JPS61203665A - Production of amorphous silicon-type photo-diode - Google Patents

Production of amorphous silicon-type photo-diode

Info

Publication number
JPS61203665A
JPS61203665A JP60045084A JP4508485A JPS61203665A JP S61203665 A JPS61203665 A JP S61203665A JP 60045084 A JP60045084 A JP 60045084A JP 4508485 A JP4508485 A JP 4508485A JP S61203665 A JPS61203665 A JP S61203665A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
diode
photo
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60045084A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Mishima
康由 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60045084A priority Critical patent/JPS61203665A/en
Publication of JPS61203665A publication Critical patent/JPS61203665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make it possible to increase the bias dark-current in forward direction and to increase light-generation carriers by a method wherein an i-layer of a pin-type photo-diode, fine-crystalized silicon in a non-dope state, and amorphous silicon in a non-dope state are continuously laminated to form a film with Plasma CVD method using high order silane gas. CONSTITUTION:A transparent electrode 12 that is tin oxide or ITO film is formed on a glass substrate through which light is transmitted. A p<+> a-Si or p<+> muc-Si layer 13 is formed in order from that surface, and then an i-a-Si 14 is formed on the surface. Then, after an i-muc-Si layer 15 and then an n<+> a-Si layer 16 are formed, an ohmic electrode 17 is formed. The photo-diode in which an i-mu-Si layer is used is improved in its rectifiability, with increased photo- absorption efficiency in the low-energy region, allowing the production of a photo-diode with higher performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファスシリコンの製造方法に係わり、
特にpin型フォトダイオードの1層の形成方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing amorphous silicon,
In particular, it relates to a method of forming one layer of a pin-type photodiode.

近時、ファクシミリや太陽電池の普及により、光センサ
としてアモルファスシリコンが広範囲に利用されている
Recently, with the spread of facsimiles and solar cells, amorphous silicon has been widely used as optical sensors.

従来、これらの用途に使用されるアモルファスシリコン
を生成するためには、高次シラン系ガスのグロー放電分
解法(プラズマCVD法)により行われ、このように生
成されたアモルファスシリコンは、例えば基板の表面に
順次アンドープのアモルファスシリコン層(i −a−
3i)、n”アモルファスシリコン層(n”−a−3i
)のショットキ型と、p+アモルファスシリコン層(p
”−a−3i)、アンドープのアモルファスシリコン層
、n+アモルファスシリコン層のp−1−n型が積層さ
れるのが普通である。
Conventionally, amorphous silicon used in these applications has been produced by a glow discharge decomposition method (plasma CVD method) of high-order silane-based gas, and the amorphous silicon produced in this way is, for example, An undoped amorphous silicon layer (i-a-
3i), n” amorphous silicon layer (n”-a-3i
) Schottky type and p+ amorphous silicon layer (p
"-a-3i), an undoped amorphous silicon layer, and a p-1-n type n+ amorphous silicon layer are usually stacked.

然しなから、このような構造では、フォトダイオードに
応用した際に、順方向バイアス下でアモルファスシリコ
ンが高抵抗になって、順方向の電流が少なくなって感度
が低下し、太陽電池に使用される場合には、低エネルギ
ーの光を有効に吸収できないという欠点があるために、
その改善が要望されている。
However, when such a structure is applied to a photodiode, the amorphous silicon has a high resistance under forward bias, which reduces the forward current and reduces sensitivity, making it difficult to use in solar cells. In this case, it has the disadvantage that it cannot effectively absorb low-energy light.
Improvements are requested.

〔従来の技術〕[Conventional technology]

第5図は、従来のアモルファスシリコンを使用したフォ
トダイオードの構造を示す要部断面図を示している。
FIG. 5 shows a cross-sectional view of essential parts showing the structure of a conventional photodiode using amorphous silicon.

ガラス基板1があって、その表面に光を透過する透明膜
の下部電極2として例えば酸化錫又はインジウム錫の酸
化物(ITO)等が形成され、順次p”−a−3i層3
.1−a−3i層4、n+−a−3i層5、及び上部電
極6が積層されている。
There is a glass substrate 1, on the surface of which a transparent film such as tin oxide or indium tin oxide (ITO) is formed as a lower electrode 2 of a transparent film, and then a p''-a-3i layer 3 is formed.
.. A 1-a-3i layer 4, an n+-a-3i layer 5, and an upper electrode 6 are stacked.

このような積層がなされたa−Si型フォトダイオード
では、a−3tO順方向の抵抗が大きく、例えば109
Ωcow程度の高抵抗になって光センサとしての感度が
低下する欠点がある。
In an a-Si type photodiode with such a stack, the forward resistance of a-3tO is large, for example, 109
It has a drawback that the resistance as high as Ωcow decreases the sensitivity as an optical sensor.

第6図は、従来微結晶シリコン(マイクロクリスタリン
シリコンシリコン、以下p c −S iという)を使
用している太陽電池の構造を示す要部断面図であって、
第5図の最上層のn“−a−3i層5に相当する部分が
、微結晶シリコン7である以外は第5図と同様であり、
この場合には通常のa−33のエネルギーギャップが1
.6 eV程度であるために、1.6eV以下の光エネ
ルギーが太陽電池に照射されても、太陽電池にエネルギ
ーが吸収されないという欠点がある。
FIG. 6 is a sectional view of main parts showing the structure of a solar cell that conventionally uses microcrystalline silicon (hereinafter referred to as PC-Si),
It is the same as that in FIG. 5 except that the portion corresponding to the uppermost n"-a-3i layer 5 in FIG. 5 is microcrystalline silicon 7,
In this case, the energy gap of normal a-33 is 1
.. Since it is about 6 eV, there is a drawback that even if the solar cell is irradiated with light energy of 1.6 eV or less, the energy is not absorbed by the solar cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のアモルファスシリコンの構造では、太陽電池やフ
ォトダイオードに使用する際に、アモルファスシリコン
の順方向の抵抗が大きいとか、照射光の低エネルギー帯
が吸収できないということが問題点である。
The above structure of amorphous silicon has problems when used in solar cells and photodiodes, such as the large forward resistance of amorphous silicon and the inability to absorb the low energy band of irradiated light.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解消したアモルファスシリコン
の製造方法を提供するもので、その手段は、pin型フ
ォトダイオードの1層を、非ドープ状態の微結晶化シリ
コンと非ドープ状態のアモルファスシリコンとを高次シ
ランガス系のプラズマCVD法により、連続的に積層し
て成膜したアモルファスシリコン型フォトダイオードの
製造方法によって達成できる。
The present invention provides a method for manufacturing amorphous silicon that solves the above-mentioned problems. This can be achieved by a method of manufacturing an amorphous silicon type photodiode in which films are continuously laminated using a high-order silane gas-based plasma CVD method.

〔作用〕[Effect]

本発明は、アモルファスシリコンを使用した太陽電池や
、フォトダイオードで、光の低エネルギー帯を吸収し、
又フォトダイオードでは、順方向の抵抗を小にするため
に、a−5i層のオーミック電極側に、μc−siJi
#をプラズマCVD法により形成することで、μc−3
i層そのものが直列抵抗を減少させ、且つμc−3iの
光エネルギーの吸収帯域が広くなって、低エネルギー領
域まで吸収することが可能になり、順方向のバイアス暗
電流の増加、光生成キャリアの増加を可能にしたもので
ある。
The present invention uses a solar cell or photodiode that uses amorphous silicon to absorb the low energy band of light.
In addition, in the photodiode, in order to reduce the forward resistance, μc-siJi is placed on the ohmic electrode side of the a-5i layer.
By forming # by plasma CVD method, μc-3
The i-layer itself reduces the series resistance, and the optical energy absorption band of μc-3i becomes wider, making it possible to absorb up to the low energy region, increasing the forward bias dark current and increasing the amount of photogenerated carriers. This is what made the increase possible.

〔実施例〕〔Example〕

第1図は、本発明の一実施例であるフォトダイオード素
子構造の要部断面図である。
FIG. 1 is a sectional view of a main part of a photodiode element structure according to an embodiment of the present invention.

フォトダイオードであるので、光の透過をするガラス基
板11の表面に、酸化錫又はITO膜である透明電極1
2を1000人の厚みで形成し、その表面から、順次p
”−a−3t又はp+−μc−3i層13と、その表面
に1−asi14を厚みが3000人で形成し、次にi
−μc−3i層15を厚みが4゜00人、更にn” −
a−8i層16を厚みが1000人で形成した後、オー
ミック電極17を厚みが300人で形成したものである
Since it is a photodiode, a transparent electrode 1 made of tin oxide or ITO is placed on the surface of a glass substrate 11 that transmits light.
2 with a thickness of 1000 people, and from the surface, p
"-a-3t or p+-μc-3i layer 13 and 1-asi14 is formed on its surface to a thickness of 3000, and then i
- The thickness of the μc-3i layer 15 is 4゜00, and further n" -
After forming the a-8i layer 16 with a thickness of 1000 layers, the ohmic electrode 17 was formed with a thickness of 300 layers.

第2図は、主に太陽電池などに使用されるフォトダイオ
ードの断面図であって、ガラス基板21上にショットキ
ー金属22として例えば白金を100人の厚みで形成し
てから、第1図と同様な積層を行うもので、その表面か
ら順次1−a−3i層23、i  IJc−3i層24
、n” −pc−3i層25及びオーミック電極26を
形成したものである。
FIG. 2 is a cross-sectional view of a photodiode mainly used in solar cells, etc. After forming, for example, platinum as a Schottky metal 22 on a glass substrate 21 to a thickness of 100 mm, the photodiode shown in FIG. The layer is laminated in a similar manner, and the 1-a-3i layer 23 and the i IJc-3i layer 24 are sequentially formed from the surface.
, an n''-pc-3i layer 25 and an ohmic electrode 26.

第3図は上記のアモルファスシリコン層構造と原理的に
同様のフォトダイオードの断面図であって、基板に安価
な金属板としてステンレス鋼を用いた例であり、積層条
件として、ステンレス鋼基板310表面に、順次n”−
Cα−si層32を1000人、i−cα−3i層33
を4000人、i −a−3i層34を3000人、p
”−ctx−5i層35を1000人、又はp”−a−
3i層を100人の厚みで形成して、最上層に透明電極
36を形成したものであって、この場合に光は透明電極
側から入射される。
FIG. 3 is a cross-sectional view of a photodiode which is similar in principle to the amorphous silicon layer structure described above, and is an example in which stainless steel is used as an inexpensive metal plate for the substrate. , sequentially n”-
1000 Cα-si layer 32, 1000 i-cα-3i layer 33
4,000 people, i-a-3i layer 34 3,000 people, p
"-ctx-5i layer 35 for 1000 people, or p"-a-
A 3i layer is formed to a thickness of 100 layers, and a transparent electrode 36 is formed on the top layer, and in this case, light is incident from the transparent electrode side.

第4図は、太陽電池に使用されるアモルファスシリコン
層構造にステンレス鋼を用いた例の断面図であり、ステ
ンレス鋼基Fi41の表面に、順次、n”−ccx−S
i層42、i−cα−3i層43.1−a−3i層44
を形成して、最上層にショッl−キー金属45を被着し
たものであり、光はショットキー金属側から入射される
FIG. 4 is a cross-sectional view of an example in which stainless steel is used for the amorphous silicon layer structure used in solar cells.
i layer 42, i-cα-3i layer 43.1-a-3i layer 44
is formed, and a Schottky metal 45 is coated on the top layer, and light is incident from the Schottky metal side.

本発明による、i−μc−3i層を用いたフォトダイオ
ードは整流性が向上すると共に、低エネルギー領域にお
ける光吸収効率が増加することになり、高性能の光ダイ
オードを製造することが可能になる。
The photodiode using the i-μc-3i layer according to the present invention has improved rectification and light absorption efficiency in the low energy region, making it possible to manufacture a high-performance photodiode. .

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明のアモルファスシ
リコンで製造されたフォトダイオードは、高性能の光特
性を有し、このフォトダイオードを太陽電池やファクシ
ミリのイメージセンナ使用することにより、高品質の装
置を供し得るという効果大なるものがある。
As explained above in detail, the photodiode manufactured using the amorphous silicon of the present invention has high-performance optical characteristics, and by using this photodiode in solar cells and facsimile image sensors, high-quality There is a great effect in that the device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例であるアモルファスシリコ
ンを使用したフォトダイオード構造の要部断面図、 第2図、第3図、第4図は本発明の他の実施例であるフ
ォトダイオードの断面図、 第5図、第6図は、従来のアモルファスシリコンを使用
したフォトダイオードの構造を示す要部断面図、 図において、 11はガラス基板、   12は透明電極、13はp”
−a−3i又はp”−pc−3i14は1−a−3i層 15は1−pc−3i層、 16はn+−pc−3ili、 17はオーミック電掘、 22はショットキー金属、 をそれぞれ示している。 第1閃       第2FyJ 第3因     第4閃
FIG. 1 is a cross-sectional view of a main part of a photodiode structure using amorphous silicon, which is one embodiment of the present invention, and FIGS. 2, 3, and 4 are photodiodes, which are other embodiments of the present invention. 5 and 6 are cross-sectional views of main parts showing the structure of a conventional photodiode using amorphous silicon. In the figures, 11 is a glass substrate, 12 is a transparent electrode, and 13 is a p"
-a-3i or p"-pc-3i 14 indicates 1-a-3i layer 15 indicates 1-pc-3i layer, 16 indicates n+-pc-3ili, 17 indicates ohmic electroplating, and 22 indicates Schottky metal, respectively. 1st flash 2nd FyJ 3rd cause 4th flash

Claims (1)

【特許請求の範囲】[Claims] pin型フォトダイオードのi層を、非ドープ状態の微
結晶化シリコンと非ドープ状態のアモルファスシリコン
とをシラン系ガスのプラズマCVD法により、連続的に
積層して成膜したことを特徴とするアモルファスシリコ
ン型フォトダイオードの製造方法。
An amorphous film characterized in that the i-layer of a pin-type photodiode is formed by successively stacking undoped microcrystalline silicon and undoped amorphous silicon by a plasma CVD method using a silane-based gas. A method of manufacturing a silicon photodiode.
JP60045084A 1985-03-06 1985-03-06 Production of amorphous silicon-type photo-diode Pending JPS61203665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045084A JPS61203665A (en) 1985-03-06 1985-03-06 Production of amorphous silicon-type photo-diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045084A JPS61203665A (en) 1985-03-06 1985-03-06 Production of amorphous silicon-type photo-diode

Publications (1)

Publication Number Publication Date
JPS61203665A true JPS61203665A (en) 1986-09-09

Family

ID=12709454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045084A Pending JPS61203665A (en) 1985-03-06 1985-03-06 Production of amorphous silicon-type photo-diode

Country Status (1)

Country Link
JP (1) JPS61203665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246171A (en) * 1989-03-17 1990-10-01 Sanyo Electric Co Ltd Optoelectric transducer
FR2650916A1 (en) * 1989-08-09 1991-02-15 Sanyo Electric Co PHOTOVOLTAIC DEVICE
JP2010034525A (en) * 2008-06-25 2010-02-12 Fuji Electric Holdings Co Ltd Thin-film solar cell
JP2010087332A (en) * 2008-10-01 2010-04-15 Seiko Epson Corp Photoelectric conversion element, photoelectric conversion device, and image sensor
JPWO2009110403A1 (en) * 2008-03-07 2011-07-14 国立大学法人東北大学 Photoelectric conversion element structure and solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246171A (en) * 1989-03-17 1990-10-01 Sanyo Electric Co Ltd Optoelectric transducer
FR2650916A1 (en) * 1989-08-09 1991-02-15 Sanyo Electric Co PHOTOVOLTAIC DEVICE
JPWO2009110403A1 (en) * 2008-03-07 2011-07-14 国立大学法人東北大学 Photoelectric conversion element structure and solar cell
JP2010034525A (en) * 2008-06-25 2010-02-12 Fuji Electric Holdings Co Ltd Thin-film solar cell
JP2010087332A (en) * 2008-10-01 2010-04-15 Seiko Epson Corp Photoelectric conversion element, photoelectric conversion device, and image sensor

Similar Documents

Publication Publication Date Title
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
EP1724840B1 (en) Photoelectric cell
RU2423755C2 (en) Front contact with adjacent intermediate layer(s) for use in photoelectric devices and method of making said contact
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JPH065774B2 (en) Solar cell
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPS61203665A (en) Production of amorphous silicon-type photo-diode
JPS61278171A (en) Thin film photoelectric conversion device
JPS6334632B2 (en)
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
JPH0463550B2 (en)
US20110220177A1 (en) Tandem photovoltaic device with dual function semiconductor layer
JPH02177374A (en) Photoelectric conversion device
JPS62256481A (en) Semiconductor device
JPH0586677B2 (en)
JPS6143869B2 (en)
JPS61222275A (en) Photovoltaic device
JPS6152992B2 (en)
KR102093567B1 (en) Photovoltaic cell and method of fabricating the same
JP2869178B2 (en) Photovoltaic device
JPS59101879A (en) Thin film solar battery
JPS6276569A (en) Thin-film photoelectric conversion element
WO2020035987A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JPS616873A (en) Photovoltaic element
JPH0273672A (en) Film photoelectric transfer element