JPS61204551A - Magnetic field generator of nuclear magnetic resonance diagnosis device - Google Patents

Magnetic field generator of nuclear magnetic resonance diagnosis device

Info

Publication number
JPS61204551A
JPS61204551A JP60044812A JP4481285A JPS61204551A JP S61204551 A JPS61204551 A JP S61204551A JP 60044812 A JP60044812 A JP 60044812A JP 4481285 A JP4481285 A JP 4481285A JP S61204551 A JPS61204551 A JP S61204551A
Authority
JP
Japan
Prior art keywords
electromagnet
magnetic field
temperature
temp
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044812A
Other languages
Japanese (ja)
Inventor
Takeshi Shudo
主藤 剛
Takeshi Miyajima
宮島 剛
Makoto Uematsu
植松 誠
Osamu Uchida
治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60044812A priority Critical patent/JPS61204551A/en
Publication of JPS61204551A publication Critical patent/JPS61204551A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a stable magnetic field with a simple refrigerant device by detecting the temp. of an electromagnet from the change of a magnetic field and feeding back the deviation between the detected temp. and reference temp. to a reference value which is so generated as to apply prescribed electric current to the electromagnet. CONSTITUTION:The temp. deviation signal DELTAEt between the voltage signal Ec proportional to a coil temp. and the reference temp. signal Er equiv. to the temp. of the coil 2a of the electromagnet 2 is obtd. at an addition point P3. The signal DELTAEt is converted to a temp. deviation signal Et' normalized by a buffer amplifier 7. The reference voltage Eref and the deviation signal DELTAEt' of the coil temp. are added at an addition point P4. As a result, the next reference signal Eref' is Eref'=Eref+DELTAEt' and is corrected by the coil temp. of the electromagnet 2. Excitation current I0 is thus outputted in accordance with the signal Eref'. The extremely stable magnetic field is thus obtd. even the temp. of the cooling water for cooling the coil of the electromagnet 2, the flow rate of said water or the temp. of the secondary coil 2a fluctuates.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核磁気共鳴診断装置の磁界発生装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a magnetic field generating device for a nuclear magnetic resonance diagnostic apparatus.

〔発明の背景〕[Background of the invention]

核磁気共鳴診断装置の計測手法及び構成等は特開昭51
−53888 、特開昭52−127389.  rN
MR医学」 (核磁気共鳴医学全編、昭和59年−1月
)等に記載されているので、説明を省略するが、本装置
で得られる生体の断層像の精細度は核磁気共鳴の場を与
える磁場発生装置の磁場安定度により大きな影響を受け
るので、その磁場の高安定度が要求される。実用化され
ている電磁石形の磁場発生装置においては、磁場安定後
は1〜10ppmの範囲である。また電磁画形磁場発生
装置では、実用的限界から磁場強度は0.1〜0.2テ
スラであり、人体の画像診断を目的としていることから
電磁石のコイル径は0.7〜1.0mである。従つて電
磁石の消費電力は30〜50kwにも達する。
The measurement method and configuration of nuclear magnetic resonance diagnostic equipment are disclosed in Japanese Patent Application Laid-Open No. 1983
-53888, JP-A-52-127389. rN
MR Medicine (Complete Edition of Nuclear Magnetic Resonance Medicine, January 1980), etc., so I will omit the explanation, but the definition of the tomographic image of a living body obtained with this device is similar to that of the nuclear magnetic resonance field. Since it is greatly affected by the stability of the magnetic field of the magnetic field generator, high stability of the magnetic field is required. In electromagnet-type magnetic field generators that have been put into practical use, the magnetic field is in the range of 1 to 10 ppm after the magnetic field is stabilized. In addition, in electromagnetic image magnetic field generators, the magnetic field strength is 0.1 to 0.2 Tesla due to practical limits, and the electromagnet coil diameter is 0.7 to 1.0 m because the purpose is image diagnosis of the human body. be. Therefore, the power consumption of the electromagnet reaches as much as 30 to 50 kW.

電磁石を常温(20,30℃)で使用するためには冷却
を必らず必要とする。その冷却は効率を考慮し、一般的
に水冷却を採用している。
In order to use an electromagnet at room temperature (20, 30° C.), cooling is necessarily required. Considering efficiency, water cooling is generally used for cooling.

この常電導の電磁石ではコイル材料に銅かアルミニュー
ムを使用する。従ってコイルに温度変化を生ずると、コ
イル径も変化する。その結果、磁場の強さも変化する。
This normally conducting electromagnet uses copper or aluminum as the coil material. Therefore, when a temperature change occurs in the coil, the coil diameter also changes. As a result, the strength of the magnetic field also changes.

コイル温度変化で生ずる磁場強さの変化は(1)式で示
される。
Changes in magnetic field strength caused by changes in coil temperature are expressed by equation (1).

ΔH牟2αΔt      ・・・・・・(1)ΔH:
磁場強さの変化量 α:コイル材料の線膨張係数(ppm/”C)Δt:コ
イルの変化温度(”C) (1)式から、Δtが1℃変化すると、コイルをアルミ
ニュウムとして、αは23ppm/’Cであるから、磁
場強さの変化AHは、43ppmとなる。事実電磁石の
コイル温度変化による磁場の変化は計算値と良く一致す
る1以上のことから、磁場安定度を110PP以下とす
ると、冷却水温度の変化幅を0.25 ℃以下にする必
要があった。
ΔH㉟2αΔt ・・・・・・(1) ΔH:
Amount of change in magnetic field strength α: Coefficient of linear expansion of coil material (ppm/''C) Δt: Change temperature of coil (''C) From equation (1), when Δt changes by 1°C, when the coil is made of aluminum, α becomes Since it is 23 ppm/'C, the change AH in magnetic field strength is 43 ppm. In fact, the change in the magnetic field due to the change in the electromagnet coil temperature is 1 or more, which is in good agreement with the calculated value, so if the magnetic field stability is set to 110PP or less, the range of change in the cooling water temperature needs to be 0.25 °C or less. .

第2図は従来例を示す。1は数ppmと高い安定度の励
磁電流工。を供給し得る定電流電源で、励磁電流工。に
より電磁石2は励磁される6電磁石2にはその熱エネル
ギーを吸収し、冷却するために、冷却水装置3から冷却
水Qが供給されている。定電流電源1においては、一定
の励磁電流工。
FIG. 2 shows a conventional example. 1 is an excitation current generator with high stability of several ppm. A constant current power supply that can supply excitation current. The electromagnet 2 is excited by 6. Cooling water Q is supplied from a cooling water device 3 to the electromagnet 2 in order to absorb the thermal energy and cool it. In the constant current power supply 1, the excitation current is constant.

を出力するための、基準となる高安定な基準電圧源1a
と、励磁電流工。の出力点P2から電流を検出し、これ
を入力の加え合せ点P8へ帰還する帰還増幅器1cが設
けられ、加え合せ点P、で基準電圧源1aの基準信号E
refと帰還増幅器1cからの帰還信号E、との偏差信
号ΔEを得て、この偏差信号ΔEを高い増幅度と大電力
容量を有する誤差増幅器1bにより増幅し、常に基準電
圧源1aの基準信号Hrefに一定の増幅度を乗じた励
磁電流を得ている。かかる構成の磁界発生装置において
、温度に依存する磁場の変動、を極小化するために、冷
却水装置から供給される冷却水の安定化と電磁石の周囲
温度の安定化に努力が払われていた。従って、特に冷却
水装置は規模が大きく、かつ高価なものとなり、装置全
体のコストパーフォーマンスの低下を招く欠点を有して
いた。
A highly stable reference voltage source 1a that serves as a reference for outputting
and excitation electrician. A feedback amplifier 1c is provided which detects a current from an output point P2 and returns it to an input summing point P8, and at the summing point P, a reference signal E of the reference voltage source 1a is
A deviation signal ΔE between ref and the feedback signal E from the feedback amplifier 1c is obtained, and this deviation signal ΔE is amplified by the error amplifier 1b having a high amplification degree and large power capacity, and the reference signal Href of the reference voltage source 1a is always The excitation current is obtained by multiplying by a certain amplification degree. In a magnetic field generator with such a configuration, efforts have been made to stabilize the cooling water supplied from the cooling water device and the temperature surrounding the electromagnet in order to minimize temperature-dependent fluctuations in the magnetic field. . Therefore, the cooling water system in particular becomes large in scale and expensive, which has the drawback of lowering the cost performance of the entire system.

従来の冷却水装置によれば、−次冷却器からの冷水を熱
交換器へ供給し、これにより、熱交換器二次側の、電磁
石へ供給される循環式の二次冷却水を冷却する。二次冷
却水の高度な温度安定性は、−次冷水の三方弁による流
量制御、二次冷却水のヒータによる加熱制御、さらには
二次冷却水系に設けられたバッファタンクによる積分効
果などの多重の温度制御によって達成されていた。第3
図は、その水温制御の一例を示したもので、1℃の安定
度を有する例である。しかし、冷却水装置の簡易化、高
経済性化、小形軽量化、高信頼化は、電磁石方式の核磁
気共鳴診断装置の大きな課題である。
According to the conventional cooling water system, cold water from the secondary cooler is supplied to the heat exchanger, thereby cooling the circulating secondary cooling water that is supplied to the electromagnet on the secondary side of the heat exchanger. . The high temperature stability of the secondary cooling water is achieved by multiple factors, including flow rate control using a three-way valve for the secondary cooling water, heating control using the secondary cooling water heater, and an integral effect from the buffer tank installed in the secondary cooling water system. This was achieved through temperature control. Third
The figure shows an example of water temperature control, and is an example with stability of 1°C. However, simplifying the cooling water system, making it more economical, making it smaller and lighter, and making it more reliable are major challenges for electromagnetic nuclear magnetic resonance diagnostic equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は電磁石の冷却に用いられる冷媒装置の冷
媒温度の安定度を緩和し、究極のところその精密な温度
調節によらずとも、簡単な冷媒装置で安定な磁場を得る
ことができる核磁気共鳴診断装置の磁界発生装置を提供
することにある。
The purpose of the present invention is to alleviate the stability of the refrigerant temperature of a refrigerant device used to cool an electromagnet, and ultimately to create a core that can obtain a stable magnetic field with a simple refrigerant device without the need for precise temperature control. An object of the present invention is to provide a magnetic field generating device for a magnetic resonance diagnostic device.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、電磁石のコイル温度変化と、磁場の変
化が実質的に比例的に良く対応していることを利用して
、電磁石の温度を検出して、これと基準温度との偏差を
得、そしてこの偏差を電磁石に予め定められた電流を与
えるように発生される基準値にフィードバックするよう
にした点にある。
A feature of the present invention is that the temperature of the electromagnet is detected by utilizing the fact that changes in the coil temperature of the electromagnet and changes in the magnetic field substantially correspond in proportion to each other, and the deviation between this and the reference temperature is detected. and this deviation is fed back to a reference value generated to provide a predetermined current to the electromagnet.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す、定電流電源1、電磁
石2.及び冷却水装置3の基本構成は従来例の第1図と
同じである。
FIG. 1 shows an embodiment of the present invention, including a constant current power supply 1, an electromagnet 2. The basic configuration of the cooling water device 3 is the same as that of the conventional example shown in FIG.

ここで、電磁石2のコイル2aの適切な位置にコイル温
度を検出する温度検出器4を設ける。この温度検出器は
温度をこれに比例した電気量に変換し易い種類のものが
良く、測温抵抗体や熱電対が好ましい、測定温度は20
〜40℃程度の温度を計測するのに好適な種類のものを
選定する。温度検出器4のコイル温度信号T。は温度変
換器5で比例した電圧信号E0に変換される。一方、電
磁石2のコイル2aの温度に等価な基準温度信号E?を
もつ、温度基準発生器を設け、前記コイル温度に比例し
た電圧信号E。と当該基準温度信号E?とを加え合せ点
P3で、それらの温度偏差信号ΔE、を得る。この温度
偏差信号−E、は、電磁石2の温度変化に対する磁場変
化の割合と、定電流電源の励磁電流工。の変化量に対す
る電磁石2の磁場変化量の割合、すなわち、定電流電源
1の基準電圧源1aよりの基準信号Erafの変動量に
対する磁場変化量の割合が一致するよう、規準化した温
度偏差信号E1′  に、バッファ増幅器7により変換
され、この信号E t’  と基準信号Erafとを加
え合せ点P4で加算する。その結果1次の基準信号Er
af ’は、 Eref’ =IEref+ AE、’
  となり。
Here, a temperature detector 4 is provided at an appropriate position of the coil 2a of the electromagnet 2 to detect the coil temperature. This temperature sensor should be of a type that can easily convert temperature into an amount of electricity proportional to it, preferably a resistance temperature detector or thermocouple.The measurement temperature is 20
Select a type suitable for measuring temperatures of about ~40°C. Coil temperature signal T of temperature detector 4. is converted into a proportional voltage signal E0 by the temperature converter 5. On the other hand, the reference temperature signal E? equivalent to the temperature of the coil 2a of the electromagnet 2? a temperature reference generator having a voltage signal E proportional to the coil temperature; and the reference temperature signal E? By adding these, the temperature deviation signal ΔE is obtained at a point P3. This temperature deviation signal -E is the ratio of the magnetic field change to the temperature change of the electromagnet 2 and the excitation current of the constant current power supply. The temperature deviation signal E1 is normalized so that the ratio of the amount of change in the magnetic field of the electromagnet 2 to the amount of change in , that is, the ratio of the amount of change in the magnetic field to the amount of change in the reference signal Eraf from the reference voltage source 1a of the constant current power supply 1 is the same. ' is converted by the buffer amplifier 7, and this signal E t' and the reference signal Eraf are added at a summing point P4. As a result, the first-order reference signal Er
af' is Eref' = IEref + AE,'
Next door.

電磁石2のコイル温度で補正されたものとなる。It is corrected by the coil temperature of the electromagnet 2.

従って、基準信号Eref ’に対応して励磁電流■。Therefore, the excitation current ■ corresponds to the reference signal Eref'.

が出力される。第4図は、電磁石2のコイル温度の変化
率と磁場の変化率を、励磁電流工。一定下で、通電時間
に対して実測した一例を示したものである。この場合の
電磁石2の磁場強度は、0.05T、コイルはアルミニ
ュウム製のものである。この結果から、コイル温度の変
化率ΔT/Toと、磁場の変化率ΔH0は通常時間tに
対して、傾斜がまったく同一であり、コイル温度Tcl
と磁場の強さHoは、特定の係数で実質的に比例関係に
あることを示している。この特性から得られた、単位コ
イル温度変化に対する磁場強さの変化は47 p p 
m/’Cであった。これは(1)式で、線膨張係数αを
アルミニウムとして得られる計算値46ppm/’Cと
良く一致する。
is output. Figure 4 shows the rate of change of the coil temperature of electromagnet 2 and the rate of change of the magnetic field using the excitation current. This is an example of actual measurement of current application time under certain conditions. In this case, the magnetic field strength of the electromagnet 2 is 0.05T, and the coil is made of aluminum. From this result, the rate of change ΔT/To of the coil temperature and the rate of change ΔH0 of the magnetic field have exactly the same slope with respect to the normal time t, and the coil temperature Tcl
and the magnetic field strength Ho are shown to have a substantially proportional relationship with a specific coefficient. The change in magnetic field strength with respect to unit coil temperature change obtained from this characteristic is 47 p p
It was m/'C. This agrees well with the calculated value of 46 ppm/'C obtained by equation (1) and assuming that the linear expansion coefficient α is aluminum.

第5図は、第1図の実施例の制御ブロックダイヤグラム
を示す、G8は偏差増幅器1bに、G。
FIG. 5 shows a control block diagram of the embodiment of FIG. 1, in which G8 is connected to the deviation amplifier 1b;

は電磁石2に、G、は温度検出器4と温度変換器5に、
G、はバッファ増幅器7に、G、はコイル2aの温度変
化による磁場変動にそれぞれ対応し。
is to the electromagnet 2, G is to the temperature detector 4 and temperature converter 5,
G corresponds to the buffer amplifier 7, and G corresponds to magnetic field fluctuations due to temperature changes in the coil 2a.

各々の伝達函数を示す。T、はコイル2aを冷却する冷
却水装置3からの冷却水Qの冷却水温度である。θ・P
は、励磁電流工。でコイル2aが消費する熱量に対応し
たコイル2aの温度上昇分であり、θは冷却系までの熱
抵抗、Pは消費電力である。コイル2aの温度上昇はθ
とPの積で表わされる。従ってコイル温度T0は、T1
11=TQ+θ・Pとなる。Toは、コイル2aの温度
変化がない場合の固定された温度で、温度変化のみを抽
出するための制御系操作のための要素で任意に選択でき
る0以上の制御構成で、冷却水Qの変動や、その水温T
、の変化は、コイル2aの温度T。となって現われ、電
磁石2の駆動電流I0による安定な磁場H0に対し、磁
場変動ΔH0の外乱として。
Each transfer function is shown. T is the cooling water temperature of the cooling water Q from the cooling water device 3 that cools the coil 2a. θ・P
is an excitation electrician. is the temperature rise of the coil 2a corresponding to the amount of heat consumed by the coil 2a, θ is the thermal resistance up to the cooling system, and P is the power consumption. The temperature rise of coil 2a is θ
It is expressed as the product of and P. Therefore, the coil temperature T0 is T1
11=TQ+θ·P. To is a fixed temperature when there is no temperature change in the coil 2a, and is a control configuration of 0 or more that can be arbitrarily selected as an element for control system operation to extract only temperature changes, and changes in the cooling water Q. Oh, that water temperature T
, is the temperature T of the coil 2a. This appears as a disturbance of magnetic field fluctuation ΔH0 with respect to the stable magnetic field H0 due to the drive current I0 of the electromagnet 2.

加えられ、不安定さを助長する要因となる。しかし、コ
イル2aの温度T6を、定電流制御系の入力に帰還する
ことで、外乱を打消すことができる。
This is a factor that promotes instability. However, the disturbance can be canceled by feeding back the temperature T6 of the coil 2a to the input of the constant current control system.

コイル温度T。の偏差信号ΔEt’は次の(2)式%式
% 基準電圧Erafとコイル温度の偏差信号ΔEt’は加
え合せ点P、で加え合わされるが、この入力から電磁石
2の磁場H0までの伝達函数は、(3)式で示される。
Coil temperature T. The deviation signal ΔEt' is expressed by the following equation (2). is expressed by equation (3).

H0=Gt・G、(Eraf−G4(GaTa−E?)
)・ (3)一方、冷却水TQの変化に伴う磁場変動A
H0は(1)式の2α=G、であり、これを代入すると
(4)式となる。
H0=Gt・G, (Eraf-G4(GaTa-E?)
)・(3) On the other hand, magnetic field fluctuation A due to change in cooling water TQ
H0 is 2α=G in equation (1), and substituting this gives equation (4).

AH0=2α(’r Q+θ・P −To)   ・・
・(4)結果として得られる磁場H0′  は、(3)
と(4)式の和であり、(5)式となる。
AH0=2α('r Q+θ・P −To) ・・
・(4) The resulting magnetic field H0' is (3)
and (4), resulting in equation (5).

Ha’ +=Gt・G、・Href  Gi・Gz:G
4(GaTa  By)+2α(Ta−To)    
−(5)但し、T0=TQ十〇・P ここで、G1・G2・G3・G4=2α、G1−G。
Ha' +=Gt・G,・Href Gi・Gz:G
4 (GaTa By) + 2α (Ta-To)
-(5) However, T0=TQ10・P Here, G1・G2・G3・G4=2α, G1−G.

・G、・E?=2αT0とすると(6)式を得る。・G, ・E? =2αT0, we obtain equation (6).

H0’ = G、 ・G、 ・Er5f       
−(6)以上述べたごとく、本実施例によれば、電磁石
2のコイルを冷却する冷却水の温度に変動があっても、
また流量に変動があっても、二次的にコイル2aの温度
が変動しても、極めて安定な磁場を得ることができる。
H0' = G, ・G, ・Er5f
-(6) As described above, according to this embodiment, even if there is a fluctuation in the temperature of the cooling water that cools the coil of the electromagnet 2,
Further, even if the flow rate fluctuates or secondarily the temperature of the coil 2a fluctuates, an extremely stable magnetic field can be obtained.

第6図は、応用例を示す図で、温度検出端4a。FIG. 6 is a diagram showing an application example, in which the temperature detection end 4a is shown.

4bのごとく検出位置を分散させて複数個設け、それぞ
れの位置の温度を温度変換器5a、5bにより電圧信号
に変換し、加え合せ点P、で加え合せ、平均化回路5C
により、より正確な温度に対応する電圧信号E。を得て
、さらに安定度の向上を図っている。
4b, a plurality of detection positions are distributed and provided, and the temperature at each position is converted into a voltage signal by temperature converters 5a and 5b, and the signals are added at a summing point P, and an averaging circuit 5C
The voltage signal E corresponds to a more accurate temperature. We are working to further improve stability.

本発明の実施例によれば、磁場発生装置の磁場安定度を
確実に5ppm以下を達成できると共に、電磁石を冷却
する冷却水温度安定度を10℃程度まで緩和できるので
、精密温度調節装置の不要な、簡単な構造で、経済性の
高い、冷却水装置とすることができる。さらに小形、軽
量化を達成できる。
According to the embodiment of the present invention, the magnetic field stability of the magnetic field generator can be reliably achieved at 5 ppm or less, and the temperature stability of the cooling water for cooling the electromagnet can be relaxed to about 10°C, so there is no need for a precision temperature control device. A cooling water device with a simple structure and high economic efficiency can be obtained. It is also possible to achieve smaller size and lighter weight.

具体的には、経済性、大きさ、重量などが従来品の17
2以下にできる。加えて、磁場発生装置と同一室内に設
定も可能となり、保守性、信頼性の向上にも効果がある
Specifically, the economy, size, weight, etc. of the conventional product 17
It can be reduced to 2 or less. In addition, it can be installed in the same room as the magnetic field generator, which has the effect of improving maintainability and reliability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電磁石の冷却に用いられる冷媒装置の
冷媒温度の安定度を緩和し、特にその精密な温度調節に
上らずとも、簡単な冷媒装置で安定な磁場を得ることが
できる核磁気共鳴診断装置の磁界発生装置が提供される
According to the present invention, the stability of the refrigerant temperature of a refrigerant device used for cooling an electromagnet is relaxed, and a stable magnetic field can be obtained with a simple refrigerant device without having to perform particularly precise temperature control. A magnetic field generating device for a magnetic resonance diagnostic apparatus is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す核磁気共鳴診断装置の
磁界発生装置のブロック図、第2図は従来の核磁気共鳴
診断装置の磁界発生装置のブロック図、第3図は従来例
による冷却水温度安定度特性図、第4図は電磁石の温度
と磁場の変化率特性図、第5図は第1図の実施例の制御
ブロック図、第6図は本発明にもとづくもう一つの実施
例を示す核磁気共鳴診断装置の磁界発生装置の一部のブ
ロック図である。 1・・・定電流電源、2・・・電磁石、3・・・冷却水
装置、4・・・温度検出器、5・・・温度変換器、6・
・・温度標準発生器、7・・・バッファ増幅器、P4・
・・温度帰還信代理人 弁理士 小川勝男  − 早 2図 時間t D    36  46   ?6  126    
r56遍を峙間11員ill
Fig. 1 is a block diagram of a magnetic field generator of a nuclear magnetic resonance diagnostic apparatus showing an embodiment of the present invention, Fig. 2 is a block diagram of a magnetic field generator of a conventional nuclear magnetic resonance diagnostic apparatus, and Fig. 3 is a conventional example. FIG. 4 is a characteristic diagram of the temperature stability of the cooling water according to the present invention, FIG. 4 is a characteristic diagram of the temperature of the electromagnet and the rate of change of the magnetic field, FIG. 1 is a block diagram of a part of a magnetic field generating device of a nuclear magnetic resonance diagnostic apparatus showing an embodiment. FIG. DESCRIPTION OF SYMBOLS 1... Constant current power supply, 2... Electromagnet, 3... Cooling water device, 4... Temperature detector, 5... Temperature converter, 6...
...Temperature standard generator, 7...Buffer amplifier, P4.
...Temperature Return Agent Patent Attorney Katsuo Ogawa - Early 2 Figure Time t D 36 46? 6 126
11 members of the 56th generation ill

Claims (1)

【特許請求の範囲】 1、核磁気共鳴現象を用い、生体の断層像を得るために
用いられる、電磁石を含む核磁気共鳴診断装置の磁界発
生装置において、前記電磁石を冷却する冷媒装置と、前
記電磁石の温度を検出し、その対応電気信号を発生する
手段と、基準温度電気信号を発生する手段と、前記検出
された温度の電気信号と前記基準温度電気信号との間の
偏差信号を発生する手段と、前記電磁石に予め定められ
た電流を与えるように予め定められた基準信号を発生す
る手段と、前記偏差信号を前記基準信号に加える手段と
を備えていることを特徴とする核磁気共鳴診断装置の磁
界発生装置。 2、前記電磁石の温度を検出し、その対応電気信号を発
生する手段は前記磁石の異なる位置の温度を検出し、そ
れらの平均電気信号を発生するように構成されているこ
とを特徴とする特許請求の範囲第1項に記載された核磁
気共鳴診断装置の磁界発生装置。
[Scope of Claims] 1. A magnetic field generating device for a nuclear magnetic resonance diagnostic apparatus including an electromagnet, which is used to obtain a tomographic image of a living body using a nuclear magnetic resonance phenomenon, comprising: a refrigerant device for cooling the electromagnet; means for detecting the temperature of the electromagnet and generating a corresponding electrical signal; means for generating a reference temperature electrical signal; and generating a deviation signal between the detected temperature electrical signal and the reference temperature electrical signal. nuclear magnetic resonance, comprising: means for generating a predetermined reference signal to apply a predetermined current to the electromagnet; and means for adding the deviation signal to the reference signal. Magnetic field generator for diagnostic equipment. 2. The patent characterized in that the means for detecting the temperature of the electromagnet and generating a corresponding electric signal is arranged to detect the temperature of different positions of the magnet and generate an average electric signal thereof. A magnetic field generating device for a nuclear magnetic resonance diagnostic apparatus according to claim 1.
JP60044812A 1985-03-08 1985-03-08 Magnetic field generator of nuclear magnetic resonance diagnosis device Pending JPS61204551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044812A JPS61204551A (en) 1985-03-08 1985-03-08 Magnetic field generator of nuclear magnetic resonance diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044812A JPS61204551A (en) 1985-03-08 1985-03-08 Magnetic field generator of nuclear magnetic resonance diagnosis device

Publications (1)

Publication Number Publication Date
JPS61204551A true JPS61204551A (en) 1986-09-10

Family

ID=12701839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044812A Pending JPS61204551A (en) 1985-03-08 1985-03-08 Magnetic field generator of nuclear magnetic resonance diagnosis device

Country Status (1)

Country Link
JP (1) JPS61204551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010786A3 (en) * 1993-10-11 1995-06-01 Innervision Mri Limited Apparatus for magnetic resonance measurement
CN109900731A (en) * 2017-12-11 2019-06-18 苏州纽迈分析仪器股份有限公司 A kind of NMR signal strength temperature modification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010786A3 (en) * 1993-10-11 1995-06-01 Innervision Mri Limited Apparatus for magnetic resonance measurement
CN109900731A (en) * 2017-12-11 2019-06-18 苏州纽迈分析仪器股份有限公司 A kind of NMR signal strength temperature modification method

Similar Documents

Publication Publication Date Title
JPH03261112A (en) Field magnet generation device
Strickland et al. Extended-performance “SuperCurrent” cryogen-free transport critical-current measurement system
Jafari et al. High-accuracy calibration-free calorimeter for the measurement of low power losses
US6653835B2 (en) Magnetic resonance tomograph with a temperature controller for thermally highly sensitive components
JPS61204551A (en) Magnetic field generator of nuclear magnetic resonance diagnosis device
Sverko et al. Calorimetric loss measurement system for air and water cooled power converters
Polomik et al. Heat Transfer Coefficients with Annular Flow During" one-through" Boiling Water to 100 Per Cent Quality at 800, 1100, 1400 PSI
KR101606406B1 (en) Liquid metal temperature compensated flow measurement instrumenation decive
Stafiniak et al. Commissioning of the prototype test facility for rapidly-cycling superconducting magnets for FAIR
Nishitani et al. Radiation-induced thermoelectric sensitivity in the mineral-insulated cable of magnetic diagnostic coils for ITER
Kar et al. Peformance test and thermal analysis of conduction-cooled optimized current leads at non-optimum operation
Reintsema et al. Thermal transfer measurements at microwatt power levels
Myers et al. Precision Adiabatic Gamma‐Ray Calorimeter using Thermistor Thermometry
Nitschke A digital calorimeter
Hansen et al. An accurate method for power loss measurements in energy optimized apparatus and systems
KR19990037314A (en) Operation control method of superconducting coil
Savoldi et al. First measurement of the current sharing temperature at 80 kA in the ITER Toroidal Field Model Coil (TFMC)
Kovařík et al. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range
Hu et al. Design and fabrication of a conduction-cooled superconducting magnet for hall sensor calibration
CN105388443A (en) Linear feedback self-regulation system for calorimetric power meter
Hau Chen Evaluating the Thermal Conductivity of Potting Materials using the Hot-Wire Method
JPS60109207A (en) Refrigerator for electromagnet apparatus
Ross et al. Design and manufacture of a 6‐T wiggler magnet for the Daresbury SRS
Chitarin et al. Design developments for the ITER in-vessel equilibrium pick-up coils and halo current sensors
Krismanic et al. Automatic scanning system for the determination of local loss distributions in magnetic cores