JPS61200616A - Manufacture of anisotropic conducting sheet - Google Patents

Manufacture of anisotropic conducting sheet

Info

Publication number
JPS61200616A
JPS61200616A JP4318585A JP4318585A JPS61200616A JP S61200616 A JPS61200616 A JP S61200616A JP 4318585 A JP4318585 A JP 4318585A JP 4318585 A JP4318585 A JP 4318585A JP S61200616 A JPS61200616 A JP S61200616A
Authority
JP
Japan
Prior art keywords
sheet
conductive material
conductive
fluorine
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318585A
Other languages
Japanese (ja)
Inventor
田村 正平
佐々木 貞光
江副 実
中本 啓次
山口 章夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP4318585A priority Critical patent/JPS61200616A/en
Publication of JPS61200616A publication Critical patent/JPS61200616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は異方導電性シートの製造方法、に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a method for manufacturing an anisotropically conductive sheet.

(b)従来のffA術 シートの厚み方向にのみ導電性を有する異方導電性シー
トは、高密度コネクター、例えば、プリント配線基板と
フラットケーブルとの接続、プリント配線基板とLSI
バッケーノとの接続等に利用されている。
(b) Anisotropically conductive sheets that have conductivity only in the thickness direction of conventional ffA sheets can be used for high-density connectors, such as connections between printed wiring boards and flat cables, and connections between printed wiring boards and LSIs.
It is used to connect with Bacceno.

かかる異方導電性シートとしては、ゴムまたは合成υE
rNから成る絶縁性シート中に導電性粉末を分散させr
こらの、或は導電性繊維をシートの厚さ方向に埋め込ん
だものが知られている。
Such an anisotropically conductive sheet is made of rubber or synthetic υE.
Conductive powder is dispersed in an insulating sheet made of rN.
A sheet in which these or conductive fibers are embedded in the thickness direction of the sheet is known.

(c)発明が解決しようとする問題点 丙者の異方導電性シートの製造方法としてMA縁性素材
に導電性粉末を分散させ、これを圧延等の方法でシー)
状に形成すると共に上記導電性粉末の両端又は両端部を
当該シーYの両面がら露出させる方法が提案′!−れで
いるが、この場合、導電性粉末の両端又は両端部が部分
的に上記絶縁性素材で被8[され、この結果、この部分
での導通が完全に失われたり、或はシートの厚さ方向の
抵抗が大きくばらつく等の問題があった。
(c) Problems to be Solved by the Invention As a manufacturing method of the anisotropically conductive sheet of the present invention, conductive powder is dispersed in the MA edge material, and then the material is sealed by a method such as rolling.
A method is proposed in which both ends or both ends of the conductive powder are exposed from both sides of the sheet Y. However, in this case, both ends or both ends of the conductive powder are partially covered with the above-mentioned insulating material, and as a result, the conductivity in this part is completely lost or the sheet is There were problems such as large variations in resistance in the thickness direction.

又後者の異方導電性シートの製造方法は、硬化筋の絶縁
性素材に導電性繊維を分散させ、これを配向させた後、
5該絶縁−素材を硬化させ、二の硬化物を導電性Ls、
!Iの配向方向には1rJJjな面ニ沿ってスライスす
る方法であるが、このj:J合スライスする際に、上記
導電性は雑の切断開所が部分的に押圧されて上記J?!
!縁性素球性に埋没し、この結果、上記と同様の間二が
生ずるのであった。
The latter method for producing an anisotropically conductive sheet involves dispersing conductive fibers in the insulating material of the hardened strips, orienting the fibers, and then
5. The insulating material is cured, and the second cured material becomes conductive Ls,
! This is a method of slicing along a plane 1rJJj in the orientation direction of I, but when slicing this j:J, the cutting opening of the conductive material is partially pressed and the J? !
! It was buried in the periphery, resulting in the same gap as above.

(cl)間m点をへτ決するための手段本発明者らは、
厚さ方向にのみ安定した導電性を有rるが、項方向並び
に縦方向にはP、緑性の砥めて高い異方導電性シートの
製造方法について鋭意検討を重ねてきた。
Means for determining m points between (cl) to τ The inventors have
We have been conducting intensive studies on a method for manufacturing an anisotropically conductive sheet that has stable conductivity only in the thickness direction, but has high P and green properties in the vertical and vertical directions.

その結果、絶縁性素材としてフッX if、 ul脂が
好土しく、しがもフッ素系絶縁素材中に導電材七分数さ
せた後シート状とし、このシーFの両面部をスパッタエ
ツチングして上記各導電材の両端又は両端部をシートの
両面がら確実に露出させることにより電気特性の非常に
優れ、かつ信頼性の極めて高い異方導電性シートを製造
しうろことを見出だした。
As a result, we found that fluorine-containing insulating material was preferable as an insulating material, and a conductive material was added to the fluorine-based insulating material to form a sheet, and both sides of this sheet were sputter-etched to form the above-described material. It has been discovered that it is possible to produce an anisotropically conductive sheet with extremely excellent electrical properties and extremely high reliability by ensuring that both ends or both ends of each conductive material are exposed from both sides of the sheet.

即ち、本発明はフッ素系絶縁性素材と導電材とを加工劫
;i呵の存在下で、混合して″iJ導電材を上記フッ%
系絶縁1ス材中に均一に分散し、該混合上をシーF状に
形成した後、スジ−Yの両面部をスバツタエ、チングし
て上記導電材の両々又は両端部を上記シーFの両面から
露出したことを特徴とするものである。
That is, in the present invention, a fluorine-based insulating material and a conductive material are mixed in the presence of a fluorine-containing insulating material and a conductive material, and the conductive material is
After uniformly dispersing the electrically conductive material in the first insulating material and forming a sheet F shape on the mixed surface, both sides of the conductive material Y are spliced, and both or both ends of the conductive material are coated on both sides of the sheet F. It is characterized by being exposed from.

以下、本発明の外方4篭性シートの製造方法を説明する
Hereinafter, a method for manufacturing the outer four-wall sheet of the present invention will be explained.

■フッ洟系N!、縁性2材と導電材とを加工幼潟(絶縁
性素材に沈動性を与えて導電材が分散し易くするための
ものをいう、)を加えて)混合することにより、上記導
電材を絶縁性素材中に均一に分散する。二の場合、所望
により公知の方法で導電材を配向させる。
■Fukushi type N! , by mixing the two edge materials and the conductive material with the addition of a processed yogata (a substance used to impart settling properties to the insulating material to make it easier for the conductive material to disperse), the above-mentioned conductive material can be obtained. evenly dispersed in the insulating material. In the second case, the conductive material is oriented by a known method if desired.

本発明において、フッ濃系絶縁性素材とは、4−7−/
 化エチレン、トリプルオルクロルエチレン、6−7γ
化フロピレンなとのフッX系モ/マーの重合体及びこれ
らの共重合体、戒はフッ化ビニル、フッ化ビニリデン、
ノクロルノフルオルエチレンなどの重合体お上ゾ共瓜会
体、更にはエーテル結合或はエステル結合を有する7ツ
禦系!(gなどをいうが、特にごリテFラフルオルエチ
レン(以下、PTFEと称す、)及V4−フッ化エチレ
ンー6−フッ化プロピレン共重合体が電気特性、生産加
工性に優れるから好ましい。
In the present invention, the fluoro-containing insulating material refers to 4-7-/
ethylene, triple orchloroethylene, 6-7γ
Polymers of fluorine-based monomers and copolymers thereof, such as fluoropyrene, vinyl fluoride, vinylidene fluoride,
Polymers such as nochlornofluoroethylene, conjugated polymers, and even 7-unit systems with ether or ester bonds! (g, etc.), but particularly preferred are Golite F lafluoroethylene (hereinafter referred to as PTFE) and V4-fluorinated ethylene-6-fluorinated propylene copolymer because of their excellent electrical properties and production processability.

一方、導電材とは、会%a、 居、アルミニツム、亜鉛
、錫、鉄、ニッケル又はコバルト等の金属粉末や金属繊
維゛、又はこれらを主成分とする合金の粉末や繊維、更
に炭素の粉末や繊維などをいう。
On the other hand, conductive materials include metal powders and metal fibers such as aluminum, zinc, tin, iron, nickel, or cobalt, powders and fibers of alloys containing these as main components, and carbon powders. and fibers.

これらの導電材;土、単−状コ、あるいはシートの厚さ
方向にi数連設した状態で絶縁性シートに分散している
ことをiするがら、その大きさは当該シートの厚みどの
関係で戻剖される。
These conductive materials are dispersed in the insulating sheet in soil, single-shaped copper, or in a number of rows in the thickness direction of the sheet, and their size depends on the thickness of the sheet. The body will be re-necropsied.

−殻に、導電材の大ささ島るいは長さは0.1μ−〜5
I、好土しくは、0.3μ閣〜0.3msのものである
-The size or length of the conductive material in the shell is 0.1μ-~5
I, preferably, is 0.3 μm to 0.3 ms.

又、フッ素系絶縁性素材に討する導電材の添加量ハ、コ
ネクターの高密度化上多くすることが好ましいが、多過
ぎると具カレング−法の機械的強度(引張強度)を保持
し難く、又使用するフッ素系絶縁性素材に上っても異な
るが、上記j5!!性素材100玉量部に対し50〜2
500盃量部が適当である。
In addition, it is preferable to increase the amount of conductive material added to the fluorine-based insulating material in order to increase the density of the connector, but if it is too large, it will be difficult to maintain the mechanical strength (tensile strength) of the tool curling method. It also depends on the fluorine-based insulating material used, but the above j5! ! 50 to 2 parts per 100 parts of sex material
500 servings is appropriate.

そして、上記フッX糸MA礒性素材と導電材とを混合す
るにあたり%当FJQ電材が粉末状のときには、授井慨
による混合が有効であるが、このλ件磯としては、オー
トホモミキサー、ミキンングロール、インターナルミキ
サー、ニーダ−等のミキサー類を使mしうる。
When mixing the above-mentioned FJQ material and conductive material, it is effective to use a mixing method when the FJQ electrical material is in powder form. Mixers such as mixing rolls, internal mixers, and kneaders can be used.

又、加工助剤として、灯油、軽油或はトルエン等が使用
されるが、二の助4の添加量は混合物全体を浸し得る最
小限度とすることが適当であり、それ以上にすると導電
材が分離し易い。
In addition, kerosene, light oil, toluene, etc. are used as processing aids, but it is appropriate that the amount of Ni-no-suke 4 added be the minimum amount that can soak the entire mixture; if it is more than that, the conductive material may be Easy to separate.

口このようにして得た組成物において、不要な加工切4
が遊離している場合には、当設加工助ス警をは過した後
、使用したフッ索糸絶縁性汲材に応じて、従来公知の圧
延法、カレングー法、溶液流延性等の中から最も適した
方法を選んでシーFをダ遣する。
In the composition obtained in this way, unnecessary processing cuts 4
If it is loose, after passing our processing assistant inspection, we will use conventional methods such as rolling method, karengoo method, solution casting method, etc., depending on the insulating thread material used. Choose the most suitable method and send Sea F.

この場合、上記シートの厚さ1よ、使用する導電材の大
きさに応じて設定するが、導電材の大きさと略等しい厚
さないしはそれよりは多少厚くてもよいが、後処理の点
から導電材の大!さと格等しい厚さとするのが好ましい
In this case, the sheet thickness 1 above is set according to the size of the conductive material used, but it may be approximately equal to the size of the conductive material or slightly thicker, but from the point of view of post-processing. Great conductive material! It is preferable that the thickness be the same as that of the base.

そして、上記導電材が金属製粉末であり、しかも圧延に
よって上記シートを形成する場合、第1図(c)及び:
ITJ2図(C)に示すように、この圧延の際に、この
粉末を加圧して塑性変形させ、これによって、上記シー
1面からの露出部分を偏平にして、電極との接触面積を
広くさせることができる。
When the conductive material is a metal powder and the sheet is formed by rolling, FIG. 1(c) and:
As shown in ITJ2 diagram (C), during this rolling, the powder is pressurized to plastically deform it, thereby flattening the exposed portion from the sea 1 surface and widening the contact area with the electrode. be able to.

0大いで、所望により焼成を行う、焼成温度は通常30
0℃〜380″Cである。この際導電材が酸化され易い
ものであるときには、窒素ガス等の不活性がス中で焼成
するのが好ましい。
The firing temperature is usually 30°C.
The temperature is 0° C. to 380″C. In this case, when the conductive material is easily oxidized, it is preferable to sinter it in an inert atmosphere such as nitrogen gas.

■最後に、この上うにして得た異方導電性シートの両面
部をスパッタエツチング処理により除去して導電材の両
端または両端部を露出させる。
(2) Finally, both sides of the anisotropically conductive sheet thus obtained are removed by sputter etching to expose both ends or both ends of the conductive material.

久バッタエツチングの処理条件は次どの通りである。The processing conditions for long grasshopper etching are as follows.

スパッタエツチング処理は通常、常温でo 、’ooo
5−2Torrの雰l気圧、好ましくは0.001〜0
,5Torrの雰V5y、圧下に行われる。雰囲気圧が
0.0005丁orrより小さいときは放電が継続して
イアわれず、また、2 Torrより大トいときはスパ
ッタエツチング速度が着しく低下すると共に、放電が不
安定となって、特に連続的にスパッタエツチング処理を
イブう場合に均質な処理表面を得ることができないから
好ましくない。
The sputter etching process is usually performed at room temperature.
Atmospheric pressure of 5-2 Torr, preferably 0.001-0
, 5 Torr under pressure. When the atmospheric pressure is less than 0.0005 torr, the discharge continues and cannot be fired, and when it is more than 2 torr, the sputter etching rate is severely reduced and the discharge becomes unstable, especially when Continuous sputter etching is not preferred because a uniform treated surface cannot be obtained.

又、放電電力密度は通常0.05〜7.0WaLt/a
m2、好ましくは1−5 Watt/Cm2である。
In addition, the discharge power density is usually 0.05 to 7.0 WaLt/a
m2, preferably 1-5 Watt/Cm2.

スパッタエツチングによるフッ素系樹皿の除去量は処理
電力密度と処理時間の積で表され、i1遇の処理は導電
材を覆っている上記絶縁性素材の材質や厚みによって適
宜に決定されるが、通常0.5−100011I−se
c/cm’である。明らかに処理電力密度が小さくなる
程、処理時間を良くする必要があるが、実用的には処理
電力密度を大きくして、処理時間を短(するのが望まし
い。
The amount of fluorine-based tree trays removed by sputter etching is expressed as the product of processing power density and processing time, and the most suitable treatment is determined as appropriate depending on the material and thickness of the insulating material covering the conductive material. Usually 0.5-100011I-se
c/cm'. Obviously, as the processing power density decreases, the processing time needs to be improved, but in practice it is desirable to increase the processing power density and shorten the processing time.

電源としては数百KHz乃至数十M Hzの高周波電源
を用いることができるが、実用上は13.56M Hz
の工業用割当周波数を用いるのが便利である。必要な電
極間距離は芥!2N!気圧をPとするとき1/−rP1
m比例し、例えばPが0.005Torrのときは電極
間距離は30mm以上とすることが必要であり、普通4
0Ial11程度に:i4整される。また、陰極用電極
とシールド用電極との間には、l1lii電極間に放電
が生じないように間隔が設けられるが、例えば雰囲気圧
が0.005Torrの場合、間隔は通常4+om程度
である。
As a power source, a high frequency power source of several hundred KHz to several tens of MHz can be used, but in practice, the frequency is 13.56 MHz.
It is convenient to use the industrially allocated frequencies of The required distance between the electrodes is just right! 2N! When the atmospheric pressure is P, 1/-rP1
For example, when P is 0.005 Torr, the distance between the electrodes must be 30 mm or more, and usually 4
I4 is adjusted to about 0Ial11. Further, a gap is provided between the cathode electrode and the shield electrode so that discharge does not occur between the l1lii electrodes, and for example, when the atmospheric pressure is 0.005 Torr, the gap is usually about 4+ om.

スパッタエツチング処理する際の雰囲気γスは大m上は
アルゴン、窒素等の不活性ガス、空気、炭酸がス、水蒸
気が用いられる。
The atmosphere .gamma. during the sputter etching process is generally an inert gas such as argon or nitrogen, air, carbon dioxide, or water vapor.

この様に、陰極部中に置かれたシートの表面部は、陽イ
オンの衝突により除去されるが、導電材はほとんど除去
されることがなく、この結果、導電材のWl端または両
端部が上記シートの表面から露出してくるのである。
In this way, the surface part of the sheet placed in the cathode part is removed by the collision of cations, but the conductive material is hardly removed, and as a result, the Wl end or both ends of the conductive material are removed. It is exposed from the surface of the sheet.

これを図面により説明すると、第3図(、)及び第3図
(b)に示すシー)(la)におけるフッ素系絶縁性素
材(2)の両面部をスパッタエツチングして、第2図(
a)及び第2図(b)に各々示すように、各導電材(3
)の両端を上記シー)<im)の両面から露出させても
、よく(この場合、導電材(3)の両端が部分的に絶縁
性素材(2)で覆われている恐れがある。)、更に、第
2図(、)、第2図(I3)及び第2図(C)に各々示
すシー)(lb)を、各々スパッタエツチングしてtJ
S1図(、)、@1図(b)及び第1図(C)に各々示
i′il気特性の安定した異方導電性シート(1)を製
造してもよ(、このときは電力密度及ブ処理1等の処理
条件はおだやかな条件でよいのである。
To explain this using drawings, both sides of the fluorine-containing insulating material (2) in sheets (la) shown in FIGS. 3(a) and 3(b) are sputter-etched, and
As shown in a) and FIG. 2(b), each conductive material (3
Even if both ends of the conductive material (3) are exposed from both sides of the above-mentioned sheet (im), there is a risk that both ends of the conductive material (3) may be partially covered with the insulating material (2). , and further, sputter-etched the sheets (lb) shown in FIGS.
Anisotropically conductive sheets (1) with stable air characteristics as shown in Figure S1 (,), Figure 1 (b), and Figure 1 (C) can be produced (in this case, the electric power The processing conditions such as density and processing 1 may be mild.

次に本発明の異方導電性シートの!i!遣方法において
、フッ素系絶縁性素材としてPTFEを、又導電材とし
て粉末状のものを、各々使用した場合につき、更に詳細
に説明する。
Next, the anisotropic conductive sheet of the present invention! i! In the method, PTFE is used as the fluorine-based insulating material, and powdered material is used as the conductive material, respectively, and this will be explained in more detail.

(イ)まずPTFEの7フインバツグーまたはフィブリ
ル化PTFEと、上記導電材とを加工助剤(ケロシン、
ホワイトオイル等)の存在下、Wl、件機により混合す
る。
(a) First, PTFE 7-fiber rubber or fibrillated PTFE and the above-mentioned conductive material are mixed with processing aids (kerosene,
(white oil, etc.), mix using a Wl machine.

上記フィブリル化PTFEとは、攪拌機により予備攪拌
して予めフィブリル化を進行させたPTFEをいい、こ
のフィブリル化PTFEを用いると、導電材の分散性が
一層向上する。
The above-mentioned fibrillated PTFE refers to PTFE that has been pre-stirred with a stirrer to advance fibrillation. When this fibrillated PTFE is used, the dispersibility of the conductive material is further improved.

そして、上記PTFEと導電材とを攪拌磯により攪拌す
ることにより、当該PTI’Hのフィブリル化が進イデ
すると共に、導電材の分散が促進される。攪拌磯にはオ
ートホモミキサーを使用でき、攪拌羽根は円盤の周囲を
上下90゛に折り曲げたホモディスパーで充分である。
By stirring the PTFE and the conductive material using a stirring rock, fibrillation of the PTI'H progresses and dispersion of the conductive material is promoted. An autohomo mixer can be used as the stirring rock, and a homodisper with a stirring blade bent 90 degrees vertically around the disk is sufficient.

この攪拌時における加工助剤の量は配合物全体を没し得
る最小限度とすることが適当であり、これ以上にすると
導電材が分離し易い、上記した予備攪拌並ゾに混合のた
めの時間は何れら、羽根回転速度2000〜3000 
rpmのもとで2〜3分とすれば充分である。
It is appropriate to keep the amount of processing aid during this stirring to the minimum amount that can submerge the entire mixture; if the amount is more than this, the conductive material is likely to separate. The blade rotation speed is 2000~3000
2-3 minutes at rpm is sufficient.

又、P T F E l:対する導電材の添加量は、コ
ネクターの高密度化上は多くすることが望まれるが多過
ぎると異方導電性シートの機械的強度(引張強度)を保
証し難く、通常PTFE100重量部に対し100〜2
500重量部が適当である。
In addition, it is desirable to increase the amount of conductive material added to P T F E l in order to increase the density of the connector, but if it is too large, it is difficult to guarantee the mechanical strength (tensile strength) of the anisotropic conductive sheet. , usually 100 to 2 parts by weight per 100 parts by weight of PTFE.
500 parts by weight is suitable.

(ロ)このようにして粉末状導電材とP T F Eと
の混合物を得れば、加工助剤を2f′!3によ’)VA
去し等速ロールでロール圧延をイアう、この場合、作業
性を確保するために、ロール温度は20〜80℃とする
二とが適当である。このロール圧延においてフィブリル
化を効率よく促進するrこめに、数段らしくはそれ以上
の段数の圧延で徐々に所定の厚みまて゛厚みを減じるこ
とが好ましい、このようにロール圧延してPTFEをフ
ィブリル化rると、上記導電材の間に繊維が根毛状に成
長して当該導電材相互間の接触を排除できるから、池の
絶縁性素材に比較して、導電材の配合比率を上げること
ができるのであり、−力、シートは引張り力を受けるが
、フィブリル化のなめに引張り強度が増大し、従って、
シートの厚さを粉末状導電材の大きさとほぼ等しくなる
まで極めて簡単に圧延できるのである。
(b) If a mixture of powdered conductive material and P T F E is obtained in this way, the processing aid can be reduced to 2f'! 3) VA
Roll rolling is carried out using constant velocity rolls, in which case it is appropriate to set the roll temperature at 20 to 80°C in order to ensure workability. In order to efficiently promote fibrillation in this roll rolling, it is preferable to gradually reduce the thickness to a predetermined thickness by rolling several or more stages. By doing so, fibers grow in the form of root hairs between the conductive materials, eliminating contact between the conductive materials, making it possible to increase the blending ratio of the conductive materials compared to the insulating material of the pond. - force, the sheet is subjected to a tensile force, but the tensile strength increases due to fibrillation, and therefore,
The thickness of the sheet can be rolled very easily until the thickness is approximately equal to the size of the powdered conductive material.

また、粉末状導電材の分散をより一層よくするために所
定の厚みまで圧延したものをfi1重し、これを所定の
厚みまで再圧延することを、シートに色ムラがな(なる
まで、数回ないしはそれ以上繰り返すことが望ましい。
In addition, in order to further improve the dispersion of the powdered conductive material, it is recommended that the sheet be rolled to a predetermined thickness and then rolled again to the predetermined thickness. It is advisable to repeat one or more times.

この圧延中に、上記攪拌や当該圧延時に分離した導電材
を補充することが可能である。
During this rolling, it is possible to replenish the conductive material separated during the stirring and rolling.

上記所定の厚みとは、圧延シート中に導電材を、例えば
単一分散させ得る厚みをいい、通常、導電材の最大径よ
りも大であるがその最大径の1.8倍よりも小なる寸法
である。
The above-mentioned predetermined thickness refers to a thickness that allows the conductive material to be monodispersed, for example, in the rolled sheet, and is usually larger than the maximum diameter of the conductive material, but smaller than 1.8 times the maximum diameter. Dimensions.

(ハ)このようにして所定厚みの圧延シートを得れば、
加熱乾燥または抽出によって加工助剤を最終的に除去す
る0次いで、このシーFを最終圧延して、例えば導電材
を単一分散した異方導電性シートを得る。この最終圧延
の厚みは、使用する粉末状導電材の粉末径分布に応じて
設定するが、通常は、略最大粉末径〜平均粉末径の範囲
内である。
(c) If a rolled sheet of a predetermined thickness is obtained in this way,
The processing aid is finally removed by heat drying or extraction. Then, this sheet F is finally rolled to obtain, for example, an anisotropically conductive sheet in which a conductive material is monodispersed. The thickness of this final rolling is set depending on the powder diameter distribution of the powdered conductive material used, but is usually within the range of approximately the maximum powder diameter to the average powder diameter.

(ニ)次いで、所望によりPTFEの焼成を什う。(d) Next, PTFE is fired if desired.

焼成温度は通常300°C〜380℃である。粉末状導
電材が酸化し易いものである場合、待に、潟粉末の場合
は、窒素ガス等の不活性ガス中で焼成するのが好ましい
The firing temperature is usually 300°C to 380°C. If the powdered conductive material is easily oxidized, it is preferable to sinter it in an inert gas such as nitrogen gas in the case of lagoon powder.

(ホ)flf&に、上記異方導電性シートの両面部をス
パッタエツチングにより除去して、導電材の両端または
両端部を、上記シートの両面から露出させる。ごの場合
のスパッタエツチングの処理条件は次の通りである。
(e) At flf&, both sides of the anisotropically conductive sheet are removed by sputter etching to expose both ends or both ends of the conductive material from both sides of the sheet. The processing conditions for sputter etching in this case are as follows.

スパッタエツチング処理はその雰囲気圧が通常、常温で
0 、0005− I Torr、好ましくjiO,0
O1−0、ITorrであり、又、放電電力密度は通常
0.1〜7 、OWaLt/cw2、好ましくは1−5
 Watt/cm’、特に好ましくは2〜5贅aCt/
ぐ1である。
In the sputter etching process, the atmospheric pressure is usually 0,0005-I Torr at room temperature, preferably jiO,0
O1-0, ITorr, and the discharge power density is usually 0.1-7, OWaLt/cw2, preferably 1-5
Watt/cm', particularly preferably 2 to 5 aCt/
It is 1.

又、処理量はi#:電材を覆っているPTFEの厚み等
によって適宜決定されるが1〜1000WaLL 3s
ec/ car”である。
In addition, the processing amount is determined appropriately depending on the thickness of the PTFE covering the electrical material, etc., but it is 1 to 1000WaLL 3s
ec/car”.

なお、その他の条件は上記■と同碌の範囲でよいのであ
る。
It should be noted that other conditions may be within the same range as in the above (■).

上記(ハ)の工程のように、加工助剤を除去してから最
終圧延な)デうと、加工助剤の除去跡のピンホール等を
圧延によって開本できる。一方、ピンホールの発生が僅
少であるか、または問題とならない場合、上記(ロ)の
工程における最終厚み(所定厚み)を上記の最終圧延厚
みとし、上記(ハ)の工程では加工助剤の除去のみを竹
ってもよい。
If the final rolling is performed after removing the processing aid as in step (c) above, pinholes and the like left behind by the removal of the processing aid can be opened by rolling. On the other hand, if the occurrence of pinholes is slight or does not pose a problem, the final thickness (predetermined thickness) in the step (B) above is the final rolling thickness above, and in the step (C) above, the processing aid is Bamboo may be removed only.

更に、上記(ハ)の工程において、最終圧延する加工助
剤除去シート(脱油シー))の厚みを、導電材がシート
を貫通する厚みよりもごく僅かだけ厚い厚さとする理由
は、脱油後のPTFEのスパッタエツチング等の加工数
を極力少なくすることにある。
Furthermore, in the step (c) above, the thickness of the final rolling process aid-removed sheet (oil-removed sheet) is made to be slightly thicker than the thickness through which the conductive material penetrates the sheet. The purpose is to minimize the number of subsequent processes such as sputter etching of PTFE.

(e)作用 本発明の異方導電性シートの製造方法では、当該シーF
の両面部をスパッタエツチングにより除去して、導電材
の両端または両端部を上記シートの表面から確実に露出
させたから厚さ方向の電気抵抗が至極小さく、しかも信
頼性の高い異方導電性シートが得られるのである。
(e) Function In the method for producing an anisotropically conductive sheet of the present invention, the sheet F
Since both sides of the conductive material are removed by sputter etching to ensure that both ends or both ends of the conductive material are exposed from the surface of the sheet, an anisotropic conductive sheet with extremely low electrical resistance in the thickness direction and high reliability can be obtained. You can get it.

又、電気抵抗の極めて高いフッ素系の絶縁性素材を使用
しているからシートの横又は縦方向の電気抵抗が極めて
高いのである。
Furthermore, since a fluorine-based insulating material with extremely high electrical resistance is used, the electrical resistance of the sheet in the horizontal or vertical direction is extremely high.

(f)実施例1〜5 11表に示すように、PTFHの7フインバウグー(ダ
イキン工業社^、商品名FIOI)100重量部iこ加
工助剤として灯油を入れ、PTFEが灯油に没る程度に
して攪拌を茂(特殊磯化工業製、オートホモミキサー)
ホモデスバー羽根を使い、回転312000−3000
rpmで2分子WI強制攪拌を行ってフィブリル化PT
FEを各々M遣し、これに第1表に示す量の銅粉末(福
田会!4笛粉工業製)を各々投入した。そしてさらに配
合物の全体が浸る程度に灯油を追加し、前回と同じ回転
数で3分間攪拌を行った。これにより、いずれの実施例
のものも銅粉末はほぼ均一に分散した。そして、これを
各々ろ紙で濾過して過剰の灯油を除去し、いずれの実施
例のものも温度60℃の等速圧延ロールに通し、最初の
ロールギャップを51にし順次0.2mmずつ薄くして
、圧延を繰り返し、厚さ0.5mm1二なったところで
、さらに、シートを4重に折り重ねて再度、厚さ0.5
mteまで圧延した。
(f) Examples 1 to 5 As shown in Table 11, kerosene was added as a processing aid to 100 parts by weight of PTFH (Daikin Industries, Ltd., trade name: FIOI) to the extent that the PTFE was submerged in the kerosene. and stir (auto homo mixer manufactured by Tokushu Isoka Kogyo)
Using homodesbar blades, rotation 312000-3000
Fibrillated PT with forced stirring of two molecules WI at rpm
M FE was poured into each sample, and copper powder (manufactured by Fukuda-kai! 4 Fueko Kogyo Co., Ltd.) was added in the amount shown in Table 1. Further, kerosene was added to the extent that the entire mixture was immersed, and the mixture was stirred for 3 minutes at the same number of revolutions as before. As a result, the copper powder was dispersed almost uniformly in all Examples. Then, each of these was filtered through filter paper to remove excess kerosene, and each example was passed through constant speed rolling rolls at a temperature of 60°C, with an initial roll gap of 51 and successively thinned by 0.2 mm. , repeat the rolling process, and when the thickness reaches 0.5 mm, fold the sheet 4 times and roll it again to a thickness of 0.5 mm.
It was rolled to mte.

これを3回縁ワ返した。これによりいずれの実施例のも
のらシートの色ムラがなくなり均一な銅色となった。i
Lらに圧延を続行し、厚f!:O,15m−のシートを
得た。このシートには加工助剤の灯油が含まれているの
で80℃の熱風乾燥姦で4時間保存して、脱油した。こ
れによりシートは銅粉末が単一分散したPTFEのシー
トになる。更に、ロールギャップを狭めてシートの圧延
を繰り返し、これによって、第1表に示すシートW、さ
のシーFを各々生成した。このシーFの8を械的強度の
向上、及V銅粉末の固定を目的として各々焼成を行う。
I turned this around three times. As a result, the color unevenness of the sheets in all Examples was eliminated and the sheets became a uniform copper color. i
Continue rolling to the thickness f! : O, 15 m- sheet was obtained. Since this sheet contains kerosene as a processing aid, it was stored in a hot air dryer at 80°C for 4 hours to remove the oil. As a result, the sheet becomes a sheet of PTFE in which copper powder is monodispersed. Furthermore, the roll gap was narrowed and rolling of the sheet was repeated, thereby producing sheet W and sheet F shown in Table 1, respectively. This sheet F-8 is fired for the purpose of improving mechanical strength and fixing the copper powder.

焼成はシートの収縮を防ぐ目的でフルミ箔とともに鉄バ
イブに巻きつけ、370℃窒素〃ス雰ガス中で行った。
In order to prevent the sheet from shrinking, the sheet was wrapped around an iron vibrator together with Fulmi foil, and fired at 370° C. in a nitrogen gas atmosphere.

このようにして得たシートを第1表に示すスパッタエツ
チング処理条件で各々シーFの両面部を除去した。
The sheets thus obtained were subjected to sputter etching treatment conditions shown in Table 1 to remove both sides of each sheet F.

(以下余白) rjS2iにおいで、厚み方向の抵抗は以下に示す方法
で測定した。
(The following is a blank space) In rjS2i, the resistance in the thickness direction was measured by the method shown below.

IIrfR平面板上に各実施例の異方導電性シートをf
i置し、該シートの表面上に断面積0.442mm” 
(0、75s−一)の1r銅計IC極を200gの荷重
をかけて接当させ、その間の抵抗を測定した。
The anisotropic conductive sheet of each example was placed on the IIrfR flat plate.
i, and a cross-sectional area of 0.442 mm" was placed on the surface of the sheet.
A 1r copper meter IC electrode (0.75 s-1) was brought into contact with a load of 200 g, and the resistance therebetween was measured.

試料は5c−平方のシートを用い、tjS2表中の数値
はその20箇所の平均値である。
A 5c square sheet was used as the sample, and the values in the tjS2 table are the average values at 20 locations.

なお、シート表面の10間隔の電気抵抗は20MΩ以上
であった。
Note that the electrical resistance at 10 intervals on the sheet surface was 20 MΩ or more.

又、シート表面の沿面破壊電圧は次のようにして測定し
た。
Further, the creepage breakdown voltage on the sheet surface was measured as follows.

第4図に示すように、ゴムシート(4)上面に、各実施
例の異方導電性シート(1)をn置し、該シー ) (
1)の表面上には、円柱電極25φ、32φ(5)(6
)を、当該電極(5)、(6)間の距離を0,5I隔て
(0,5−曽のPTFEシート(7)を両1!極門に介
装する。)、かつ、各々200gの11鎖(8)、(8
)をかけて、接当させる。
As shown in FIG. 4, the anisotropically conductive sheet (1) of each example is placed on the upper surface of the rubber sheet (4),
On the surface of 1), cylindrical electrodes 25φ, 32φ (5) (6
), the distance between the electrodes (5) and (6) was 0.5I (a PTFE sheet (7) of 0.5-mm was inserted between both electrodes), and each electrode had a weight of 200 g. 11 chains (8), (8
) and bring them into contact.

この両電極(5)、(6)閏にi′f流電圧を、OV。The i'f current voltage is applied to both electrodes (5) and (6) at OV.

100■、200vと印加し、200 V カi−,ハ
電圧を2秒間にIOVずつ上げ、沿面破壊電圧を測゛定
した。
100 V and 200 V were applied, and the creepage breakdown voltage was measured by increasing the voltage of 200 V by IOV every 2 seconds.

(g)発明の効果 本発明の異方導電性シートのpA遣方法によれば、フッ
素系絶縁性素材を母材とし、該フッ素系絶球性素材l:
導電財を分散してシート状に加工   ゛した後、該シ
ートの向面部をスパッタエツチングにより除去すること
により厚さ方向の電気抵抗が著しく小さく、しかも信頼
性の高い異方導電性シートを極めて簡単かつ容易に製造
できるのである。
(g) Effect of the invention According to the pA method of the anisotropically conductive sheet of the present invention, a fluorine-based insulating material is used as a base material, and the fluorine-based perfectly spherical material l:
After dispersing the conductive material and processing it into a sheet, the opposite side of the sheet is removed by sputter etching, making it extremely easy to produce an anisotropically conductive sheet with extremely low electrical resistance in the thickness direction and high reliability. Moreover, it can be easily manufactured.

又、フッ素系Ja縁性素材は電気抵抗が著しく高いから
、頂方向並びに縦方向の電気抵抗が極めて高い異方導電
性シートを製造できるのである。
Furthermore, since the fluorine-based Ja-bound material has extremely high electrical resistance, it is possible to produce an anisotropically conductive sheet with extremely high electrical resistance in the top and longitudinal directions.

なお、本発明の好適な実施例として、フッ素系絶縁性素
材としてPTFEを用い、又導電材として粉末状のもの
を用いると、導電材の混合、及ゾシーFの圧延の際にP
TFEがフィブリル化して導電材の間に繊維が根毛状に
戊長し、このため当該導電材相互間の接触を排除しうる
から、導電材の充填量を増加でき、この結果、厚さ方向
の電気抵抗γ極めて小さく、しから信頼性の一層高い異
方導電性シートを簡単に製造できるのである。
In addition, as a preferred embodiment of the present invention, if PTFE is used as the fluorine-based insulating material and powdered material is used as the conductive material, P
TFE becomes fibrillated and the fibers grow in the shape of root hairs between the conductive materials, which eliminates contact between the conductive materials, increasing the amount of conductive material filled, and as a result, increasing the amount of conductive material in the thickness direction. It is possible to easily produce an anisotropically conductive sheet with extremely low electrical resistance γ and higher reliability.

【図面の簡単な説明】 11図(+1)と第1図(b)及びtfS1図(e)は
各々本発明の方法で製造した異方導電性シートの断面図
、m2図(a)と第2図(b)及びff12tXl(e
)は各々導電材の両端が確実に露出していない異方導電
性シートの断面図、第3図(a)及ゾrjS3図(b)
は各々スパッタエツチング処理前のシートの断面図、第
4図は異方導電性シートの沿面破壊電圧の側定方法を示
す概略説明図である。 1・・・異方導電性シート 2・・・フッ素系絶縁性素材 3・・・導電材     ゛ 第4図 1゛°゛異カーv性シート 4・・・コ“4シート 5.6・・・電接 7・・・PTFEシート
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 11 (+1), Figure 1 (b), and Figure 1 (e) of tfS1 are cross-sectional views of the anisotropically conductive sheet produced by the method of the present invention, Figure 11 (+1), Figure 1 (a) Figure 2(b) and ff12tXl(e
) are cross-sectional views of an anisotropic conductive sheet in which both ends of the conductive material are not exposed, respectively, Figure 3 (a) and Figure 3 (b).
4 is a cross-sectional view of the sheet before sputter etching treatment, and FIG. 4 is a schematic explanatory diagram showing a method for determining creepage breakdown voltage of an anisotropically conductive sheet. 1... Anisotropic conductive sheet 2... Fluorine-based insulating material 3... Conductive material ゛Figure 4 1゛°゛Different conductive sheet 4...4 sheets 5.6...・Electrical connection 7...PTFE sheet

Claims (2)

【特許請求の範囲】[Claims] (1)フッ素系絶縁性素材と導電材とを加工助剤の存在
下で混合して当該導電材を上記フッ素系絶縁性素材中に
均一に分散し、該混合物をシート状に形成した後、該シ
ートの両面部をスパッタエッチングして上記導電材の両
端又は両端部を上記シートの両面から露出したことを特
徴とする異方導電性シートの製造方法。
(1) After mixing a fluorine-based insulating material and a conductive material in the presence of a processing aid to uniformly disperse the conductive material in the fluorine-based insulating material and forming the mixture into a sheet, A method for manufacturing an anisotropically conductive sheet, characterized in that both ends or both ends of the conductive material are exposed from both sides of the sheet by sputter etching both sides of the sheet.
(2)上記フッ素系絶縁性素材がポリテトラフルオロエ
チレンである特許請求の範囲第1項記載の異方導電性シ
ートの製造方法。
(2) The method for producing an anisotropically conductive sheet according to claim 1, wherein the fluorine-based insulating material is polytetrafluoroethylene.
JP4318585A 1985-03-04 1985-03-04 Manufacture of anisotropic conducting sheet Pending JPS61200616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318585A JPS61200616A (en) 1985-03-04 1985-03-04 Manufacture of anisotropic conducting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318585A JPS61200616A (en) 1985-03-04 1985-03-04 Manufacture of anisotropic conducting sheet

Publications (1)

Publication Number Publication Date
JPS61200616A true JPS61200616A (en) 1986-09-05

Family

ID=12656848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318585A Pending JPS61200616A (en) 1985-03-04 1985-03-04 Manufacture of anisotropic conducting sheet

Country Status (1)

Country Link
JP (1) JPS61200616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459705A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Polyimide film-like moldings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459705A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Polyimide film-like moldings

Similar Documents

Publication Publication Date Title
JP6668250B2 (en) Method and apparatus for fibrillating polymer compound under electric field
JPH0571680B2 (en)
DE69726427D1 (en) ELECTRIC INSULATING LIQUIDS WITH A HIGH OILIC ACID CONTENT AND METHOD FOR THE PRODUCTION THEREOF
FI875057A (en) UNDERHAOLLSANORDNING OCH -FOERFARANDE FOER KABLAR.
JPS61200616A (en) Manufacture of anisotropic conducting sheet
JPS62229714A (en) Anisotropic conductive sheet
JPS61188818A (en) Anisotropic conducting sheet
CN111499956B (en) Composite material resisting water tree aging, preparation method, application and performance test method thereof
JPS61206107A (en) Anisotropic conducting film
JP3058198B2 (en) Polyimide laminate
JP2984743B2 (en) Electrode substrate for cylindrical battery
JPS61200606A (en) Anisotropic conducting film
CN114141541B (en) Electrode foil smooth edge forming method
JPS61292809A (en) Patternized anisotropic conducting sheet
JPS621245Y2 (en)
JP2020155421A (en) Insulated electric wire
JPS5852040B2 (en) Electrodeposition coating method
JPH04147567A (en) Cylindrical battery electrode plate
WO2017175624A1 (en) Insulated electric cable and method of manufacturing same
Bele et al. Gelatin-modified surfaces in selected electronic components
KR100188672B1 (en) Method of manufacturing carbon-doped composite metal oxide
JPS6120088B2 (en)
JPH01100978A (en) Patternized photoconductive ptfe sheet and manufacture thereof
JPS62229713A (en) Anisotropic conductive sheet
CN114205930A (en) Production process of printed electrothermal film