
Alternatively, a composite film of the oxide film and a silicon nitride film may be used.

上記実施例において、セルプレート電極下の基板表面に
基板と逆導電型の拡散領域を形成してもよい。このよう
にセルプレート電極下に拡散領域を設けることによって
、該電極に電圧を印加した場合、第1の絶縁膜近傍の基
板表面に空乏層が拡がることによるキャパシタ容量の低
下を防止できる。
In the above embodiments, a diffusion region having a conductivity type opposite to that of the substrate may be formed on the surface of the substrate under the cell plate electrode. By providing a diffusion region under the cell plate electrode in this way, when a voltage is applied to the electrode, it is possible to prevent a decrease in capacitor capacity due to the spread of a depletion layer on the substrate surface near the first insulating film.

(発明の効果) 以上詳述した如く、本発明によれば量産化が容易で、ソ
フトエラーに対する耐性が高く、かつ高集積化を達成し
たdRAM等の半導体記憶装置を提供できる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide a semiconductor memory device such as a dRAM that is easy to mass produce, has high resistance to soft errors, and achieves high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

リセルを示す断面図である。 11・・・p型シリコン基板、12・・・セル間分離絶
縁膜、13・・・ゲート酸化膜、14・・・トランスフ
ァーゲート電極、151.152・・・熱酸化膜(第1
の絶縁膜>、161.162・・・セルプレート電極、
17・・・ホール、 181.182・・・ CVD−
3iO2膜(第2の絶縁膜)、19・・・電極、20〜
22・・・n+型拡散領域。 第1図 第2図
It is a sectional view showing a recell. DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... Cell isolation insulating film, 13... Gate oxide film, 14... Transfer gate electrode, 151.152... Thermal oxide film (first
Insulating film>, 161.162...Cell plate electrode,
17...Hall, 181.182...CVD-
3iO2 film (second insulating film), 19... electrode, 20-
22...n+ type diffusion region. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板の表面に設けられたセル
間分離絶縁膜と、この分離絶縁膜で囲まれた前記基板領
域表面に第1の絶縁膜を介して設けられたセルプレート
電極と、このセルプレート電極及び第1の絶縁膜を貫通
するホールと、少なくとも前記セルプレート上及びホー
ル内に第2の絶縁膜を介して設けられ、一部が該ホール
を通して前記基板に接続した電極とを具備したことを特
徴とする半導体記憶装置。
(1) An intercell isolation insulating film provided on the surface of a semiconductor substrate of a first conductivity type, and a cell plate electrode provided on the surface of the substrate region surrounded by this isolation insulating film via a first insulating film. and a hole penetrating the cell plate electrode and the first insulating film, and an electrode provided at least on the cell plate and in the hole via a second insulating film, and a part of which is connected to the substrate through the hole. A semiconductor memory device comprising:
(2)電極が接続される半導体基板の表面部分に第2導
電型の第1拡散領域が設けられていることを特徴とする
特許請求の範囲第1項記載の半導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein a first diffusion region of the second conductivity type is provided in a surface portion of the semiconductor substrate to which the electrode is connected.
(3)第1の絶縁膜下の半導体基板表面に第2導電型の
第2拡散領域を設けたことを特徴とする特許請求の範囲
第1項記載の半導体記憶装置。
(3) A semiconductor memory device according to claim 1, characterized in that a second diffusion region of a second conductivity type is provided on the surface of the semiconductor substrate under the first insulating film.
(4)第1、第2の拡散領域下の半導体基板に第1導電
型の第3拡散領域を設けたことを特徴とする特許請求の
範囲第2項又は第3項記載の半導体記憶装置。
(4) A semiconductor memory device according to claim 2 or 3, characterized in that a third diffusion region of the first conductivity type is provided in the semiconductor substrate under the first and second diffusion regions.
JP60049972A 1985-03-13 1985-03-13 Semiconductor memory device Pending JPS61208255A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60049972A JPS61208255A (en) 1985-03-13 1985-03-13 Semiconductor memory device
EP86103362A EP0194682B1 (en) 1985-03-13 1986-03-13 Semiconductor memory device
DE8686103362T DE3677030D1 (en) 1985-03-13 1986-03-13 SEMICONDUCTOR STORAGE DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049972A JPS61208255A (en) 1985-03-13 1985-03-13 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS61208255A true JPS61208255A (en) 1986-09-16

Family

ID=12845929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049972A Pending JPS61208255A (en) 1985-03-13 1985-03-13 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61208255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312769A (en) * 1990-11-15 1994-05-17 Matsushita Electric Ind Co Ltd Method of making a semiconductor memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658255A (en) * 1979-10-17 1981-05-21 Oki Electric Ind Co Ltd Mos type semiconductor memory device
JPS5694767A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Semiconductor device
JPS59104156A (en) * 1982-12-07 1984-06-15 Toshiba Corp Multilayer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658255A (en) * 1979-10-17 1981-05-21 Oki Electric Ind Co Ltd Mos type semiconductor memory device
JPS5694767A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Semiconductor device
JPS59104156A (en) * 1982-12-07 1984-06-15 Toshiba Corp Multilayer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312769A (en) * 1990-11-15 1994-05-17 Matsushita Electric Ind Co Ltd Method of making a semiconductor memory device

Similar Documents

Publication Publication Date Title
JPS6235668A (en) Semiconductor memory device
JPS60126861A (en) Semiconductor memory device
JPS61140168A (en) Semiconductor memory device
JP2524002B2 (en) Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM
JPS60253265A (en) Semiconductor memory device
JPS61208255A (en) Semiconductor memory device
JPS61107768A (en) Semiconductor memory device
JPS627153A (en) Semiconductor memory
JPS6340362A (en) Semiconductor storage device
JPS62131563A (en) Semiconductor memory device
JPS6156444A (en) Semiconductor device
JPH02129956A (en) Manufacture of semiconductor memory device
JPS60128657A (en) Semiconductor memory device
JPS62104073A (en) Semiconductor memory and manufacture thereof
JPS6058662A (en) Memory device for temporary storage of charge
JPS6167954A (en) Semiconductor memory device and manufacture thereof
JPH02267962A (en) Semiconductor memory cell and its manufacture
JPS61255056A (en) Semiconductor memory
JPS627152A (en) Semiconductor memory
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JP2526649B2 (en) Semiconductor device
JPS60225462A (en) Semiconductor memory element
JPH0319280A (en) Semiconductor device
JPS6122663A (en) Manufacture of semiconductor integrate circuit
JPS63500484A (en) High performance DRAM array including groove capacitance