JPS612027A - Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer - Google Patents

Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer

Info

Publication number
JPS612027A
JPS612027A JP12331384A JP12331384A JPS612027A JP S612027 A JPS612027 A JP S612027A JP 12331384 A JP12331384 A JP 12331384A JP 12331384 A JP12331384 A JP 12331384A JP S612027 A JPS612027 A JP S612027A
Authority
JP
Japan
Prior art keywords
rotating
sample
light
analyzer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12331384A
Other languages
Japanese (ja)
Inventor
Makoto Itonaga
誠 糸長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP12331384A priority Critical patent/JPS612027A/en
Publication of JPS612027A publication Critical patent/JPS612027A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To attain simple and accurate measurement by detecting a phase difference on the basis of the time axial changing state of an output signal of a photodetector which is obtained by actual measurement of an output signal from a rotary phase detecting element and the changing state to be logically obtained. CONSTITUTION:The reflected light 12 of light projected to the surface of a sample 9 with a previously fixed incident angle theta is made incident upon the rotary analyser 2 formed coaxially with the rotary phase detecting element 3 and light projected from the analyser 2 is received by a photodetector 4. The polarizing state of the reflected light 12 due to the sample 9 is fixed by the angle theta incident upon the sample 9, the thickness of the sample 9 and an optical constant. The time axial changing status of an output signal of the photodetector 4 which is obtained on the basis of an output signal from the element 3 formed coaxially with the analyser 2 is compared with that of an output signal from the photodetector 4 which is logically obtained from a specific formula at the use of said by a means for minimum square approximation or the like, so that the phase difference between the analyser 2 and the element 3 can be detected highly accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転検光子を用いた楕円偏光計に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an ellipsometer using a rotating analyzer.

串を測定する楕円偏光計は、試料を破壊することなく、
試料からの反射光の偏光の状態の変化を観測することに
よって、試料の光学定数、厚さの非常に薄い単層膜の膜
厚の測定などを高精度で行なうことができるので、従来
から試料の膜厚の測定などの用途に用いられていること
は周知のとおりであり、また、試料の膜厚の自動測定の
ために用いられる楕円偏光計としては、回転検光子を用
いた楕円偏光計が用いられることが多い。
An ellipsometer that measures skewers can be used without destroying the sample.
By observing changes in the state of polarization of reflected light from the sample, it is possible to measure the optical constants of the sample and the thickness of extremely thin single-layer films with high precision. It is well known that the ellipsometer is used for purposes such as measuring the film thickness of a sample, and the ellipsometer using a rotating analyzer is also used for automatically measuring the film thickness of a sample. is often used.

さて、やめ定められた入射角で試料面に投射された光の
反射光を、回転位相検出素子に対して同軸的に設けられ
ている如き回転検光子に入射させ、前記の回転検光子か
ら出射した光を光検出器で受光するようになされている
楕円偏光計では、試料面への光の入射角を、前記した予
め定められている角度に正確に一致させることが必要で
あるとともに、それの回転検光子と回転位相検出素子と
の位相差が正確に判かっていなければならないが。
Now, the reflected light of the light projected onto the sample surface at a predetermined angle of incidence is made incident on a rotating analyzer such as that provided coaxially with the rotating phase detection element, and is emitted from the rotating analyzer. In an elliptical polarimeter, which uses a photodetector to receive the reflected light, it is necessary to accurately match the angle of incidence of the light onto the sample surface with the predetermined angle mentioned above. However, the phase difference between the rotating analyzer and the rotating phase detection element must be known accurately.

入射角が固定されている状態の光学系について、その光
学系中に設けられている回転検光子と回転位相検出素子
との位相差を測定する手法は従来知られていなかったの
で、従来の楕円偏光計で、それの回転検光子と回転位相
検出素子との位相差を検出するのには、光源からの光、
すなわち、偏光の状態が既知の直線側  =、゛ 光を反射面を介することなく直接に回転検光子に入射さ
せることによって、回転検光子と回転位相1炎出Jくイ
どの位相差の検出を行なうようにしていた。
For an optical system with a fixed angle of incidence, there was no known method to measure the phase difference between a rotating analyzer and a rotating phase detection element installed in the optical system. A polarimeter uses light from a light source,
In other words, by making the light directly incident on the rotating analyzer without going through a reflective surface, the phase difference between the rotating analyzer and the rotating phase 1 flame out side can be detected. I was trying to do it.

(発明が解決しようとしている問題点)ところが、偏光
の状態が既知な直線偏光を出射するレーザからの光を反
射面を介することなく直接に回転検光子に入射させるこ
とによって1回転検光子と回転位相検出素子との位相差
の検出を行なうようにしている楕円偏光計では、それを
実際の測定に使用する場合に、光源からの光が試料面に
対して予め定められた入射角に正確に一致する入射角度
で入射するようにし、また、試料面からの反射光がピン
ホールを通して回転検光子に正しく入射されるようにな
されなければならないから、光源を含んで構成されてい
る部分と、回転検光子を含んで構成されている部分とは
、光源からの光を反射面を介することなく光軸が合致し
ている状態で直接に回転検光子に入射させて、回転検光
子と回転位相検出素子との位相差の検出を行なうように
する場合と、光源の光を試料面に予め定められた入射角
度で入射させるようにする場合とにおいて、それぞれの
部分の取付角度が、それぞれの場合についてそれぞれ所
望の角度となるように極めて正確に設定されることが必
要とされる。
(Problem to be solved by the invention) However, by making the light from a laser that emits linearly polarized light whose polarization state is known directly enter the rotating analyzer without going through a reflective surface, it is possible to When using an elliptical polarimeter that detects the phase difference with a phase detection element for actual measurements, the light from the light source is accurately positioned at a predetermined incident angle with respect to the sample surface. In order to ensure that the incident angles match, and that the reflected light from the sample surface is correctly incident on the rotating analyzer through the pinhole, the part that contains the light source and the rotating The part that includes the analyzer means that the light from the light source is directly incident on the rotating analyzer with the optical axes aligned without passing through a reflective surface, and the rotating analyzer and rotational phase are detected. When detecting the phase difference with the element and when making the light from the light source enter the sample surface at a predetermined angle of incidence, the mounting angle of each part is different for each case. Each needs to be set very accurately to the desired angle.

しかし、各構成部分の取付角度が前記のように極めて精
密に可変調節されるようにするための機構部の構成@様
は精密かつ複雑なものとなり、設計の自由度が低く製品
が高価なものになってしまう他、角度の狂いが生じて測
定精度が低下するおそ九があり、また、構成部分におけ
る消耗部品の交換時などに、困難な光軸合わせ作業が必
要になるという問題点があった。
However, the structure of the mechanism that allows the mounting angle of each component to be variably adjusted extremely precisely as described above is precise and complicated, resulting in a low degree of freedom in design and making the product expensive. In addition to this, there is a possibility that the measurement accuracy will decrease due to angle deviation, and there is also the problem that difficult optical axis alignment work is required when replacing consumable parts in the components. Ta.

(問題点を解決するための手段) 本発明は、予め定められた入射角で試料面に投射された
光の反射光を、回転位相検出素子に対して同軸的に設け
られている如き回転検光子に入射させ、前記の回転検光
子から出射した光を光検出器で受光するようになされて
いる楕円偏光計における回転検光子と回転位相検出素子
との位相差の検出法であって、予め定められた入射角で
試料面に投射された光が試料面で反射して生じた反射光
における偏光の状態が既知であるような物質を試料とし
て使用した状態において、回転検光子と同軸的に設けら
れている回転位相検出素子からの出力信号を基準にしC
得られた光検出器の出力信号の時間軸上での変化の態様
と、前記の試料を使用した際に、光検出器から理論上櫛
られるべき出力信号の時間軸上での変化の態様とに基づ
いて、回転検光子と回転位相検出素子との位相差を検出
するようにした楕円偏光計の回転検光子と回転位相検出
素子との位相差検出法を提供するものである。
(Means for Solving the Problems) The present invention utilizes a rotation detection device that detects reflected light of light projected onto a sample surface at a predetermined angle of incidence using a rotation detection element that is provided coaxially with respect to a rotation phase detection element. A method for detecting a phase difference between a rotating analyzer and a rotating phase detecting element in an elliptical polarimeter in which a photon is incident on the rotating analyzer and the light emitted from the rotating analyzer is received by a photodetector. Coaxially with the rotating analyzer, when using a material as a sample in which the state of polarization of the reflected light is known when light is projected onto the sample surface at a specified angle of incidence and reflected by the sample surface. C based on the output signal from the provided rotational phase detection element.
How the obtained output signal of the photodetector changes on the time axis, and when the above sample is used, how the output signal that should theoretically be combed from the photodetector changes on the time axis. Based on the above, a method for detecting a phase difference between a rotating analyzer and a rotating phase detecting element of an elliptical polarimeter is provided, which detects a phase difference between the rotating analyzer and the rotating phase detecting element.

(実施例) 以下、添付図面を参照しながら本発明の楕円偏光計の回
転検光子と回転位相検出素子との位相差検出法について
、それの具体的な内容を詳細に説明する。
(Example) Hereinafter, with reference to the accompanying drawings, a method for detecting a phase difference between a rotating analyzer and a rotating phase detection element of an elliptical polarimeter according to the present invention will be described in detail.

第1図は、本発明の楕円偏光計の回転検光子と回転位相
検出素子との位相差検出法が適用される楕円偏光計の一
例構成を示すブロック図であり、この第1図において、
1は光源及び出射側の光学系であって、この光源及び出
射側の光学系1からは、所定の偏光状態の光11が試料
9の面に予め定められた入射角θで投射される。前記し
た光源及び出射側の光学系1としては、例えば、光源と
してHeNeレーザを用い、また、出射側の光学系とし
ては、1/4波長板と、シャッタと、偏光子(例えば、
グラントムソンプリズム)と、174波長板などで構成
されたものが使用できる6 試料9の表面で反射された光12は、回転検光子2(例
えば、グラントムソンプリズム)に入射され、前記の回
転検光子2から出射した光13は光検出器4にケ、えら
れる。3は前記した回転検光子2と同軸に−・体的に回
転するようになされている回転位相検出素子であり、こ
の回転位相検出素子3としては、例えば、回転エンコー
ダを使用できるのであり、以トの記載においては、回転
位相検出素子3として回転エンコーダが使用されている
ものとして説明されることもある。
FIG. 1 is a block diagram showing an example configuration of an elliptical polarimeter to which a phase difference detection method between a rotating analyzer and a rotating phase detection element of the ellipsoidal polarimeter of the present invention is applied.
Reference numeral 1 denotes a light source and an optical system on the output side. From the light source and the optical system 1 on the output side, light 11 in a predetermined polarization state is projected onto the surface of the sample 9 at a predetermined incident angle θ. As the light source and the optical system 1 on the output side, for example, a HeNe laser is used as the light source, and the optical system on the output side includes a quarter wavelength plate, a shutter, and a polarizer (for example,
The light 12 reflected from the surface of the sample 9 is incident on the rotating analyzer 2 (e.g., a Glan-Thompson prism), and the above-mentioned rotating analyzer is used. Light 13 emitted from the photon 2 is received by a photodetector 4. Reference numeral 3 denotes a rotary phase detecting element which is designed to physically rotate coaxially with the rotary analyzer 2 described above. As this rotary phase detecting element 3, for example, a rotary encoder can be used. In the above description, it is sometimes explained that a rotary encoder is used as the rotary phase detection element 3.

回転検光子2と回転エンコーダ3とは、図示されていな
い軸受によって支持されていて5図示されていない駆動
源から供給される動力によって所定の回転数(例えば、
毎分数百回転)で回転されるようになされている。
The rotation analyzer 2 and the rotation encoder 3 are supported by bearings (not shown), and are rotated at a predetermined rotational speed (for example, by power supplied from a drive source (not shown)).
It is designed to rotate at a speed of several hundred revolutions per minute.

光源及び出射側の光学系1から試料9に投射された特定
な偏光の状態の光は、既述もしたように試料9で反射し
て回転検光子2に与えられるが、試料9による反射光の
偏光の状態は、試料9への入射光の入射角、試料9の厚
さ、試料の光学定数などに応じて定まったものになって
いる。
The light with a specific polarization state projected onto the sample 9 from the light source and the optical system 1 on the output side is reflected by the sample 9 and given to the rotating analyzer 2 as described above, but the light reflected by the sample 9 The state of polarization is determined depending on the angle of incidence of the incident light on the sample 9, the thickness of the sample 9, the optical constants of the sample, etc.

それで5回転検光子2の回転角度の変化と対応して変化
する光検出器4からの出力信号31の時間軸上での変化
状態を知ることによって、未知のパラメータを求めるこ
とが可能なのであり、それは例えば、回転エンコーダ3
からの出力信号21をタイミング信号として電子計算機
7に与えるとともに、光検出器4からの出力信号31を
アナログ・デジタル変換器6によってデジタル信号32
に変換して電子計算機7に与え、所定の演算を施こすこ
とによって容易に実現される。図において8はディスプ
レイである。
Therefore, by knowing the state of change on the time axis of the output signal 31 from the photodetector 4, which changes in accordance with the change in the rotation angle of the 5-turn analyzer 2, it is possible to obtain the unknown parameter. For example, rotary encoder 3
The output signal 21 from the photodetector 4 is given as a timing signal to the electronic computer 7, and the output signal 31 from the photodetector 4 is converted into a digital signal 32 by the analog-to-digital converter 6.
This can be easily realized by converting the data into the form, feeding it to the electronic computer 7, and performing predetermined calculations. In the figure, 8 is a display.

ところが、前記した電子計算機7における演算に際して
、回転検光子2における方位と、回転エンコーダ3にお
ける基準の位相とが精密に一致していない場合には、演
算の結果によっても正しい答えが得られない。因みに、
楕円偏光計において、それの回転検光子2における方位
と、回転エンコーダ3における基準の位相とについては
、0.01゜以下の差異におさえることが要求されるこ
とも珍らしくはない。
However, when the above-described calculation is performed by the electronic computer 7, if the orientation of the rotary analyzer 2 and the reference phase of the rotary encoder 3 do not precisely match, the result of the calculation will not give a correct answer. By the way,
In an elliptical polarimeter, it is not uncommon to be required to keep the difference between the orientation of the rotary analyzer 2 and the reference phase of the rotary encoder 3 to less than 0.01°.

本発明は、予め定められた入射角で試料面に投射された
光の反射光を、回転位相検出素子に対して同軸的に設け
られている如き回転検光子に入射させ、前記の回転検光
子から出射した光を光検出器で受光するようになされて
いる楕円偏光計における回転検光子と回転位相検出素子
との位相差を検出するのに、予め定められた入射角で試
料面に投射された光が試料面で反射して生じた反射光に
おける偏光の状態が既知であるような物質を試料として
使用した状態において1回転検光子と同軸的に設けられ
ている回転位相検出素子からの出力信号を基準にして得
られた光検出器の出力信号の時間軸上での変化の態様と
、前記の試料を使用した際に、光検出器から理論上掛ら
れるべき出力信号の時間軸上での変化の態様とに基づい
て、回転検光子と回転位相検出素子との位相差を検出す
るようにしたものであり、まず、数式をも参照して本発
明の原理について説明する。
The present invention makes reflected light of light projected onto a sample surface at a predetermined angle of incidence enter a rotating analyzer such as that provided coaxially with respect to a rotating phase detection element. In order to detect the phase difference between a rotating analyzer and a rotating phase detection element in an elliptical polarimeter, which is configured to receive light emitted from Output from a rotating phase detection element installed coaxially with a single-rotation analyzer when a substance is used as a sample in which the state of polarization of the reflected light is known when reflected light is reflected from the sample surface. The mode of change on the time axis of the output signal of the photodetector obtained based on the signal, and the time axis of the output signal that should theoretically be multiplied from the photodetector when using the above sample. The phase difference between the rotary analyzer and the rotary phase detection element is detected based on the mode of change in the rotational phase detection element. First, the principle of the present invention will be explained with reference to mathematical expressions.

光の偏光の状態は、P、Qの直交する2つの平面内での
光の振動の重ね合わせで記述できることは周知のとおり
である。第2図は試料9における入射光11と反射光1
2とを示しており、この図においてPは入射光11の入
射面を含む平面の方向(P軸)、Sは前記した入射面に
直交する平面の方向(S軸)を表わしている。
It is well known that the state of polarization of light can be described by the superposition of vibrations of light in two orthogonal planes P and Q. Figure 2 shows incident light 11 and reflected light 1 on sample 9.
2, in this figure, P represents the direction of the plane containing the plane of incidence of the incident light 11 (P axis), and S represents the direction of the plane perpendicular to the plane of incidence (S axis).

反射面における系全体のフレネルの反射係数をRp、R
s(P方向の反射率Rp、S方向の反射率Rs)として
、それの比を求めると次の(1)式で示される。
The Fresnel reflection coefficient of the entire system on the reflecting surface is Rp, R
The ratio of s (reflectance Rp in the P direction, reflectance Rs in the S direction) is determined by the following equation (1).

Rp/Rs=tan  ψexp(iΔ)・・・・・・
(1)(1)式において、tan ψは反射光における
P方向の振幅とS方向の振幅との比であり、また、Δは
反射光におけるP方向とS方向との位相差である。
Rp/Rs=tan ψexp(iΔ)・・・・・・
(1) In equation (1), tan ψ is the ratio of the amplitude in the P direction to the amplitude in the S direction in the reflected light, and Δ is the phase difference between the P direction and the S direction in the reflected light.

次に、ジョーンズの行列を用いて、反射面における光の
状態についての説明を行なう。反射面に入射させるべき
入射光は、それの強度が時間軸上で一定で、かつ、偏光
状態が時間軸上で一定でありさえすれば任意なのである
が、今、入射光Iiとしては(2)式で示されるもので
あるとする。
Next, the state of light on the reflective surface will be explained using Jones' matrix. The incident light that should be incident on the reflective surface is arbitrary as long as its intensity is constant on the time axis and the polarization state is constant on the time axis, but now, as the incident light Ii, (2 ).

前記の(2)式で示される入射光は、それが反射面に投
射されると、偏光状態は(3)式で示されるジョーンズ
のベクトルで表わされるようなものに変化する。
When the incident light expressed by equation (2) above is projected onto a reflecting surface, the polarization state changes to that expressed by the Jones vector expressed by equation (3).

そして、本発明の楕円偏光計の回転検光子と回転位相検
出素子との位相差検出法においては、楕円偏光計の回転
検光子と回転位相検出素子との位相差の検出時に、既述
もしたように光源から試料9の反射面に予め定められた
入射角で投射された光が、試料9で反射して生じる反射
光の偏光の状態が既知、すなわち、パラメータφとパラ
メータΔとが既知であるような試料9が用いられるので
あるが、今、検光子方位がP方向から角度Aであるとし
、回転検光子の角速度をωとすると、回転検光子の検光
子方位はA=ωtのように時間軸上で変化するから1回
転検光子のジョーンズの行列は次の(4)式で示される
ものとなる。
In the phase difference detection method between the rotating analyzer and the rotating phase detecting element of the elliptical polarimeter of the present invention, when detecting the phase difference between the rotating analyzer and the rotating phase detecting element of the elliptical polarimeter, the above-described method is also used. The state of polarization of the reflected light generated when light is projected from the light source onto the reflective surface of the sample 9 at a predetermined angle of incidence is known, that is, the parameters φ and Δ are known. A certain sample 9 is used. Now, suppose that the analyzer orientation is at an angle A from the P direction, and the angular velocity of the rotating analyzer is ω, then the analyzer orientation of the rotating analyzer is as follows: A = ωt. The Jones matrix of a one-turn analyzer is expressed by the following equation (4).

したがって、光検出器に与えられる光のP方向の成分E
ρと1、光検出器に与えられる光のS方向の成分Esと
は、次のれ(5)式で示されるものになる。
Therefore, the P-direction component E of the light given to the photodetector
ρ, 1, and the S-direction component Es of the light given to the photodetector are expressed by the following equation (5).

ただじ、上式において、X、Yはそれぞれ次式で示され
るものである。
However, in the above formula, X and Y are each represented by the following formula.

X=ta’n’ [cos2AtanψsinΔ/ (
cosAlllnA+cog” AtanψcosΔ)
]Y =tari’ [cosAsinAtanφsi
nΔ/ (sin” A+cosAainA−ψcos
Δ)]ここで、光検出器4で検出される信号31は、光
の強度Ioであるが、光の強度は光の電場分布(振幅)
の2乗であるから、光の強度Ioは上記した式より、次
の(6)式で表わされるものになる。
X=ta'n' [cos2AtanψsinΔ/ (
cosAllnA+cog” AtanψcosΔ)
]Y =tari' [cosAsinAtanφsi
nΔ/ (sin” A+cosAainA−ψcos
Δ)] Here, the signal 31 detected by the photodetector 4 is the light intensity Io, but the light intensity is determined by the electric field distribution (amplitude) of the light.
Therefore, the light intensity Io is expressed by the following equation (6) from the above equation.

10:   ((jan’φ+1)+ (t、>n”ψ
−1)cos2A+2tanψc、osΔ5in2A)
 −・・・・・・(6) パラメータφと、パラメータΔとが既知の試料9を用い
た場合に、光検出器4から得られるべき出力信号31の
理論値は、前記した(6)式によって求めることができ
るから、この(6)式によって求ぬられる光検出器4か
らの出力信号31の時間軸上での理論的な変化態様と、
前記したパラメータφと、パラメータΔとが既知の試料
9を実際に用いて、回転検光子2と同軸的に設けられて
いる回転位相検出素子3からの出力信号を基準にして得
られた光検出器の出力信号の時間軸上での変化の態様と
を比較すオしば、回転検光子2の方位と1回転位相検出
素子3の基準位相との間の位相差φpを良好に検出でき
る。すなわち、前記した(6)式の計算によって求めた
理論値による波形と、実際に試料を用いて実測して得ら
れた波形との比較に当って、例えば最小自乗近似等の手
段を用いれば、高精度で回転検光子2の方位と、回転位
相検出素子3の基準位相との間の位相差φpを検出する
ことができる。
10: ((jan'φ+1)+ (t, >n”ψ
-1) cos2A+2tanψc, osΔ5in2A)
- (6) When using a sample 9 with known parameters φ and Δ, the theoretical value of the output signal 31 that should be obtained from the photodetector 4 is determined by the above equation (6). Therefore, the theoretical change mode of the output signal 31 from the photodetector 4 on the time axis determined by this equation (6),
Photodetection obtained by actually using a sample 9 whose parameters φ and Δ are known, and based on the output signal from the rotary phase detection element 3 provided coaxially with the rotary analyzer 2. The phase difference φp between the orientation of the rotating analyzer 2 and the reference phase of the one-rotation phase detection element 3 can be detected satisfactorily by comparing the change in the output signal of the analyzer with the change on the time axis. That is, when comparing the waveform based on the theoretical value obtained by calculating the above-mentioned formula (6) with the waveform obtained by actually measuring using a sample, for example, if a means such as least squares approximation is used, The phase difference φp between the orientation of the rotating analyzer 2 and the reference phase of the rotating phase detection element 3 can be detected with high accuracy.

(発明の効果) 以上、詳細に説明したところから明らかなように、本発
明の楕円偏光計の回転検光子と回転位相検出素子との位
相差検出法は、予め定められた入射角で試料面に投射さ
れた光の反射光を、回転位相検出素子に対して同軸的に
設けられている如き回転検光子に入射させ、前記の回転
検光子から出射した光を光検出器で受光するようになさ
れている楕円偏光計における回転検光子と回転位相検出
素子との位相差の検出法であって、予め定められた入射
角で試料面に投射された光が試料面で反射して生じた反
射光における偏光の状態が既知であるような物質を試料
として使用した状態において。
(Effects of the Invention) As is clear from the above detailed explanation, the phase difference detection method between the rotating analyzer and the rotating phase detection element of the elliptical polarimeter of the present invention is such that the sample surface is detected at a predetermined angle of incidence. The reflected light of the light projected on the rotary phase detection element is made incident on a rotating analyzer such as that provided coaxially with respect to the rotating phase detecting element, and the light emitted from the rotating analyzer is received by a photodetector. This is a method of detecting the phase difference between a rotating analyzer and a rotating phase detection element in an elliptical polarimeter, and is a method of detecting the phase difference between a rotating analyzer and a rotating phase detection element in an ellipsometer. When a substance whose polarization state is known is used as a sample.

回転検光子と同軸的に設けられている回転位相検出素子
からの出力信号を基準にして得られた光検出器の出力信
号の時間軸上での変化の態様と、前記の試料を使用した
際に、光検出器から理論上櫛られるべき出力信号の時間
軸上での変化の態様とに基づいて、回転検光子と回転位
相検出素子との位相差を検出するものであるから、この
本発明の楕円偏光計の回転検光子と回転位相検出素子と
の位相差検出法によれば、光源を含んで構成されている
部分と、回転検光子を含んで構成されている部分とが、
それぞれ試料の面に対して予め定められた角度で固定の
状態になされていても、試料として予め定められた入射
角で試料面に投射された光が試料面で反射して生じた反
射光における偏光の状態が既知であるような物質を使用
することにより、極めて簡単に楕円偏光計における回転
検光子と回転位相検出素子との位相差を精密に検出する
ことができるのであり、本発明の楕円偏光計の回転検光
子と回転位相検出素子との位相差検出法によれば、既述
した従来の問題点はすべて良好に解決できるのである。
The mode of change on the time axis of the output signal of the photodetector obtained based on the output signal from the rotating phase detection element provided coaxially with the rotating analyzer, and when using the above sample. The present invention detects the phase difference between the rotary analyzer and the rotary phase detection element based on the change in the output signal on the time axis that should theoretically be combed from the photodetector. According to the phase difference detection method between a rotating analyzer and a rotating phase detection element of an elliptical polarimeter, a part including a light source and a part including a rotating analyzer are
Even if the specimen is fixed at a predetermined angle to the surface of the sample, the reflected light generated when the light projected onto the sample surface at a predetermined incident angle is reflected by the sample surface. By using a substance whose polarization state is known, it is possible to precisely detect the phase difference between the rotating analyzer and the rotating phase detection element in an ellipsoidal polarimeter, and the ellipsoid of the present invention According to the phase difference detection method using a rotating analyzer of a polarimeter and a rotating phase detection element, all of the above-mentioned conventional problems can be solved satisfactorily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の楕円偏光計の回転検光子と回転位相検
出素子との位相差検出法を適用する楕円偏光計の一例構
成のブロック図、第2図は試料と入射光と反射光との説
明図である。 l・・・光源と出射側の光学系、2・・・回転検光子、
3・・・回転位相検出素子、4・・・光検出器、6・・
・アナログデジタル変換器、7・・・電子計算機、8・
・・ディスプレイ、9・・・試料、
Figure 1 is a block diagram of an example configuration of an elliptical polarimeter that applies the phase difference detection method between a rotating analyzer and a rotating phase detection element of the elliptical polarimeter of the present invention, and Figure 2 shows a sample, incident light, and reflected light. FIG. l... Optical system on the light source and output side, 2... Rotating analyzer,
3... Rotational phase detection element, 4... Photodetector, 6...
・Analog-digital converter, 7...Electronic computer, 8.
...Display, 9...Sample,

Claims (1)

【特許請求の範囲】[Claims] 予め定められた入射角で試料面に投射された光の反射光
を、回転位相検出素子に対して同軸的に設けられている
如き回転検光子に入射させ、前記の回転検光子から出射
した光を光検出器で受光するようになされている楕円偏
光計における回転検光子と回転位相検出素子との位相差
の検出法であって、予め定められた入射角で試料面に投
射された光が試料面で反射して生じた反射光における偏
光の状態が既知であるような物質を試料として使用した
状態において、回転検光子と同軸的に設けられている回
転位相検出素子からの出力信号を基準にして得られた光
検出器の出力信号の時間軸上での変化の態様と、前記の
試料を使用した際に、光検出器から理論上得られるべき
出力信号の時間軸上での変化の態様とに基づいて、回転
検光子と回転位相検出素子との位相差を検出することを
特徴とする楕円偏光計の回転検光子と回転位相検出素子
との位相差検出法
The reflected light of the light projected onto the sample surface at a predetermined angle of incidence is made incident on a rotating analyzer such as that provided coaxially with the rotating phase detection element, and the light emitted from the rotating analyzer is A method of detecting the phase difference between a rotating analyzer and a rotating phase detection element in an elliptical polarimeter that is configured to receive light with a photodetector, in which light projected onto a sample surface at a predetermined angle of incidence is detected. When using a material as a sample in which the polarization state of the reflected light generated by reflection from the sample surface is known, the output signal from the rotating phase detection element installed coaxially with the rotating analyzer is used as the reference. The mode of change on the time axis of the output signal of the photodetector obtained by A method for detecting a phase difference between a rotating analyzer and a rotating phase detecting element of an elliptical polarimeter, characterized in that the phase difference between the rotating analyzer and the rotating phase detecting element is detected based on the above aspects.
JP12331384A 1984-06-15 1984-06-15 Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer Pending JPS612027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12331384A JPS612027A (en) 1984-06-15 1984-06-15 Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12331384A JPS612027A (en) 1984-06-15 1984-06-15 Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer

Publications (1)

Publication Number Publication Date
JPS612027A true JPS612027A (en) 1986-01-08

Family

ID=14857456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12331384A Pending JPS612027A (en) 1984-06-15 1984-06-15 Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer

Country Status (1)

Country Link
JP (1) JPS612027A (en)

Similar Documents

Publication Publication Date Title
US4053232A (en) Rotating-compensator ellipsometer
US6515746B2 (en) Thin film optical measurement system and method with calibrating ellipsometer
Cahan et al. A high speed precision automatic ellipsometer
US6922244B2 (en) Thin film optical measurement system and method with calibrating ellipsometer
KR100742982B1 (en) Focused-beam ellipsometer
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
Hauge Generalized rotating-compensator ellipsometry
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
CA1048806A (en) Rotating-compensator ellipsometer
US5706088A (en) Polarizer-sample-analyzer intensity quotient ellipsometry
JPS612027A (en) Method for detecting phase difference between rotary analyser and rotary phase detecting element of elliptic polarizer
JP2597099B2 (en) Multi-source ellipsometry
JPH1038694A (en) Ellipsometer
JPH04127004A (en) Ellipsometer and its using method
JPS612028A (en) Method for detecting phase difference between rotary analyser and rotary phase detecting element in elliptic polarizer
JPH05273120A (en) Polarization analyzer
JPS60249007A (en) Instrument for measuring film thickness
JPH07151674A (en) Quenching polarization measuring apparatus
JPH01161124A (en) Light wavelength measuring method
JPH09329424A (en) Method and device for optically measuring film thickness
JPH04294226A (en) Ellipsometer
JPH112567A (en) Ellipsometer
JPH01182737A (en) Double-refraction measurement