JPS61204984A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPS61204984A
JPS61204984A JP4580485A JP4580485A JPS61204984A JP S61204984 A JPS61204984 A JP S61204984A JP 4580485 A JP4580485 A JP 4580485A JP 4580485 A JP4580485 A JP 4580485A JP S61204984 A JPS61204984 A JP S61204984A
Authority
JP
Japan
Prior art keywords
film
gate electrode
electrode
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4580485A
Other languages
Japanese (ja)
Inventor
Isamu Hairi
勇 羽入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4580485A priority Critical patent/JPS61204984A/en
Publication of JPS61204984A publication Critical patent/JPS61204984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve characteristics by reducing source resistance without ion implantation in a heterojunction FET and the like and to facilitate high degree of integration in forming an IC, by forming an insulating film, whose end surfaces are contacted with a substrate, as an insulator between a source electrode and a gate electrode and between a drain electrode and gate electrode. CONSTITUTION:On a semiconductor substrate 1, an insulating film 2 and a resist film 3 are deposited and mask windows 4 are formed. Then a metal film 5 is deposited by evaporation. A source electrode 6 and a drain electrode 7 are formed in the mask windows 4. Nitride films 12 of silicon nitride are deposited so as to cover the exposed surfaces of the electrodes 6 and 7 and so that the end surfaces are contacted of the electrodes 6 and 7 and so that the end surfaces are contacted with the substrate 1. Then, together with the film 3, the film 5 and the film 12 are lifted off. The film 2 is further etched away, and the substrate 1 is exposed. Then, with the film 12 as a mask, an N-type GaAs layer 1c of the substrate 1 is selectively etched, and a gate electrode forming region 9a is formed. A metal film 10 forming a three-layer gate electrode of Ti.Pt.Au is deposited by evaporation. Then the film 10 is patterned and a gate electrode 13 is formed. Thus the formation of an electrode is completed.

Description

【発明の詳細な説明】 〔概要〕 電界効果トランジスタ(FET)およびその製造方法で
あって、ソース抵抗を低減させるため、ソース電極およ
びドレイン電極を選択的に覆う絶縁膜をゲート電極との
間の絶縁体にすることによって、ソース電極およびドレ
イン電極とゲート電極との間隙を容易に小さくし、例え
ばヘテロ接合FETの特性向上と高集積化を可能にする
[Detailed Description of the Invention] [Summary] A field effect transistor (FET) and a method for manufacturing the same, in which an insulating film that selectively covers a source electrode and a drain electrode is separated from a gate electrode in order to reduce source resistance. By making it an insulator, the gap between the source electrode, the drain electrode, and the gate electrode can be easily reduced, making it possible to improve the characteristics and increase the integration of, for example, a heterojunction FET.

〔産業上の利用分野〕[Industrial application field]

本発明は、FETおよびその製造方法に係り、特に、ソ
ース電極、ゲート電極、ドレイン電極およ  −びそれ
らの間にある絶縁体の構成に関す。
The present invention relates to a FET and a method for manufacturing the same, and particularly to the structure of a source electrode, a gate electrode, a drain electrode, and an insulator between them.

FETは半導体装置の機能素子として多用されている。FETs are frequently used as functional elements in semiconductor devices.

そしてその高速動作の要望に応えるため、ガリウム砒素
(GaAs)系半導体を使用したヘテロ接合FETなど
の研究が進められている。
In order to meet the demand for high-speed operation, research is underway on heterojunction FETs using gallium arsenide (GaAs)-based semiconductors.

このヘテロ接合1?ETは、二次元電子ガス(2DEC
)形成領域のドーピングプロファイルが急峻であるのが
望ましいため、イオン注入によるソース抵抗の低減化は
避けるのが望ましい。
This heterojunction 1? ET is two-dimensional electron gas (2DEC
) Since it is desirable that the doping profile of the formation region be steep, it is desirable to avoid reducing the source resistance by ion implantation.

この場合上記抵抗は、ソース電極やドレイン電極とゲー
ト電極との間隙の大きさが小さい程低減するので、該間
隙は特性向上のため小さくすることが望まれる。
In this case, the resistance decreases as the gap between the source electrode or drain electrode and the gate electrode becomes smaller, so it is desirable to make the gap smaller in order to improve the characteristics.

〔従来の技術〕[Conventional technology]

ソース抵抗を低減さ」Fるためのイ′:、4ンメP人を
行わないヘテロ接合FETの例の製造手順は第3図(a
1〜(f)の工程順側断面図に示す如くである。
The fabrication procedure for an example of a heterojunction FET that does not require a 4-channel FET to reduce the source resistance is shown in Figure 3 (a).
As shown in the step-by-step side sectional views of 1 to (f).

即も先ず〔図(al参照〕、ノンドープGaAs基体1
a」二にn型アルミニウムガリウム砒素(AIGaAs
) 屓1bとn型GaAs層1cを梼屓してなる′□1
6導体基板1土に、例えば二酸化シリニ1ン(Si02
)の絶縁膜2と1/シスト膜3とを被着し、露光、現像
fよるI/ yシス1−膜3の一部除去およびI/・ン
スト映3をマスクにした絶縁膜2のエンチング除去によ
り1、ソース電極およびドIメイン電極形成位置にレジ
スI・膜3と絶縁膜2とでズテンシル構造Qでな2つ基
板1を表出さ(るマスク窓4を形成する。
First of all, [see figure (al)], non-doped GaAs substrate 1
a” Second, n-type aluminum gallium arsenide (AIGaAs
) Formed by separating the layer 1b and the n-type GaAs layer 1c'□1
6 Conductor substrate 1 Soil, for example, silicon dioxide (Si02
), the insulating film 2 and the 1/cyst film 3 are deposited, a portion of the I/y cis 1-film 3 is removed by exposure and development f, and the insulating film 2 is etched using the I/y cyst film 3 as a mask. By removing, 1. a mask window 4 is formed to expose two substrates 1 with a stencil structure Q made up of the resist I/film 3 and the insulating film 2 at the positions where the source electrode and the domain I main electrode are to be formed.

次いで〔図(bl参照〕、例えば金ゲルマニウム(Au
Ge)  ・金(Au)の二層でなりソース電極および
ドレイン電極を形成する金属膜5を例えば蒸着により被
着する。さすれば、マスク窓4の中にソース電極6とド
レイン電極7とが形成される。言うまでもなく金属膜5
はレジスト膜3上にも被着する。
Next [see figure (bl)], for example, gold germanium (Au
A metal film 5 consisting of two layers of Ge) and gold (Au) and forming a source electrode and a drain electrode is deposited, for example, by vapor deposition. Then, a source electrode 6 and a drain electrode 7 are formed in the mask window 4. Needless to say, metal film 5
is also deposited on the resist film 3.

次いで〔図(C)参照〕、レジスト膜3と共に金属膜5
をリフトオフして絶縁膜2を表出させる。
Next [see figure (C)], the metal film 5 is formed together with the resist film 3.
is lifted off to expose the insulating film 2.

次いで〔図(d)参照〕、全面にレジス1〜膜8を被着
して、露光、現像によりゲート電極形成位置にマスク窓
8aを形成し、これをマスクにした絶縁膜2の選択的エ
ツチングおよびn型GaAs層1eの選択的エツチング
(ゲートリセス)によりゲー ト電極形成領域9を形成
する。
Next [see Figure (d)], resists 1 to 8 are deposited on the entire surface, and a mask window 8a is formed at the gate electrode formation position by exposure and development, and selective etching of the insulating film 2 is performed using this as a mask. Then, a gate electrode forming region 9 is formed by selectively etching (gate recess) the n-type GaAs layer 1e.

次いで〔図(8)参照〕、例えばチタン(Ti)・白金
(Pt)・Auの三層でなりゲート電極を形成する金属
膜10を例えば蒸着により被着する。さすれば、ゲート
電極形成領域9内にゲーI−電極1)が形成される8金
屈膜10はレジスト膜8」二にも被着する。
Next [see FIG. 8], a metal film 10 consisting of, for example, three layers of titanium (Ti), platinum (Pt), and Au and forming a gate electrode is deposited by, for example, vapor deposition. Then, the 8-metal gold film 10 on which the gate I-electrode 1) is formed in the gate electrode forming region 9 also adheres to the resist film 8''.

次いで〔図(f)参照〕、レジスト膜8と共Gこ金属膜
10をリフトオフして、ソース電極6、トレイン電極7
およびゲー ト電極1)の形成を完了する。
Next [see figure (f)], the resist film 8 and the metal film 10 are lifted off to form the source electrode 6 and the train electrode 7.
and complete the formation of gate electrode 1).

この後は図示を省略しであるが、絶縁膜の被塔、コンタ
クトボールの形成、配線の形成などの工程を経てヘテロ
接合FETを完成させる。
After this, although not shown in the drawings, the heterojunction FET is completed through steps such as covering with an insulating film, forming contact balls, and forming wiring.

(発明が解決しようと一4゛る問題点〕上記従来の製造
方法においこ、デー1−電極1)の形成は、ソース電極
6とドレイ:/電極7との間にある絶縁膜2にゲーt・
電極形成領域9を形成しこ行う。そし、7ゲート電極形
成領域9の形成は、図(d)により説明した露光の際に
位置合わせ作X苓必要としている。このため1−5記位
濯合わせの誤差を吸収出来るよう、図(f)に示すソー
ス電極6とゲート電極1)との間隙づ゛法aおよびドレ
イン電極“lとデー1〜電極1)との間隙寸法1)を太
き(せざるを(ηない問題がある。
(Problem that the invention seeks to solve) In the conventional manufacturing method described above, the formation of the electrode 1) is performed on the insulating film 2 between the source electrode 6 and the drain electrode 7. t・
An electrode forming region 9 is formed. The formation of the seven gate electrode formation regions 9 requires alignment operations during exposure as explained with reference to FIG. 3(d). Therefore, in order to absorb the 1-5 position alignment error, the gap between the source electrode 6 and the gate electrode 1) shown in Figure (f) should be There is a problem that the gap size 1) cannot be increased (η).

これに伴い形成されたパ・テ1゛コ接合1月灯は、ソー
・大抵抗およびドレ・イン抵抗が大きくなって、特性の
良くないものになる問題を有する。
The P/T single junction lamp that has been formed in accordance with this has a problem in that the saw resistance and the drain resistance become large, resulting in poor characteristics.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点は、本発明の要旨説明図である第1図に示す
如く、ソース電極6とゲート電″極13との間およびド
レイン電極7とゲート電極13との間の絶縁体が絶縁膜
12でなり、該絶縁膜12の端面がトランジスタを形成
する半導体基板1A (第3図図示の場合の基板1)に
接しているFETによって解決され、 また、半導体基板1A裏表面接してソース電極6および
ドレイン電極7を形成し、4更に両電極6.7それぞれ
の露出面を選択的に覆う絶縁膜12を形成する工程と、
」−記形成された両絶縁膜12の間にゲート電極材料を
充填してゲート電極13を形成する工程とを含んでなる
FETの製造方法によって解決される。
As shown in FIG. 1, which is a diagram illustrating the gist of the present invention, the above problem is caused by the fact that the insulator between the source electrode 6 and the gate electrode 13 and between the drain electrode 7 and the gate electrode 13 is an insulating film 12. This is solved by the FET in which the end face of the insulating film 12 is in contact with the semiconductor substrate 1A (substrate 1 in the case shown in FIG. 3) forming the transistor, and the source electrode 6 and forming a drain electrode 7, and further forming an insulating film 12 selectively covering the exposed surfaces of both electrodes 6 and 7;
The present invention is solved by a method of manufacturing an FET, which includes the steps of: - filling a gate electrode material between both of the insulating films 12 formed as described above to form a gate electrode 13;

〔作用〕[Effect]

上記製造方法においてゲート電極形成領域の形成は、絶
縁膜12の形成によってなされるため従来のような位置
合わせ作業を必要としない。然も端面が基板1Aに接す
る絶縁膜12が、ソース電極6とゲート電極13との間
およびドレイン電極7とゲート電極13との間の絶縁体
になる。
In the above manufacturing method, the gate electrode forming region is formed by forming the insulating film 12, so that no alignment work is required as in the conventional method. Furthermore, the insulating film 12 whose end surface is in contact with the substrate 1A serves as an insulator between the source electrode 6 and the gate electrode 13 and between the drain electrode 7 and the gate electrode 13.

従って形成されるFETは、ソース電極6とゲート電極
13との間隙寸法aおよびドレイン電極7とゲート電極
13との間隙寸法すが、絶縁膜12の厚さ寸法になって
従来より小さくなる。
Therefore, in the FET formed, the gap size a between the source electrode 6 and the gate electrode 13 and the gap size between the drain electrode 7 and the gate electrode 13 are smaller than the conventional ones because of the thickness size of the insulating film 12.

然も、ソース電極6とドレイン電極7との間隔を小さく
出来るのでICを形成する際の高集積化が容易になる。
Moreover, since the distance between the source electrode 6 and the drain electrode 7 can be made small, it becomes easy to achieve high integration when forming an IC.

かくして例えばヘテロ接合FETにおいて、イオン注入
することなしにソース抵抗を低減させ特性を向上させる
ことが可能になり、更にtC形成の際の高集積化が容易
になる。
In this way, for example, in a heterojunction FET, it becomes possible to reduce the source resistance and improve the characteristics without ion implantation, and furthermore, it becomes easy to achieve high integration when forming the tC.

〔実施例〕〔Example〕

以下ソース抵抗を低減させるためのイオン注入を行わな
いヘテロ接合FETにおける本発明の実施例についてそ
のその構成と製造手順の要部を示す第2図(a)〜(f
)の工程順側断面図により説明する。
2(a) to (f) showing the main parts of the structure and manufacturing procedure of an embodiment of the present invention in a heterojunction FET that does not perform ion implantation to reduce source resistance.
) will be explained using step-by-step side sectional views.

第2図(a)〜mは第3図(a) 〜(f)に対応する
図で、FETの要部は図(f)に示される。
FIGS. 2(a) to 2m correspond to FIGS. 3(a) to 3(f), and the main part of the FET is shown in FIG. 2(f).

このFETは、第3図図示の場合に比較して、絶縁J1
m!2が絶縁1)12に、ゲート電極1)がゲート電極
13に替わっている。
Compared to the case shown in FIG. 3, this FET has an insulation J1
m! 2 is replaced with an insulator 1) 12, and the gate electrode 1) is replaced with a gate electrode 13.

即ち、ソース電極6とゲート電極13との間およびドレ
イン電極7とゲート電極13との間の絶縁体が端面を半
導体基板1に接する絶縁膜12でなっているため、ソー
ス電極6とゲート電極13との間隙寸法aおよびドレイ
ン電極7とゲート電極13との間隙寸法すが、絶縁膜1
2の厚さ寸法になって第3図(f)図示より小さくなっ
ている。  、このため、このFETは従来よりソース
抵抗が小さくなり、然も、ソース電極6とドレイン電極
7との間隔も従来より小さくすることが出来てIC形成
の際に高集積化が容易になる。
That is, since the insulator between the source electrode 6 and the gate electrode 13 and between the drain electrode 7 and the gate electrode 13 is the insulating film 12 whose end face is in contact with the semiconductor substrate 1, the source electrode 6 and the gate electrode 13 are The gap dimension a between the drain electrode 7 and the gate electrode 13 and the gap dimension a between the insulating film 1
2, which is smaller than that shown in FIG. 3(f). Therefore, this FET has a lower source resistance than the conventional FET, and the distance between the source electrode 6 and the drain electrode 7 can also be made smaller than the conventional one, making it easier to achieve high integration when forming an IC.

このFIETの製造方法は以下の如くである。The method for manufacturing this FIET is as follows.

先ず〔図(a)参照〕、第3図(a)図示と同様にして
、半導体基板1上に絶縁膜2とレジスト膜3を被着して
マスク窓4を形成する。
First, as shown in FIG. 3(a), an insulating film 2 and a resist film 3 are deposited on a semiconductor substrate 1 to form a mask window 4. Referring to FIG.

ここでは、ステンシル構造のマスク窓4が形成出来れば
よいので、絶縁膜2とレジスト膜3とを合わせた構成を
二層または三層構成のレジス)INなどにしても良い。
Here, since it is sufficient to form the mask window 4 having a stencil structure, the combined structure of the insulating film 2 and the resist film 3 may be a two-layered or three-layered resist (IN).

次いで〔図山)参照〕、第3図図示と同様にしてソース
電極およびドレイン電極を形成する金属膜5 (例えば
^uGe−Auの二層構成)を例えば蒸着により被着し
てマスク窓4内にソース電極6とドレイン電極7を形成
し、続いてソース電極6およびドレイン電極7それぞれ
の露出面を覆い端面が基板1に接するように例えば窒化
シリコン(SiN)の絶縁1)!12を例えば低温スパ
ッタリングにより被着する。
Next, in the same manner as shown in FIG. 3, a metal film 5 (for example, a two-layer structure of uGe-Au) forming a source electrode and a drain electrode is deposited, for example, by vapor deposition, and is deposited inside the mask window 4. A source electrode 6 and a drain electrode 7 are formed on the substrate 1, and then the exposed surfaces of the source electrode 6 and the drain electrode 7 are covered so that their end surfaces are in contact with the substrate 1. 12 is deposited, for example, by low temperature sputtering.

ここで絶縁膜12の材料をSiNにしたのは、後部の絶
縁膜2の除去に際して除去されないようにするためで、
絶縁膜2の材料を例えばレジストにした場合には、5i
Ozにしても良い。
The reason why the material of the insulating film 12 is made of SiN is to prevent it from being removed when the rear insulating film 2 is removed.
When the material of the insulating film 2 is, for example, resist, 5i
It may be set to oz.

金属膜5および絶縁膜12は、言うまでもなくレジスト
膜3上にも被着する。
Needless to say, the metal film 5 and the insulating film 12 are also deposited on the resist film 3.

次いで〔図(Q)参照〕、レジスト膜3と共に金属膜5
および絶縁膜12をリフトオフし、更に絶縁膜2をエツ
チング除去して基板1を表出させる。
Next [see figure (Q)], the metal film 5 is formed together with the resist film 3.
Then, the insulating film 12 is lifted off, and the insulating film 2 is further removed by etching to expose the substrate 1.

次いで(図(d)参照〕、絶縁膜12をマスクにして基
板1のn型GaAs層ICを選択的にエツチング(ゲー
トリセス)しゲート電極形成領域9aを形成する。
Next (see Figure (d)), using the insulating film 12 as a mask, the n-type GaAs layer IC of the substrate 1 is selectively etched (gate recessed) to form a gate electrode forming region 9a.

このエツチングはウェットまたはドライの何れでも可能
であるが、ヘテロ接合FETの場合は特性の制御性の点
からドライエツチングが望ましい。
This etching can be done either wet or dry, but in the case of a heterojunction FET, dry etching is preferred from the viewpoint of controllability of characteristics.

次いで(図(e)参照〕、例えばTi−Pt−篩の三層
でなりゲート電極を形成する金H1)10を例えば蒸着
により被着する。さすれば、金属膜10はゲート形成領
域9aを充填すると共に全面に形成される。
Then (see figure (e)) gold H1 10 is deposited, for example by vapor deposition, which consists of three layers of Ti--Pt-sieve and forms the gate electrode. Then, the metal film 10 fills the gate formation region 9a and is formed over the entire surface.

次いで〔図(f)参照〕、金属1g1)0をバターニン
グしてゲート電極13を形成し、ソース電極6、ドレイ
ン電極7およびゲート電極13の形成を完了する。
Next [see Figure (f)], the metal 1g1)0 is patterned to form the gate electrode 13, and the formation of the source electrode 6, drain electrode 7, and gate electrode 13 is completed.

この後は図示を省略しであるが従来と同様に、絶縁膜の
被着、コンタクトホールの形成、配線の形成などの工程
を経て、所望のへテロ接合FETを完成させることが出
来る。
Thereafter, although not shown, the desired heterojunction FET can be completed through steps such as depositing an insulating film, forming contact holes, and forming interconnections in the same manner as in the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、ソース電
極とゲート電極との間隙寸法およびドレイン電極とゲー
ト電極との間隙寸法を従来より小さくすることが可能な
FETおよびその製造方法が提供出来て、例えばヘテロ
接合FETにおいて、イオン注入することなしにソース
抵抗を容易に低減させて特性を向上させると共Cご、I
C形成の際の高集積化を容易にさせることを可能にさせ
る効果がある。
As explained above, according to the configuration of the present invention, it is possible to provide an FET and a method for manufacturing the same in which the gap size between the source electrode and the gate electrode and the gap size between the drain electrode and the gate electrode can be made smaller than conventional ones. For example, in a heterojunction FET, the source resistance can be easily reduced and the characteristics improved without ion implantation.
This has the effect of facilitating high integration during C formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の要旨説明図、 第2図(al〜(f)は本発明によるFETの実施例に
ついてその構成と製造手順の要部を示す工程順側断面図
、 第3図fa)〜(f)は従来のへテロ接合FET0例に
ついてその製造手順の要部を示す工程順側断面図である
。 第1図へ・第3図においで1. 1、1Aは半導体基板、 !aはノンドープGaAs基体、 1hはn型AlGaAs層、 1cはn型Gan5N、 2.12は絶縁膜、 3.8は!/シスト1漠、 4.8aばマスク窓、 5、lOは金屈欣、 6はソース電極、 7はドレイン電極、 9.9aはゲーl〜電極形成領域、 1).13はゲート電極である。
Fig. 1 is an explanatory diagram of the gist of the present invention; Fig. 2 (al to f) are side sectional views in the order of steps showing the configuration and main parts of the manufacturing procedure of an embodiment of the FET according to the present invention; Fig. 3 fa) - (f) are step-order side cross-sectional views showing the main parts of the manufacturing procedure for an example of a conventional heterojunction FET. To Figure 1/In Figure 3 1. 1, 1A is a semiconductor substrate, ! a is a non-doped GaAs substrate, 1h is an n-type AlGaAs layer, 1c is an n-type Gan5N, 2.12 is an insulating film, 3.8 is! / cyst 1, 4.8a is a mask window, 5, 1O is a metal oxide, 6 is a source electrode, 7 is a drain electrode, 9.9a is a gate electrode formation region, 1). 13 is a gate electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)ソース電極(6)とゲート電極(13)との間お
よびドレイン電極(7)とゲート電極(13)との間の
絶縁体が絶縁膜(12)でなり、 該絶縁膜(12)の端面がトランジスタを形成する半導
体基板(1A)に接していることを特徴とする電界効果
トランジスタ。
(1) The insulator between the source electrode (6) and the gate electrode (13) and between the drain electrode (7) and the gate electrode (13) is an insulating film (12), and the insulating film (12) A field-effect transistor characterized in that an end face of the field-effect transistor is in contact with a semiconductor substrate (1A) forming the transistor.
(2)半導体基板(1A)表面に接してソース電極(6
)およびドレイン電極(7)を形成し、更に両電極(6
)、(7)それぞれの露出面を選択的に覆う絶縁膜(1
2)を形成する工程と、 上記形成された両絶縁膜(12)の間にゲート電極材料
を充填してゲート電極(13)を形成する工程とを含ん
でなることを特徴とする電界効果トランジスタの製造方
法。
(2) Source electrode (6) in contact with the surface of the semiconductor substrate (1A)
) and drain electrode (7), and further both electrodes (6
), (7) an insulating film (1
2); and a step of filling a gate electrode material between the two insulating films (12) formed above to form a gate electrode (13). manufacturing method.
JP4580485A 1985-03-08 1985-03-08 Field effect transistor and manufacture thereof Pending JPS61204984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4580485A JPS61204984A (en) 1985-03-08 1985-03-08 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4580485A JPS61204984A (en) 1985-03-08 1985-03-08 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61204984A true JPS61204984A (en) 1986-09-11

Family

ID=12729451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4580485A Pending JPS61204984A (en) 1985-03-08 1985-03-08 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61204984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032517A (en) * 2005-07-29 2007-02-08 Kayaba Ind Co Ltd Variable displacement vane pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032517A (en) * 2005-07-29 2007-02-08 Kayaba Ind Co Ltd Variable displacement vane pump

Similar Documents

Publication Publication Date Title
JPH0354464B2 (en)
JPH05206451A (en) Mosfet and its manufacture
JP2780162B2 (en) Method for manufacturing semiconductor device
JP3210657B2 (en) Heterojunction bipolar transistor
JPS6286838A (en) Manufacture of integrated circuit
JP2003100775A (en) Semiconductor device and manufacturing method thereof
JPS61204984A (en) Field effect transistor and manufacture thereof
JPH11274175A (en) Semiconductor device and its manufacture
JP2809131B2 (en) Method for manufacturing semiconductor device
JP2001144106A (en) Semiconductor device and manufacturing method thereof
JPS62132366A (en) Manufacture of vertical field effect transistor
JP4606552B2 (en) Semiconductor device
JPH0394451A (en) Wiring structure of semiconductor device
JPS6235679A (en) Manufacture of semiconductor device
JPH03132044A (en) Manufacture of semiconductor device
JP2838932B2 (en) Field effect type semiconductor device
JPH0260213B2 (en)
JP2000021902A (en) Field effect transistor and manufacture thereof
JPH03268332A (en) Manufacture of semiconductor device
JPS6323665B2 (en)
JPH0330438A (en) Manufacture of semiconductor device
JPH02105539A (en) Field-effect transistor
JPH08153787A (en) Manufacture of semiconductor integrated circuit
JPH113997A (en) Manufacture of semiconductor device
JPH05275456A (en) Semiconductor device and its manufacture