JPS61206947A - Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type - Google Patents

Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type

Info

Publication number
JPS61206947A
JPS61206947A JP4783485A JP4783485A JPS61206947A JP S61206947 A JPS61206947 A JP S61206947A JP 4783485 A JP4783485 A JP 4783485A JP 4783485 A JP4783485 A JP 4783485A JP S61206947 A JPS61206947 A JP S61206947A
Authority
JP
Japan
Prior art keywords
light
recording
recording area
beam splitter
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4783485A
Other languages
Japanese (ja)
Inventor
Hideki Akasaka
赤坂 秀機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP4783485A priority Critical patent/JPS61206947A/en
Publication of JPS61206947A publication Critical patent/JPS61206947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the control precision and the S/N in the case where a device is used for reproducing, by making the wavelength of a main beam different from that of an auxiliary beam. CONSTITUTION:A laser light source 1 emits a main polarized beam Bw having a wavelength lambdaW, and a laser light source 2 emits an auxiliary polarized beam Bm having a wavelength lambdam, and they are converted to parallel rays by a collimator lens. Directions of polarized beams Bw and Bm are equalized by an optical member 3 like a dichroic prism. Consequently, if the main beam Bw is irradiated to a recording area Aw, the auxiliary beam Bm is irradiated to the recording area Aw and non-recording areas Am on both sides of the area Aw. They are led to a beam splitter 4 and are reflected on this splitter 4 and are made incident on a recording medium S vertically through an objective lens (omitted in the figure). The main beam Bw is always irradiated at the recording time, and the auxiliary beam Bm has the intensity modulated.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は同時消碌型光磁気記録方弐に使用する記録装置
及び記録再生装置のピックアップに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a recording device and a pickup for a recording/reproducing device used in a simultaneous extinction type magneto-optical recording method.

(発明の背景) 光磁気記録方式とは、光磁気記録再生方式から由来した
術語であり、光熱磁気記録方式とも呼ぶことがで粘る。
(Background of the Invention) The magneto-optical recording method is a term derived from the magneto-optical recording and reproducing method, and can also be called the magneto-optical recording method.

この光磁気記録方式とは、例えばGdCo 、GdTb
Fa の如き垂直磁化膜からなる光磁気記録媒体の磁化
の方向を予め強力な外部磁場により膜面に対し上向きか
又は下向きかのいずれか一方に揃えておく(この作業を
初期化という)。
This magneto-optical recording method includes, for example, GdCo, GdTb
The direction of magnetization of a magneto-optical recording medium made of a perpendicularly magnetized film such as Fa 2 is aligned in advance either upward or downward relative to the film surface using a strong external magnetic field (this operation is called initialization).

その上で、この媒体に反対向きの垂直磁化を有するピッ
トを形成することにより、2値化された情報を記録して
行くものである。このピットを形成するには直径を1〜
2ミクロン程度に絞ったレーザービームを照射して、そ
の部分の温度を磁化膜のキュリ一点付近に上昇させ、そ
れにより、その部分の保磁力をゼロ又はほとんどゼロに
し、同時に反対向きの弱い外部磁場(バイアス磁場)を
印加して磁化の向きを反転させ、その上でレーザービー
ムの照射を止めると、自然に冷却されて常温に戻り、反
転した磁化の向きが固定される。こうして磁化の向きが
反対のピットが形成される。従って、例えば元の向きを
「O」とすれば、「1」のピットが形成され、2値化さ
れた情報は、このピットの有無又はビット長として記録
される。
Binarized information is then recorded by forming pits with opposite perpendicular magnetization on this medium. To form this pit, change the diameter from 1 to
A laser beam focused to about 2 microns is irradiated to raise the temperature of that part to around the Curie point of the magnetized film, thereby reducing the coercive force of that part to zero or almost zero, and at the same time applying a weak external magnetic field in the opposite direction. When a (bias magnetic field) is applied to reverse the direction of magnetization, and then the laser beam irradiation is stopped, it is naturally cooled and returns to room temperature, and the reversed direction of magnetization is fixed. In this way, pits with opposite magnetization directions are formed. Therefore, for example, if the original orientation is "O", a pit of "1" is formed, and the binarized information is recorded as the presence or absence of this pit or the bit length.

こうして記録された2値化情報は、記録媒体に対して直
線偏光(レーザービームンを照射して、その反射光や透
過光の偏光面の回転状況が磁化の向きによって相違する
現象(磁気カー効果及びファラデー効果)を利用して読
み取られる。つまり、入射光に対して磁化の向きが上向
きのとき、反射光や透過光の偏光面が入射光の偏光面に
対してθに度回転したとすると、入射光に対して磁化の
向きが下向きのときは一θに度回転する。従って、反射
光や透過光の先に偏光子(アナライザーとも呼ばれる)
の主軸を一θに皮面にほぼ直交するよつに置いておくと
、下向き磁化の部分からの光はアナライザーをほとんど
透過せず、上向きの磁化の部分からの光はsin”2θ
k の分だけ透過するので、アナライザーの先にディテ
クター〔光電変換手段〕を設置しておけば、記録媒体を
高速でスキャンニングして行くと、記録された磁気的情
報に基づいて電流の強弱信号(電気的情報)が再生され
る。
The binary information recorded in this way is produced by a phenomenon in which the rotation state of the polarization plane of the reflected light or transmitted light differs depending on the direction of magnetization (magnetic Kerr effect) when the recording medium is irradiated with linearly polarized light (laser beam). In other words, when the direction of magnetization is upward with respect to the incident light, if the plane of polarization of the reflected light or transmitted light is rotated by θ degrees with respect to the plane of polarization of the incident light. , when the direction of magnetization is downward with respect to the incident light, it rotates by 1θ.Therefore, a polarizer (also called an analyzer) is placed at the end of the reflected or transmitted light.
If the main axis of the analyzer is placed at 1θ and almost perpendicular to the skin surface, the light from the downwardly magnetized part will hardly pass through the analyzer, and the light from the upwardly magnetized part will be at sin"2θ.
Since only the amount k is transmitted through the analyzer, if a detector (photoelectric conversion means) is installed at the end of the analyzer, when the recording medium is scanned at high speed, the current strength signal is detected based on the recorded magnetic information. (electrical information) is reproduced.

ところで記録済みの媒体を再使用するには、(イ)再び
初期化装置で初期化するか、(ロ)別に消去用のヘッド
を併設するか、(ハ)予め前段処理として記録ヘッドを
用いて消去する必要がある。しかしながら、初期化装置
は大聖で高価であり、記録装置に付随させることは実用
上無理である。別に消去用のヘッドを併設することも、
それだけ製造コストが上昇する。また、予め記録装置を
用いて消去するこ左も、消去に記録時と同じ時間がかか
るので実用的な魅力に乏しい。
By the way, in order to reuse a recorded medium, it is necessary to (a) initialize it again with an initialization device, (b) install a separate head for erasing, or (c) use a recording head as a preliminary process. need to be erased. However, the initialization device is expensive and expensive, and it is practically impossible to attach it to the recording device. You can also install a separate head for erasing.
This increases manufacturing costs accordingly. Furthermore, erasing information using a recording device in advance is not practical because erasing takes the same amount of time as recording.

従って、簡単に記録済みの情報を消すと同時に新しい情
報を記録できると好都合である。このように同時消録す
るKは、記録媒体の磁化の向きが上向き、下向きのいず
れを向いていても、希望する磁化の向きを有するピット
を形成で!!なけ、ればならない。そのためには、バイ
アス磁場が一方向だけでなく、希望に応じて上向き、下
向きのいずれにも変えられなければならない。しかも、
その変化の速度(変調周波数)は、記録速度を高めるた
め、メガHz(10’サイクル/秒)程度必要である。
Therefore, it would be advantageous if new information could be recorded at the same time as easily erasing recorded information. K, which is simultaneously erased in this way, can form pits with the desired magnetization direction, regardless of whether the magnetization direction of the recording medium is upward or downward! ! There must be. To do this, the bias magnetic field must be varied not only in one direction, but also upwards or downwards as desired. Moreover,
The rate of change (modulation frequency) needs to be about megaHz (10' cycles/second) in order to increase the recording speed.

もし、そっでなければ、この光磁気記録再生方式は他の
記録再生方式に比べて魅力が失なわれることになる。
If this were not the case, this magneto-optical recording and reproducing method would lose its appeal compared to other recording and reproducing methods.

他方、バイアス磁場を得るには、永久磁石か電磁石を使
用する訳であるが、磁化の向きをメガH篤の頻度で変化
(変調)させるには電磁石しか考えられない。何故なら
ば、永久磁石をメガHzの頻度で機械的に反転させるの
は相当に困難であるからである。しかし、電磁石でも、
記録媒体の垂直磁化膜に対し非接触で十分な磁場を及ぼ
すには相当に大@な電流を電磁石に流す必要があり、こ
の電流の方向をメガHzの頻度で変調させるのは相当に
困難である。
On the other hand, to obtain a bias magnetic field, a permanent magnet or an electromagnet is used, but an electromagnet is the only option that can be used to change (modulate) the direction of magnetization at a mega-high frequency. This is because it is quite difficult to mechanically flip a permanent magnet at a frequency of megahertz. However, even electromagnets
In order to apply a sufficient magnetic field to the perpendicularly magnetized film of a recording medium without contact, it is necessary to pass a fairly large current through an electromagnet, and it is extremely difficult to modulate the direction of this current at a frequency of megahertz. be.

従りて、現在のところ、バイアス磁場は定磁場の方式し
か考えられておらず、結局、光磁気記録方式は別に消去
ヘッドを併設しない限り同時消録が不可能と考えられて
いる。
Therefore, at present, only a constant magnetic field method is being considered for the bias magnetic field, and after all, it is thought that simultaneous erasing is not possible with the magneto-optical recording method unless a separate erasing head is also provided.

ところで光磁気記録媒体は、通常円盤状であるので同心
円又は渦巻き状の記録領域(Aw)を持ち、隣接の記録
領域(Aw)との重複を避けるため、記録領域(Aw)
と記録領域(Aw)との間に非記録領域(Am)を有す
る(第2A図参照)。
By the way, since magneto-optical recording media are usually disc-shaped, they have concentric or spiral recording areas (Aw), and in order to avoid overlapping with adjacent recording areas (Aw),
There is a non-recording area (Am) between the recording area (Aw) and the recording area (Aw) (see FIG. 2A).

ト また第2A図のように勇ラッキングの溝を形成すること
で記録領域(Aw)と非記録領域(Am)をあらかじめ
区別することをしない媒体でも、トラック間のクロース
トークを防ぐために、記録トラック間に十分な非記録領
域(Am)を設けるのが普通である。
Furthermore, even in media where recording areas (Aw) and non-recording areas (Am) are not distinguished in advance by forming racking grooves as shown in Figure 2A, recording tracks are It is common to provide a sufficient non-recording area (Am) in between.

そして、記録領域(Aw)に垂直磁化膜を形成する際に
非記録領域(Am)に垂直磁化膜を形成させないようK
するのは非常に面倒なので、一般には全体に垂直磁化膜
を形成してしまう。その之め、非記録領域(Am)が常
に一方に揃った垂直磁化を持つことになり、しかも、記
録領域(Aw)K非記録領域(Am)が隣接するため、
記録領域(Aw)には第2B図に破線で示すように非記
録領域(Am)からの浮遊磁場が及ぶことになる。
When forming a perpendicular magnetization film in the recording area (Aw), K
Since it is extremely troublesome to do so, a perpendicular magnetization film is generally formed over the entire surface. Therefore, the non-recording area (Am) always has perpendicular magnetization aligned to one side, and since the recording area (Aw) and the non-recording area (Am) are adjacent to each other,
The floating magnetic field from the non-recording area (Am) reaches the recording area (Aw) as shown by the broken line in FIG. 2B.

本発明者は、他の発明者と共に先に垂直磁化膜の温度を
メガHz程度の頻度で変調することが可能な点に注目し
、温度によって変わる非記録領域(Am)からの浮遊磁
場をバイアス磁場として利用することKより同時消録を
可能にした光磁気記録方式を発明し、特許出願した(%
願昭59−91360号)。
The present inventor, together with other inventors, first focused on the fact that it is possible to modulate the temperature of a perpendicularly magnetized film at a frequency of about megahertz, and biased the stray magnetic field from the non-recording area (Am) that changes depending on the temperature. Invented a magneto-optical recording system that enabled simultaneous erasure by using it as a magnetic field, and applied for a patent (%
(Gan Sho 59-91360).

但し、垂直磁化膜の材料によっては、温度を高温、低温
の2段階に設定したとき、その垂直磁化の向きがいずれ
の温度段階に於いても同じ場合や、2つの温度段階の間
に補償温度があり、そのため磁化の向きが異なる場合で
も、上向き又は下向きのいずれか一方の向きの垂直磁化
の大きさが不十分で、そこからの浮遊磁場が記録に十分
な記録用磁場I HW Iよシ弱い場合には、補助とし
てバイアス定磁場を印加することKより、変調される浮
遊磁場との和によりて、記録が可能になる。一般には、
高温時の浮遊磁場をHl、低温時の浮遊磁場をH,、バ
イアス定磁場を)Ibとすれば、IH,+Hbl  ≧
 IHWI IH,+Hbl  ≧ IHwl でなければならない。
However, depending on the material of the perpendicularly magnetized film, when the temperature is set at two levels, high and low, the direction of perpendicular magnetization may be the same at both temperature levels, or there may be a compensation temperature between the two temperature levels. Therefore, even if the magnetization directions are different, the magnitude of perpendicular magnetization in either the upward or downward direction is insufficient, and the stray magnetic field from there is insufficient for recording magnetic field I HW I. In the case of a weak magnetic field, recording becomes possible by applying a bias constant magnetic field as an auxiliary force, and by combining it with a modulated floating magnetic field. In general,
If the floating magnetic field at high temperature is Hl, the floating magnetic field at low temperature is H, and the bias constant magnetic field is )Ib, then IH, +Hbl ≧
IHWI IH, +Hbl ≧ IHwl must be satisfied.

従って、先願発明では垂直磁化膜からなる記録領域(A
 v )と一方の向きに揃つた垂直磁化を示す非記録領
域(Am)とを有する光磁気記録媒体に対して、第3図
に示すようK。
Therefore, in the prior invention, the recording area (A
K as shown in FIG. 3 for a magneto-optical recording medium having a non-recording area (Am) exhibiting vertical magnetization aligned in one direction.

該媒体(S)をモーター鵜で回転させながら、前記記録
領域(Awr)には、その保磁力がゼロまたは相当に小
さくなる温度に上げるのに十分な光強度を有する主ビー
ム(Bw)を記録中常時照射し、同時に必要に応じて永
久磁石または電磁石10により記録領域(A w )に
バイアス定磁場を印加し、他方、非記録領域(Am)に
は、別の副ビーム(Bm)の強度を高強度と低強度(ゼ
ロを含む)との間でCI!JKより変調して照射して非
記録領域(Am)の温度を高温と低温との間で変調し、
それKより非記録領域(Am)の垂直磁化を変調し、こ
の変調された垂直磁化からの浮遊磁場と必要に応じて印
加されるバイアス定磁場との和によりて互いに向きの異
なる記録用磁場を作り出し、それにより記録領域(Aw
)に上向きの磁化を有するビット(Po)と下向きの磁
化を有するビット(P、)とを形成し、それらのビット
により記録を行なうのである。
While the medium (S) is rotated by a motor, a main beam (Bw) having a light intensity sufficient to raise the temperature at which the coercive force becomes zero or considerably small is recorded in the recording area (Awr). At the same time, if necessary, a permanent magnet or electromagnet 10 applies a bias constant magnetic field to the recording area (A w ), while the non-recording area (Am) is irradiated with the intensity of another sub-beam (Bm). CI between high and low intensities (including zero)! Modulate the temperature of the non-recording area (Am) between high and low temperatures by modulating the irradiation from JK,
The perpendicular magnetization of the non-recording area (Am) is modulated from K, and the recording magnetic fields with different directions are created by the sum of the floating magnetic field from this modulated perpendicular magnetization and the bias constant magnetic field applied as necessary. This creates a recording area (Aw
), a bit (Po) with upward magnetization and a bit (P, ) with downward magnetization are formed, and recording is performed using these bits.

(発明の目的) 本発明の目的は、上述の如き同時消録型光磁気記録方式
に適した記録装置及び記録と再生を兼ねた記録再生装置
のピックアップを提供することにある。
(Objective of the Invention) An object of the present invention is to provide a recording device suitable for the above-mentioned simultaneous erasure type magneto-optical recording system and a pickup for a recording/reproducing device that performs both recording and reproduction.

(発明の概要) 本発明では、記録領域(Aw)を照射するビーム(B 
w )及び非記録領域(Am)を照射するビーム(Bm
)について、波長λを違えて処理を容易にし、第1及び
第2発明では、7オーカシング、トラッキング等のドラ
イブコントロールのための制御光として主ビーム(Bw
)利用することとし、第3発明では副ビーム(Bm)を
制御光として利用する。第2及び第3発明のものは、再
生兼用型であり、第2発明では主ビーム(Bw)を再生
に利用し、第3発明では副ビーム(Bm)を再生に利用
する。
(Summary of the invention) In the present invention, a beam (B
w) and the beam (Bm) that irradiates the non-recording area (Am)
), the wavelength λ is changed to facilitate processing, and in the first and second inventions, the main beam (Bw
), and in the third invention, the sub beam (Bm) is used as control light. The second and third inventions are of a dual-reproduction type, with the second invention using the main beam (Bw) for reproduction, and the third invention using the sub beam (Bm) for reproduction.

1従って、本願第1発明は、 (1)  記録領域(Aw)を照射する波長λwの光ビ
ーーム(Bw)光源、 (2)前記非記録領域(Am)を照射する波長λwと異
なる波長λmの光ビーム(Bm)光源、(3)  前記
ビーム(Bw)とビーム(Bm)の方向を一致またはほ
ぼ一致させる光学部材、(4)  ビームスプリッター
、 (5)前記ビーム(B y )を透過しビーム(Bm)
を透過しない干渉フィルター、及び (6)光電変換手段、 からなり、 ビーム(Bw)は前記光学部材及びビームスプリッター
を経て記録媒体の記碌領域(Aw)に導き、該媒体で反
射されたビーム(B y )を前記ビームスプリッタ−
及び干渉フィルターを経て前記光電変換手段に受光させ
、 ビーム(Bm)は前記光学部材及びビームスプリッタ−
を経て記録媒体の非記録領域(Awn)K導くことを特
徴とする同時消録型光磁気配備装置のピックアップを提
供する。
1 Therefore, the first invention of the present application comprises: (1) a light beam (Bw) light source with a wavelength λw that irradiates the recording area (Aw); (2) a light beam (Bw) with a wavelength λm different from the wavelength λw that irradiates the non-recording area (Am); a light beam (Bm) light source; (3) an optical member that makes the directions of the beam (Bw) and the beam (Bm) coincide or almost coincide; (4) a beam splitter; (5) a beam that transmits the beam (B y ); (Bm)
(6) a photoelectric conversion means, the beam (Bw) is guided to the recording area (Aw) of the recording medium through the optical member and the beam splitter, and the beam (Bw) reflected by the medium is B y ) from the beam splitter
and the light is received by the photoelectric conversion means through an interference filter, and the beam (Bm) is transmitted to the optical member and the beam splitter.
The present invention provides a pickup for a simultaneous erasing type magneto-optical deployment device characterized in that a non-recording area (Awn) K of a recording medium is guided through the pickup.

なお、第1発明で、ビーム(Bw)と(Bm)の方向を
はソ一致させるとは、両ビームの配備媒体上のスポット
中心が一致せず、僅かにずれるようにすることを意味す
る(第2、第3発明についても同様)、基準偏光方向 第1発明に於ける光ビーム(BY)は、実際にはレーザ
ービームを使用するので、偏光であり、従って情報の絖
取り(再生)に兼用することができる。その場合に、こ
こでは媒体からの反射光(再生光)を偏光ビームスプリ
ッタ(PBS)で分割し、情報、成分の取出しを行なう
。PBSは例えばウオーラストンプリズム、ローシ曹ン
プリズム、トムソンプリズム、薄膜屋偏光ビームスフリ
ツタ−であり、これは、入射偏光を互いに偏光面が直交
した2つの偏光に分割するもので、分割された2つの偏
光の強度比はそのPBSの方位と入射偏光の偏光面との
成す角度によって決まる。従って、入射偏光の基準偏光
方向く対し、PBSの方位角(r)を45≧i)Oとな
るように傾けると、PBSによりて分割された第1光と
第2光の各光量変化(=rントラスト・・・この値が大
きいほど情報をと9易く、S/N比が上がる)の値が変
わシ、0夏では光量が一方には′i0%(%a1m”θ
に入他方には′1100%(100−!As1n”θk
)の割合で分割されるものの、第1光、第2光共に全く
光量変化を示さず、どちらからも情報をとることができ
ない。それに対してγを2θにとはy一致する2〜3度
とすると一方の光の光量変化は最大とな〕、他方の光の
それは最小となる。rを2〜3度から45度に増加させ
るに従い、第1光、第2光の光量変化は接近し、45度
では光量、光量変化ともに一致する。
In addition, in the first invention, making the directions of the beams (Bw) and (Bm) coincide means that the spot centers of the two beams on the deployment medium do not coincide, but are slightly shifted. The same applies to the second and third inventions), reference polarization direction The light beam (BY) in the first invention actually uses a laser beam, so it is polarized light, and therefore, it is not suitable for information removal (reproduction). Can be used for both purposes. In this case, the reflected light (reproducing light) from the medium is split by a polarizing beam splitter (PBS) to extract information and components. Examples of PBS include a Wallaston prism, a Rothesson prism, a Thomson prism, and a thin-film polarizing beam fritter. The intensity ratio of the two polarized lights is determined by the angle formed between the orientation of the PBS and the plane of polarization of the incident polarized light. Therefore, when the azimuth angle (r) of the PBS is tilted so that 45≧i)O with respect to the reference polarization direction of the incident polarized light, each light amount of the first light and the second light divided by the PBS changes (= rnlast...The larger this value is, the easier it is to retrieve information and the higher the S/N ratio.
On the other hand, '1100% (100-!As1n"θk
), but both the first light and the second light show no change in light quantity, and no information can be obtained from either. On the other hand, if γ is set to 2 to 3 degrees, which corresponds to 2θ, the change in the amount of light for one light will be maximum, and that for the other light will be minimum. As r increases from 2 to 3 degrees to 45 degrees, the changes in the amount of light of the first light and the second light become closer, and at 45 degrees, both the amount of light and the change in light amount match.

一般には、第1光、第2光のうち光量変化(コントラス
ト)の大きい方の光を情報光として光電変換手段に受光
させれば、そこでは情報に従って強弱に変調された振幅
のより大きい電気1号が得られる。ところが光源の光強
度のゆらぎを除去する目的、その他の目的から差動法な
る再生法が知られており、その場合には、第1光と第2
光との変換された各電気信号の差をとりて情報信号を得
る。他方、制御光としては、光量変化の少ない方の光だ
けを利用してもよいし、第1光と第2光の両者を利用し
てもよい。制御光としては、光量の多い方が好ましい。
In general, if the light with a larger change in light amount (contrast) of the first light and the second light is received as information light by a photoelectric conversion means, then an electric light with a larger amplitude that is modulated in strength or weakness according to the information is received. number is obtained. However, a reproduction method called the differential method is known for the purpose of removing fluctuations in the light intensity of the light source and for other purposes.
An information signal is obtained by taking the difference between each converted electrical signal and the optical signal. On the other hand, as the control light, only the light whose light amount changes less may be used, or both the first light and the second light may be used. It is preferable for the control light to have a large amount of light.

それに対し、情報光としては、光量変化が大きい方が好
ましい。
On the other hand, it is preferable for the information light to have a large change in light amount.

一般には、PBSでの入射再生光の分割態様は、PR8
方位の角度(γ)で分けると、例えば2〜3度、10度
、45にの3通シに分けられ、それぞれによりて、分割
された光(第1光と第2光)の処理は上述の如く違って
くるし、同一の分割態様でも分割光の処理は上述の如く
何通りかに分けられる。
Generally, the manner in which the incident reproduction light is divided by PBS is PR8
When divided by the azimuth angle (γ), it is divided into three waves, for example, 2 to 3 degrees, 10 degrees, and 45 degrees, and the processing of the divided light (first light and second light) according to each is described above. Even if the splitting mode is the same, the processing of the split light can be divided into several ways as described above.

従りて、第2発明は、 (1)  記録領域(Aw)を照射する波長λwの光ビ
ーム(Bw)光源、 (2)非記録領域(Am)を照射する波長λ−と異なる
波長λmの光ビーム(Bm)光源、(3)前記ビーム(
Bw)とビーム(Bm)の方向を一致またははソ一致さ
せる光学部材、(4)  ビームスプリッター、 (5]  前記ビーム(Bw)を透過しビーム(Bm)
を透過しない干渉フィルター、 (7)前記偏光ビーム(Bw)を第1光と第2光とに分
割する偏光ビームスプリッター、 (8)前記第1光を受光して電気信号に変換する第1光
電変換手段、及び (9)前記第2光を受光して電気信号に変換する第2光
電変換手段、 からなり、記録時には、 偏光ビーム(B y )は前記光学部材及びビームスプ
リッタ−を経て記録媒体の記録領域(Aw)K垂直入射
させ、 ビーム(Bm)は前記光学部材及びビームスプリッタ−
を経て記録媒体の非記録領域(Am)に垂直入射させ、 再生時には、 偏光ビーム(Bw)を前記光学部材及びビームススプリ
ッターを経て記録媒体の記録領域(AV)に垂直入射さ
せ、該媒体で反射されたビーム(BW)を前記ビームス
プリッタ−及び干渉フィルターを経て前記偏光ビームス
プリッタ−に入射させる。
Therefore, the second invention provides: (1) a light source for a light beam (Bw) with a wavelength λw that irradiates the recording area (Aw); (2) a light source with a wavelength λm different from the wavelength λ- that irradiates the non-recording area (Am); a light beam (Bm) light source, (3) said beam (
(4) a beam splitter; (5) an optical member that makes the directions of the beam (Bw) and the beam (Bm) coincide with each other; (4) a beam splitter;
(7) a polarizing beam splitter that splits the polarized beam (Bw) into a first light and a second light; (8) a first photoelectric converter that receives the first light and converts it into an electrical signal; and (9) a second photoelectric conversion means that receives the second light and converts it into an electrical signal. During recording, the polarized beam (B y ) passes through the optical member and the beam splitter to the recording medium. The recording area (Aw) of K is perpendicularly incident, and the beam (Bm)
During reproduction, the polarized beam (Bw) is made perpendicularly incident on the recording area (AV) of the recording medium through the optical member and beam splitter, and is reflected by the medium. The resulting beam (BW) passes through the beam splitter and interference filter and enters the polarizing beam splitter.

ことを特徴とする同時消碌凰光磁気記録再生装置のピッ
クアップを提供する。
A pickup for a simultaneous extinction magneto-optical recording and reproducing device is provided.

また、光学設計上からは、ビーム(BY)と(Bm)は
光軸を一致させることが得策であシ、そのためビーム(
Bw)の断面形状を直径の小さい円、ビーム(B m 
)のそれを同心の直径の大きい円とすることが好ましい
。従って、ビーム(Bm)は非記録領域(Am)のみな
らず記録領域(Aw)をも同時に照射することKなる。
Also, from an optical design point of view, it is a good idea to make the optical axes of the beams (BY) and (Bm) coincide, so that the beam (
The cross-sectional shape of the beam (Bw) is a circle with a small diameter, and the beam (B m
) is preferably a concentric circle with a large diameter. Therefore, the beam (Bm) irradiates not only the non-recording area (Am) but also the recording area (Aw) at the same time.

それ故、ビーム(Bm)が偏光であればビーム(Bm)
で再生することもでき、本願の第3発明は、 (1)記録領域(Aw)を照射する波長λwの光ビーム
(Bw)光源、 (2)記録領域(Aw)及び非記録領域(Am)を同時
に照射する波長λwと異なる波長λmの偏光ビーム(B
 m )光源、 (3)  前記ビーム(BW)とビーム(Bm)の方向
を一致またははソ一致させる光学部材、(4)  ビー
ムスプリッター、 (5′)前記ビーム(BY)を透過せずビーム(Bm)
を透過する干渉フィルター及び (7)前記偏光ビーム(Bm)を第1光と第2光とに分
割する偏光ビームスプリッター1 (8)前記第1光を受光して電気信号に変換する第1光
電変換手段、及び (9)  前記第2光を受光して電気信号に変換する第
2光電変換手段、 からな9、記録時には、 ビーム(Bw)は前記光学部材及びビームスプリッタ−
を経て記録媒体の記録領域(Am)に垂(Aw)及び非
記録領域(Am)K垂直入射させ、再生時には、偏光ビ
ーム(Bm)を、前記光学部材及びビームスプリッタ−
を経て記録媒体の記録領域(Aw)及び非記録領域(A
m)iC垂直入射させ、該媒体の記録領域(Aw)で反
射された偏光ビーム(Bm)を前記ビームスプリッタ−
及び干渉フィルターを経て前記偏光ビームスプリッタ−
に入射させて第1光と第2光に分割し、第1光を第1光
電変換手段に受光させ、第2光を第2光電変換手段に受
光させることを特徴とする同時消碌型光磁気記録再生装
置のピックアップを提供する。
Therefore, if the beam (Bm) is polarized, the beam (Bm)
The third invention of the present application includes: (1) a light beam (Bw) light source with a wavelength λw that irradiates the recording area (Aw); (2) the recording area (Aw) and the non-recording area (Am). A polarized beam (B
m) a light source; (3) an optical member that makes the directions of the beam (BW) and the beam (Bm) coincide or coincide with each other; (4) a beam splitter; (5') a beam that does not transmit the beam (BY); Bm)
(7) a polarizing beam splitter 1 that splits the polarized beam (Bm) into a first light and a second light; (8) a first photoelectric converter that receives the first light and converts it into an electrical signal; a converting means, and (9) a second photoelectric converting means that receives the second light and converts it into an electrical signal. During recording, the beam (Bw) is transmitted to the optical member and the beam splitter.
The polarized beam (Bm) is incident perpendicularly to the recording area (Am) of the recording medium through the optical member (Aw) and the non-recording area (Am).
The recording area (Aw) and non-recording area (Aw) of the recording medium are
m) The polarized light beam (Bm) reflected from the recording area (Aw) of the medium by vertically incident on the iC is sent to the beam splitter.
and the polarizing beam splitter via an interference filter.
A simultaneous quenching type light, characterized in that the first light is made incident on a light source and split into a first light and a second light, the first light is received by a first photoelectric conversion means, and the second light is received by a second photoelectric conversion means. A pickup for a magnetic recording/reproducing device is provided.

ただし、媒体で反射されたビーム(Bm)は非記録領域
(Am )からの反射光を含み、それは本来の記録領域
(Aw)からの反射光(%に情報光)に対してノイズと
なるので記録領域(Aw)からの反射光だけを受光する
構造の第2光電変換手段を使用することが好ましい。
However, the beam reflected by the medium (Bm) includes reflected light from the non-recording area (Am), which becomes noise compared to the reflected light (% information light) from the original recording area (Aw). It is preferable to use a second photoelectric conversion means having a structure that receives only reflected light from the recording area (Aw).

以下、第1発明を実施例1で、第2発明を実施例2で、
第3発明を実施例3でそれぞれ具体的に説明するが、こ
れらの実施例に使用する光磁気記録媒体の一例を先に説
明する。尚、本発明は、これらの実施例1〜3に限定さ
れるものではない。
Hereinafter, the first invention will be described in Example 1, the second invention will be described in Example 2,
The third invention will be specifically explained in Example 3, and an example of a magneto-optical recording medium used in these Examples will first be explained. Note that the present invention is not limited to these Examples 1 to 3.

(光磁気記録媒体の一例) 厚さ1.2mの円形ガラス基板に厚さ3000XのGd
ta(Fets Cots )?6の垂直磁化膜(第1
層)を形成し、その上に厚さ2000X  のTbおF
@6.の垂直磁化膜〔第2層〕を形成することにより作
られたもので、元素記号の右下の数字は原子数チによる
組成を表わす(以下、同じ)。
(Example of magneto-optical recording medium) Gd with a thickness of 3000X on a circular glass substrate with a thickness of 1.2m
ta(Fets Cots)? 6 perpendicular magnetization film (first
layer) and on top of that a 2000X thick Tb and F layer.
@6. The number at the bottom right of the element symbol represents the composition in terms of the number of atoms (the same applies hereinafter).

ここでは、簡単のために特に基板に溝を設けることはせ
ず、巾1ミクロンの記録領域(Aw)と、その隣りに巾
3ミクロンの非記録領域(Am)とを渦巻き状に設定し
である。
Here, for the sake of simplicity, no grooves are particularly provided on the substrate, and a recording area (Aw) with a width of 1 micron and a non-recording area (Am) with a width of 3 microns next to it are set in a spiral shape. be.

この媒体は予め+15にエルステッド(0・)の外部磁
場を印加して初期化する。(なお、これ以後数値の前に
十とあるのは上向きの磁場又は磁化を、−とあるのは下
向きの磁場又は磁化を示す。)初期化により非記録領域
(Am)は、第1層が一64ガウス(G)、W、2層が
+240Gの垂直磁化を示し、他方記録領域(Aw)に
記録するのに十分な記録用磁場I Hv l は200
0・で幾る。
This medium is initialized in advance by applying an external magnetic field of +15 oersted (0.). (From now on, 10 in front of the numerical value indicates an upward magnetic field or magnetization, and - indicates a downward magnetic field or magnetization.) Due to initialization, the non-recording area (Am) is -164 Gauss (G), W, the second layer exhibits a perpendicular magnetization of +240 G, and the recording magnetic field I Hv l sufficient for recording in the recording area (Aw) is 200
How much is 0.

(実施例1) 第1A図は本実施例の光磁気記録装置のピックアップの
構成を示す概念図(レンズ系は省略)である。この図に
於いて、(1)は波長λvr=780Bmの主偏光ビー
ム(Bw)を発するレーザー光源であり、(2)は波長
λm=830nmの制御光ビーム(Bm)を発するレー
ザー光源であり、双方とも先に配置したコリメーターレ
ンズ(図示せず)で平行光線とする。この場合、特に偏
光ビームである必要はないが、光源に起因して偏光とな
る。
(Example 1) FIG. 1A is a conceptual diagram (the lens system is omitted) showing the configuration of the pickup of the magneto-optical recording device of this example. In this figure, (1) is a laser light source that emits a main polarized beam (Bw) with a wavelength λvr = 780Bm, and (2) is a laser light source that emits a control light beam (Bm) with a wavelength λm = 830nm. Both are made into parallel light beams by a collimator lens (not shown) placed previously. In this case, the beam does not need to be a polarized beam, but it becomes polarized due to the light source.

偏光ビーム(BY)、(Bm)は、ノーーフミラチ反射
するダイクロイックプリズムやダイクロイックミラー」
の如き光学部材(3)で方向を一致させる。従って、ビ
ーム(B W )と(Bm)とは光束断面が同心円を呈
し、主ビーム(Bw)が記録領域(Aw)を照せば、副
ビーム(Bm)は記録領域(Aw)及びその両側に設け
られた非記録領域(Am)を照らす。
Polarized beams (BY) and (Bm) are reflected by a dichroic prism or dichroic mirror.
The directions are matched using an optical member (3) such as. Therefore, beams (B W ) and (Bm) have concentric cross-sections, and if the main beam (Bw) illuminates the recording area (Aw), the sub beam (Bm) illuminates the recording area (Aw) and both sides thereof. A non-recording area (Am) provided in the area is illuminated.

光学部材(3)で方向の一致したビーム(Bw)、(B
m)は、次いでビームスプリッタ−(4)に導かれ、こ
こで反射されて対物レンズ(図示せず)を通りて記録媒
体(S)に垂直入射する。このとき主ビーム(Bw)の
記録媒体(印表面でのスポット形状は直径1μmの円で
、副ビーム(1m)のそれは直径5μmの同心円となる
(第4図参照)。
Beams (Bw), (B
m) is then guided to a beam splitter (4), where it is reflected, passes through an objective lens (not shown), and is perpendicularly incident on the recording medium (S). At this time, the spot shape of the main beam (Bw) on the recording medium (marked surface) is a circle with a diameter of 1 μm, and that of the sub beam (1 m) is a concentric circle with a diameter of 5 μm (see FIG. 4).

主ビーム(Bw)は記録時常時照射し続け、他方副ビー
ム(Bm)はその強度を図示していたい変調手段により
て記録したい2値化情報に従い変調する。
The main beam (Bw) is constantly irradiated during recording, and the intensity of the sub beam (Bm) is modulated by a modulation means (not shown) according to the binary information to be recorded.

主ビーム(Bw)の強度は、垂直磁化膜の温度が150
〜160℃に達する強度とし、そうすると、記録領域(
Aw)の保磁力はほとんどゼロになる。
The intensity of the main beam (Bw) is determined by the temperature of the perpendicularly magnetized film at 150°C.
The intensity reaches ~160°C, and then the recording area (
The coercive force of Aw) becomes almost zero.

他方、副ビーム(Bm)の強度は、垂直磁化膜の温度が
100〜110℃に達する強度(高強度)とゼロ(低強
K)に変調させる。
On the other hand, the intensity of the sub-beam (Bm) is modulated between an intensity at which the temperature of the perpendicularly magnetized film reaches 100 to 110° C. (high intensity) and zero (low intensity K).

その結果、副ビーム(Bm)の強度が高強度の時には記
録領域(Aw)に対して周囲の非記録領域(Am)から
−2ooo・の浮遊磁場(主ビームByの当っている点
に於ける値)が及ぼされて、下向きの垂直磁化を有する
ビット(PI)が形成され、副ビーム(Bm)の強度が
低強度の時には同じ(+20000の浮遊磁場が及ぼさ
れて上向きのビット″$(ro)が形成される。
As a result, when the intensity of the sub beam (Bm) is high, a floating magnetic field of -2ooo. value) is applied to form a bit (PI) with downward perpendicular magnetization, and when the intensity of the secondary beam (Bm) is low, a stray magnetic field of +20000 is applied to form an upward bit ``$(ro ) is formed.

そして、主ビーム(Bw)の強度は高いので媒体(S)
からの反射光もまた高いため、この反射光をドライブコ
ントロールのための制御光として利用する。
Since the intensity of the main beam (Bw) is high, the medium (S)
Since the reflected light is also high, this reflected light is used as control light for drive control.

従りて、副ビーム(Bm)の媒体からの反射光は必要な
いのでビームスプリッタ−(4)は副ビーム(Bm)K
対する反射率がは′1100%のものが好ましい。この
ようなダイクロイック・ビームスプリッタ−(4)は、
単なるビームスプリッタ−(4)と後述するフィルター
(5)とが一体化したものと考えることができ、その場
合には別体のフィルター(5)は不要である。
Therefore, since the reflected light from the medium of the sub-beam (Bm) is not necessary, the beam splitter (4) uses the sub-beam (Bm) K
It is preferable to have a reflectance of 1100%. Such a dichroic beam splitter (4) is
It can be considered that a simple beam splitter (4) and a filter (5), which will be described later, are integrated, and in that case, a separate filter (5) is not necessary.

ビームスプリッタ−(4)を透過した主ビーム(BW〕
は、波長λwのビーム(Bw)を通し波長λmのビーム
(Bm)を通さない干渉フィルター(5)を通して副ビ
ーム(Bm)成分を除去した後、光電変換手段(6)例
えば4分割フォトダイオードに受光させて、フォーカシ
ングのコントロールに利用する。
Main beam (BW) transmitted through beam splitter (4)
After removing the sub-beam (Bm) component through an interference filter (5) that passes the beam (Bw) with the wavelength λw and blocks the beam (Bm) with the wavelength λm, the photoelectric conversion means (6), for example, converts it into a 4-split photodiode. It receives light and uses it to control focusing.

尚、光学部材(3)へのビーム(Bm)、(Bm)の入
射の方式は、第1B図に示す方式でもよい。
Incidentally, the method of making the beams (Bm) and (Bm) incident on the optical member (3) may be the method shown in FIG. 1B.

(実施例IA) 本実施例は、実施例1の変形例であり、その構成を第5
図に示す。
(Example IA) This example is a modification of Example 1, and the configuration is the fifth example.
As shown in the figure.

(実施例2) 第6A図は、本実施例の光磁気記録再生装置のピックア
ップの構成を示す概念図(レンズ系は省略)である。
(Example 2) FIG. 6A is a conceptual diagram (the lens system is omitted) showing the configuration of the pickup of the magneto-optical recording and reproducing apparatus of this example.

(1)〜(5)の部材は実施例1のそれと同じであるが
、本例では、媒体(印からの主ビーム(Bw)の反射光
をフィルター(5)で純粋にした後、P B S (7
)で第1光(制御光)と第21情報光)とに分割し、前
者を第1光電変換手段(8)、後者を第2光電変換手段
(9)にそれぞれ受光させ、記録時は専ら制御光の方を
利用する。
The members (1) to (5) are the same as those in Example 1, but in this example, after the reflected light of the main beam (Bw) from the medium (mark) is purified by the filter (5), P B S (7
) into the first light (control light) and the 21st information light), and the former is received by the first photoelectric conversion means (8) and the latter is received by the second photoelectric conversion means (9). Use control light.

再生時は副ビーム(Bm)は特に必要とすることはない
ので消灯し、主ビーム(Bw)を記録時よりも強度を落
として照射する。そうすると、媒体(勢からの主ビーム
(BY)からの反射光は情報を含むので、PH10(7
)で第1光(制御光)と第2光(情報光)K分割し、両
者をそれぞれに利用して再生を行なう。
During reproduction, the sub beam (Bm) is not particularly required, so it is turned off, and the main beam (Bw) is irradiated with a lower intensity than during recording. Then, since the reflected light from the main beam (BY) from the medium contains information, the PH10 (7
), the first light (control light) and the second light (information light) are divided into K, and both are used separately for reproduction.

再生のときは、媒体(S) K照射する主ビーム(Bw
)は、直線偏光でなければならないのでコリメーターレ
ンズ(図示せず)の先に偏光子を入れて邪魔な偏光成分
を除去してもよい。なお、副ビーム(Bm)は記録時に
のみ使用するので偏光である必要はない。
During playback, the main beam (Bw) that irradiates the medium (S)
) must be linearly polarized light, so a polarizer may be inserted at the tip of the collimator lens (not shown) to remove any disturbing polarized light components. Note that since the sub beam (Bm) is used only during recording, it does not need to be polarized light.

ところで光学部材(3)は、第6B及び60図に示すよ
うにPBS(31)とその1つの入射面に「K波長板(
3b)/波長λwのビーム(Bw)を反射し波長λmの
ビーム(Bm)を透過する干渉フィルター(3C)/号
波長板(3d)Jの3層を配設したものでもよい。
By the way, as shown in FIGS. 6B and 60, the optical member (3) has a "K wavelength plate (
3b)/An interference filter (3C) that reflects a beam (Bw) with wavelength λw and transmits a beam (Bm) with wavelength λm/wavelength plate (3d) J may be provided.

また、光学部材(3)は第6D及び6層図に示すように
PBS(3m)とその1つの入射面に「号波長板(3b
)/波長λmのビーム(Bm)を反射し波長λwのビー
ム(B y )を透過する干渉フィルター(3C)!A
波長板」の3層を配設したものでもよい。6B〜6E図
に於いてビーム(Bw)と(Bm)の光軸を多少ずらし
たが、これは作図の都合上である。
In addition, the optical member (3) is attached to the PBS (3m) and one of the incident surfaces of the PBS (3m) as shown in the 6th D and 6th layer diagram.
)/Interference filter (3C) that reflects the beam (Bm) with wavelength λm and transmits the beam (B y ) with wavelength λw! A
It is also possible to arrange three layers of wavelength plates. In Figures 6B to 6E, the optical axes of the beams (Bw) and (Bm) are slightly shifted, but this is for convenience of drawing.

(実施例3) 第7図は本実施例の光磁気記録再生装置のピックアップ
の構成を示す概念図(レンズ系は省略)である。
(Embodiment 3) FIG. 7 is a conceptual diagram (the lens system is omitted) showing the configuration of the pickup of the magneto-optical recording/reproducing apparatus of this embodiment.

(1)〜(5)の部材は実施例1のそれと同じであるが
、本例では、再生時に偏光ビームとして強度変調しない
副ビーム(Bm)を利用する。ビーム(Bm)を媒体に
照射し、その反射光から情報を再生する。
The members (1) to (5) are the same as those in Example 1, but in this example, a sub beam (Bm) whose intensity is not modulated is used as a polarized beam during reproduction. A beam (Bm) is irradiated onto a medium and information is reproduced from the reflected light.

ただ、ビーム(Bm)の反射光は非記録領域(Am)か
らの反射光も含んでおり、それはノイズとなるので、こ
れをカットすることが好ましい。
However, the reflected light of the beam (Bm) also includes reflected light from the non-recording area (Am), which becomes noise, so it is preferable to cut this.

カットするには、媒体からの反射光路中K例えば投影な
いし結像光学系(図示せず)を設けて、媒体上のピット
を光電変換手段の受光面又はこれと等価な面に投影ない
し結像させ、そこに非記録領域(Am)からの反射光を
カットするマスク(第8図参照・・・・・・図中、想像
線で示した長円は、投影ないし結像された最小ピッ)(
p、又はpt)を表わし、矩形は開口部を表わす)を設
け、それにより記録領域(Aw)特にピットからの反射
光だけを光電変換手段(第1ないし第2のいずれか一方
又は両方で、どのようKするかは再生方式で直接法をと
るか差動法をとるかで決゛まる)に受光させるか、さも
なければ、投影ないし結像された最小ピッl’(po又
はpt)とはソ同−又はそれよシ小さい形状の受光面を
有する光電変換手段を使用すれば、記録領域(Aw)特
にビットからの反射光だけを再生できる。この場合、投
影された最小ピッ)(Pl又はPo)とほぼ同一形状の
受光素子がトラッキング方向に直列に数個並んだ光電変
換手段(第9図参照・・・・・・第9図中、円は受光面
における反射光(Bm)のスポット形状を表わし、矩形
は各受光素子、想像線は投影されたピットを表わす)を
用い、同一のビットからの反射光を各受光素子に次々と
時間差を以って受光させてそれぞれ電気信号に変換させ
、変換された電気信号を遅延回路を用いて、ある時刻に
足し合わせれば、1つのビットからの再生信号強度がn
倍(nは受光素子の数)になるので、S/N比が4倍向
上する。この方法は、本出願人の先願:特願昭58−1
52839号の明細書に詳しく開示しである。
To cut, for example, a projection or imaging optical system (not shown) is provided in the reflected optical path from the medium to project or image the pits on the medium onto the light receiving surface of the photoelectric conversion means or an equivalent surface. A mask is placed there to cut reflected light from the non-recording area (Am) (see Figure 8... In the figure, the oval indicated by the imaginary line is the minimum pitch projected or imaged). (
p or pt), and the rectangle represents an aperture), thereby converting only the reflected light from the recording area (Aw), especially the pit, into a photoelectric conversion means (one or both of the first and second). How to do this depends on whether the reproduction method uses a direct method or a differential method. If a photoelectric conversion means having a light-receiving surface of the same or smaller shape is used, only the reflected light from the recording area (Aw), particularly the bit, can be reproduced. In this case, a photoelectric conversion means (see FIG. 9) in which several light-receiving elements having almost the same shape as the projected minimum pitch (Pl or Po) are arranged in series in the tracking direction (see FIG. 9). The circle represents the spot shape of the reflected light (Bm) on the light-receiving surface, the rectangle represents each light-receiving element, and the imaginary line represents the projected pit). If the received light is converted into an electric signal, and the converted electric signals are added together at a certain time using a delay circuit, the reproduced signal strength from one bit will be n.
(n is the number of light receiving elements), so the S/N ratio is improved by four times. This method was applied in the applicant's earlier application: Japanese Patent Application No. 58-1.
It is disclosed in detail in the specification of No. 52839.

それに対して、ビーム(Bm)を制御光として利用する
ときには、記録領域(A w )からの反射光をカット
してもよい。カットするにはマスクを用いてもよいが、
その場合にはP B S (7)で分割した光が光量変
化をほとんど有しないときか、有していても情報を再生
しないときに限られる。仮に分割した光が光量変化を有
するので制御元と情報光の双方に利用しようとする場合
には、第10図に示すように記録領域(Aw)からの反
射光だけを受光する受光素子(10m)と非記録領域(
Am)からの反射光だけを受光する受光素子(10b)
の2つからなる光電変換手段を用いる。
On the other hand, when the beam (Bm) is used as control light, the reflected light from the recording area (A w ) may be cut. You may use a mask to cut, but
In this case, it is limited to cases where the light divided by P B S (7) has almost no change in light intensity, or even if it does, information is not reproduced. If the divided light has a change in light intensity and is intended to be used both as a control source and as information light, as shown in Fig. 10, a light receiving element (10 m ) and non-recording area (
A light receiving element (10b) that receives only the reflected light from Am)
A photoelectric conversion means consisting of two components is used.

第10図中、想像線は投影ないし結像された最小ピット
を表わす。もちろん、制御光としてのみ利用する場合に
、マスクを使用せずに非記録領域(Am)からの反射光
だけが当る位置に受光面を置いた光電変換手段を配置し
てもよい。
In FIG. 10, the imaginary line represents the projected or imaged minimum pit. Of course, when the light is used only as control light, the photoelectric conversion means may be arranged without using a mask and the light receiving surface is placed at a position where only the reflected light from the non-recording area (Am) hits.

ともかく、記録時はビーム(Bw)と(B m )の両
者の光源を点灯して媒体に照射し、その反射光のうちビ
ーム(Bw)はフィルター(55でカットして、ビーム
(Bm)の反射光をPBS(7)で分割して第1光と第
2光に分割し、いずれか一方又は両方を制御光として利
用し、前者を第1光電変換手段、後者を第2光電変換手
段に受光させる。
In any case, during recording, both the beam (Bw) and (B m ) light sources are turned on to irradiate the medium, and of the reflected light, the beam (Bw) is cut by a filter (55) and the beam (Bm) is The reflected light is divided by the PBS (7) into first light and second light, and one or both are used as control light, and the former is used as the first photoelectric conversion means and the latter is used as the second photoelectric conversion means. Let it receive light.

再生時には、ビーム(Bm)を媒体に照射し、その反射
光をP B S (7)で分割して第1光と第2光に分
け、いずれか一方ずつ又は両方を情報光、制御光として
利用する。
During playback, a beam (Bm) is irradiated onto the medium, and the reflected light is divided by P B S (7) into first light and second light, and one or both are used as information light and control light. Make use of it.

(発明の効果) 以上の通り、本発明によれば主ビーム(Bw)と副ビー
ム(Bm)との波長(λ)を違えることによって、後の
処理がし易<7J:り、その結果、制御精度及び再生に
兼用した場合のS/N比の向上が望める。
(Effects of the Invention) As described above, according to the present invention, by making the wavelengths (λ) of the main beam (Bw) and the sub-beam (Bm) different, subsequent processing is made easier by <7J. Improvements in control accuracy and S/N ratio can be expected when used for reproduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は、本願第1発明の実施例1にかかるピックア
ップの全体構成を示す概念図である。 第1B図も、概念図である。 第2A図は、記録媒体の概略垂直断面図である。 第2B図は、記録媒体の記録領域(Aw)に対して非記
録領域(Am)から浮遊磁場が印加される様子を示す概
念図である。 第3図は、先願:%願昭59−91360号の発明Kか
かる同時消録型光磁気記録装置の全体構成を示す概念図
である。 第4図は、記録媒体にビーム(Bw)、(Bm)を照射
した様子を示す説明図である。 第5図は、本願第1発明の実施例IAにかかるピックア
ップの全体構成を示す概念図である。 第6A図は、本願第2発明の実施例2にかかるピックア
ップの全体構成を示す概念図である。 第6B〜第6E図は、実施例2に使用される他の偏光ビ
ームスプリッタの構造を示す概念図である。 第7図は、本願第3発明の実施例3にかかるピックアッ
プの全体構成を示す概念図である。 第8図は、実施例3に使用されるマスクの平面図である
。 第9図及び第10図は、ビーム(Bm)の受光面でのス
ポット形状と受光素子の受光面との関係を示す説明図で
ある。 〔主要部分の符号の説明〕 1.37・・・・・・ビーム(Bw)の光源2.38・
・・・・・ビーム(Bm)の光源3.35・・・・・・
ビームCBIF)t (Bm)の方向を一致させる光学
部材
FIG. 1A is a conceptual diagram showing the overall configuration of a pickup according to Example 1 of the first invention of the present application. FIG. 1B is also a conceptual diagram. FIG. 2A is a schematic vertical cross-sectional view of the recording medium. FIG. 2B is a conceptual diagram showing how a floating magnetic field is applied from a non-recording area (Am) to a recording area (Aw) of a recording medium. FIG. 3 is a conceptual diagram showing the overall structure of a simultaneous erasing type magneto-optical recording device according to the invention K of the earlier application No. 59-91360. FIG. 4 is an explanatory diagram showing how the recording medium is irradiated with beams (Bw) and (Bm). FIG. 5 is a conceptual diagram showing the overall configuration of a pickup according to Example IA of the first invention of the present application. FIG. 6A is a conceptual diagram showing the overall configuration of a pickup according to Example 2 of the second invention of the present application. 6B to 6E are conceptual diagrams showing the structure of another polarizing beam splitter used in the second embodiment. FIG. 7 is a conceptual diagram showing the overall configuration of a pickup according to Example 3 of the third invention of the present application. FIG. 8 is a plan view of a mask used in Example 3. 9 and 10 are explanatory diagrams showing the relationship between the spot shape of the beam (Bm) on the light receiving surface and the light receiving surface of the light receiving element. [Explanation of symbols of main parts] 1.37...Beam (Bw) light source 2.38.
...Beam (Bm) light source 3.35...
Optical member to match the direction of beam CBIF)t (Bm)

Claims (1)

【特許請求の範囲】 1 垂直磁化膜からなる記録領域(Aw)と一方の向き
に揃った垂直磁化を示す非記録領域(Am)とを有する
光磁気記録媒体に対して、 (1)前記記録領域(Aw)を照射する波長λwの光ビ
ーム(Bw)光源、 (2)前記非記録領域(Am)を照射する波長λwと異
なる波長λmの光ビーム(Bm)光源、(3)前記ビー
ム(Bw)とビーム(Bm)の方向を一致またはほぼ一
致させる光学部材、 (4)ビームスプリッター、 (5)前記ビーム(Bw)を透過しビーム(Bm)を透
過しない干渉フィルター、及び (6)光電変換手段、 からなり、 ビーム(Bw)は、前記光学部材及びビームスプリッタ
ーを経て記録媒体の記録領域(Aw)に導き、該媒体で
反射されたビーム(Bw)を前記ビームスプリッター及
び干渉フィルターを経て前記光電変換手段に受光させ、 ビーム(Bm)は前記光学部材及びビームスプリッター
を経て記録媒体の非記録領域(Am)に導くことを特徴
とする同時消録型光磁気記録装置のピックアップ。 2 垂直磁化膜からなる記録領域(Aw)と一方の向き
に揃った垂直磁化を示す非記録領域(Am)とを有する
光磁気記録媒体に対して、 (1)前記記録領域(Aw)を照射する波長λwの光ビ
ーム(Bw)光源、 (2)前記非記録領域(Am)を照射する波長λwと異
なる波長λmの光ビーム(Bm)光源、(3)前記ビー
ム(Bw)とビーム(Bm)の方向を一致またはほぼ一
致させる光学部材、 (4)ビームスプリッター、 (5)前記ビーム(Bw)を透過しビーム(Bm)を透
過しない干渉フィルター、 (7)前記偏光ビーム(Bw)を第1光と第2光とに分
割する偏光ビームスプリッター、 (8)前記第1光を受光して電気信号に変換する第1光
電変換手段、及び (9)前記第2光を受光して電気信号に変換する第2光
電変換手段、 からなり、記録時には、 偏光ビーム(Bw)は前記光学部材及びビームスプリッ
ターを経て記録媒体の記録領域(Aw)に垂直入射させ
、 ビーム(Bm)は前記光学部材及びビームスプリッター
を経て記録媒体の非記録領域(Am)に垂直入射させ、 再生時には、 偏光ビーム(Bw)を前記光学部材及びビームスプリッ
ターを経て前記媒体の記録領域(Aw)に垂直入射させ
、該媒体で反射されたビーム(Bw)を前記ビームスプ
リッター及び干渉フィルターを経て前記偏光ビームスプ
リッターに入射させる ことを特徴とする同時消録型光磁気記録再生装置のピッ
クアップ。 3 垂直磁化膜からなる記録領域(Aw)と一方の向き
に揃った垂直磁化を示す非記録領域(Am)とを有する
光磁気記録媒体に対して、 (1)前記記録領域(Aw)を照射する波長λwの光ビ
ーム(Bw)光源、 (2)前記記録領域(Aw)及び非記録領域(Am)を
同時に照射する波長λwと異なる波長λmの偏光ビーム
(Bm)光源、 (3)前記ビーム(Bw)とビーム(Bm)の方向を一
致またはほぼ一致させる光学部材、 (4)ビームスプリッター、 (5)前記ビーム(Bw)を透過せずビーム(Bm)を
透過する干渉フィルター及び (7)前記偏光ビーム(Bm)を第1光と第2光とに分
割する偏光ビームスプリッター、 (8)前記第1光を受光して電気信号に変換する第1光
電変換手段、及び (9)前記第2光を受光して電気信号に変換する第2光
電変換手段、 からなり、記録時には、 ビーム(Bw)は前記光学部材及びビームスプリッター
を経て記録媒体の記録領域(Am)に垂直入射させ、偏
光ビーム(Bm)は前記光学部材及びビームスプリッタ
ーを経て記録媒体の記録領域(Aw)及び非記録領域(
Am)に垂直入射させ、 再生時には、偏光ビーム(Bm)を前記光学部材及びビ
ームスプリッターを経て記録媒体の記録領域(Aw)及
び非記録領域(Am)に垂直入射させ、該媒体の記録領
域(Aw)で反射された偏光ビーム(Bm)を前記ビー
ムスプリッター及び干渉フィルターを経て前記偏光ビー
ムスプリッターに入射させて第1光と第2光に分割し、
第1光を第1光電変換手段に受光させ、第2光を第2光
電変換手段に受光させることを特徴とする同時消録型光
磁気記録再生装置のピックアップ。 4 前記光学部材がビーム(Bw)又は(Bm)のいず
れか一方を透過し他方を反射するダイクロイックプリズ
ムであることを特徴とする特許請求の範囲第1〜3項の
いずれかに記載のピックアップ。 5 前記光学部材が、<1/4波長板/ビーム(Bw)
又は(Bm)のいずれか一方を反射し他方を透過させる
干渉フィルター/(1/4)波長板>の3層積層物を一
方の入射面に配設した偏光ビームスプリッターであるこ
とを特徴とする特許請求の範囲第1〜3項のいずれかに
記載のピックアップ。
[Claims] 1. For a magneto-optical recording medium having a recording area (Aw) made of a perpendicularly magnetized film and a non-recording area (Am) exhibiting perpendicular magnetization aligned in one direction, (1) the above-mentioned recording a light source (Bw) for a light beam with a wavelength λw that irradiates the area (Aw); (2) a light source (Bm) that irradiates the non-recording area (Am) with a light beam (Bm) that has a wavelength λm different from λw; (4) a beam splitter; (5) an interference filter that transmits the beam (Bw) and does not transmit the beam (Bm); and (6) a photoelectric member. The beam (Bw) is guided to the recording area (Aw) of the recording medium through the optical member and the beam splitter, and the beam (Bw) reflected by the medium is guided through the beam splitter and the interference filter. A pickup for a simultaneous erasing type magneto-optical recording device, characterized in that the photoelectric conversion means receives light, and the beam (Bm) is guided to a non-recording area (Am) of a recording medium via the optical member and a beam splitter. 2. For a magneto-optical recording medium having a recording area (Aw) consisting of a perpendicularly magnetized film and a non-recording area (Am) showing perpendicular magnetization aligned in one direction, (1) irradiating the recording area (Aw). (2) a light beam (Bm) source with a wavelength λm different from the wavelength λw that irradiates the non-recording area (Am); (3) the beam (Bw) and the beam (Bm); ); (4) a beam splitter; (5) an interference filter that transmits the beam (Bw) but not the beam (Bm); (8) a first photoelectric conversion means that receives the first light and converts it into an electrical signal; and (9) a polarizing beam splitter that splits the first light into an electrical signal; During recording, the polarized beam (Bw) is vertically incident on the recording area (Aw) of the recording medium via the optical member and the beam splitter, and the beam (Bm) is transmitted to the optical member. and a beam splitter to make the polarized beam (Bw) perpendicularly incident on the non-recording area (Am) of the recording medium, and during reproduction, make the polarized beam (Bw) perpendicularly incident on the recording area (Aw) of the medium via the optical member and the beam splitter, A pickup for a simultaneous erasing type magneto-optical recording/reproducing device, characterized in that a beam (Bw) reflected by a medium is made incident on the polarizing beam splitter through the beam splitter and an interference filter. 3. For a magneto-optical recording medium having a recording area (Aw) made of a perpendicularly magnetized film and a non-recording area (Am) showing perpendicular magnetization aligned in one direction, (1) irradiating the recording area (Aw). (2) a polarized beam (Bm) light source with a wavelength λm different from the wavelength λw that simultaneously irradiates the recording area (Aw) and the non-recording area (Am); (3) the beam (Bw) and the beam (Bm), (4) a beam splitter, (5) an interference filter that does not transmit the beam (Bw) but transmits the beam (Bm), and (7) a polarizing beam splitter that splits the polarized beam (Bm) into a first light and a second light; (8) a first photoelectric conversion means that receives the first light and converts it into an electrical signal; a second photoelectric conversion means that receives two lights and converts them into electrical signals; during recording, the beam (Bw) is vertically incident on the recording area (Am) of the recording medium via the optical member and the beam splitter, and is polarized; The beam (Bm) passes through the optical member and the beam splitter to the recording area (Aw) and non-recording area (Aw) of the recording medium.
During reproduction, the polarized beam (Bm) is made perpendicularly incident on the recording area (Aw) and non-recording area (Am) of the recording medium through the optical member and the beam splitter, and The polarized beam (Bm) reflected by Aw) is input to the polarized beam splitter through the beam splitter and interference filter to be split into first light and second light;
A pickup for a simultaneous erasing type magneto-optical recording and reproducing device, characterized in that a first light is received by a first photoelectric conversion means, and a second light is received by a second photoelectric conversion means. 4. The pickup according to claim 1, wherein the optical member is a dichroic prism that transmits either the beam (Bw) or the beam (Bm) and reflects the other beam. 5 The optical member is <1/4 wavelength plate/beam (Bw)
or (Bm), which reflects one of them and transmits the other, an interference filter/(1/4) wavelength plate> is disposed on one incident surface. A pickup according to any one of claims 1 to 3.
JP4783485A 1985-03-11 1985-03-11 Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type Pending JPS61206947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4783485A JPS61206947A (en) 1985-03-11 1985-03-11 Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4783485A JPS61206947A (en) 1985-03-11 1985-03-11 Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type

Publications (1)

Publication Number Publication Date
JPS61206947A true JPS61206947A (en) 1986-09-13

Family

ID=12786384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4783485A Pending JPS61206947A (en) 1985-03-11 1985-03-11 Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type

Country Status (1)

Country Link
JP (1) JPS61206947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430042A (en) * 1987-07-24 1989-01-31 Matsushita Electric Ind Co Ltd Magneto-optical memory device
US4905215A (en) * 1986-12-22 1990-02-27 Brother Kogyo Kabushiki Kaisha System for reading information from two storage layers of an optical disk in different manners
US5375109A (en) * 1989-07-14 1994-12-20 Deutsche Thomson-Brandt Gmbh Magneto-optical recording and/or reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905215A (en) * 1986-12-22 1990-02-27 Brother Kogyo Kabushiki Kaisha System for reading information from two storage layers of an optical disk in different manners
JPS6430042A (en) * 1987-07-24 1989-01-31 Matsushita Electric Ind Co Ltd Magneto-optical memory device
US5375109A (en) * 1989-07-14 1994-12-20 Deutsche Thomson-Brandt Gmbh Magneto-optical recording and/or reproducing device

Similar Documents

Publication Publication Date Title
JPH0321961B2 (en)
EP0107754A1 (en) Apparatus for magneto-optical information storage
JPH0512746A (en) Optical head
JPH02173933A (en) Multiple recording method and multiple recording and reproducing device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
GB2139784A (en) Optical information processing apparatus
US5777974A (en) Optical head and magneto-optical reproducing apparatus using the same
JPH06510153A (en) optical scanning device
JPS61206952A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPS61206951A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPS61206950A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61206949A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JP2935375B2 (en) Magneto-optical recording / reproducing device
JPH0445134Y2 (en)
JPS5938949A (en) Magneto-optical reproducer
JPH03273545A (en) Magneto-optical recording and reproducing device
JP2851399B2 (en) Magneto-optical recording / reproducing device
KR100280878B1 (en) Method and apparatus for reproducing data on magneto-optical recording media
JPH0467241B2 (en)
JP2946489B2 (en) Information recording / reproducing device
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS61206948A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPH07134840A (en) Optical recording medium and optical recording medium
JPH1069678A (en) Magneto-optical recording medium, and its reproducing device and its reproducing method
JPH03242844A (en) Data recording method for magneto-optical recording medium