JPS61200504A - Production of infra-red optical fiber - Google Patents

Production of infra-red optical fiber

Info

Publication number
JPS61200504A
JPS61200504A JP60041510A JP4151085A JPS61200504A JP S61200504 A JPS61200504 A JP S61200504A JP 60041510 A JP60041510 A JP 60041510A JP 4151085 A JP4151085 A JP 4151085A JP S61200504 A JPS61200504 A JP S61200504A
Authority
JP
Japan
Prior art keywords
fiber
die
resin
fibers
metal halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60041510A
Other languages
Japanese (ja)
Inventor
Kenichi Takahashi
謙一 高橋
Noriyuki Ashida
葭田 典之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60041510A priority Critical patent/JPS61200504A/en
Publication of JPS61200504A publication Critical patent/JPS61200504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a bundle of fibers having an excellent strength and a less erosion against a humidity by coating under heating a metal halide polycrystal fiber formed by hot-extruding it using a die having the plural die holes, with a molten resin having an environment resistance, and then by making the bundle of said optical fiber. CONSTITUTION:The hole of the die 4 provided the plural die holes 12 at a rotation symmetry has a circular arcuate shape or a prescribed tapered angle in a cross section. Said die is provided to a container 1, and the preformed crystal 2 of the metal halide is charged into the container 1 and then is extruded under the pressure with a rum 3 to form the plural polycrystal fibers 5. And, then, the fiber 5 is passed into a crucible 8 filled the resin 7 suitable to the reinforcing or the environment resistance, preferably, such as polyethylene, polypropylene, polycarbonate and a fluoro-resin to coat the fiber with said resin, before contacting the fiber 5 with a guide roll 6, thereby heat- curing it in a heating furnace 9. By treating the fiber as mentioned above, the fiber 5 easy to erode to the humidity and easy to break, is coated with the resin and then cured so as to give an excellent strength and environment resistance, thereby obtaining the titled fiber having a good durability and a less transmission loss.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は赤外光の伝送に適した金属ハライド結晶によ
る赤外光ファイバ、なかでも金属ハライド結晶ファイバ
を複数本束ねたバンドルファイバの製造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an infrared optical fiber made of metal halide crystal suitable for transmitting infrared light, and in particular, a method for manufacturing a bundle fiber in which a plurality of metal halide crystal fibers are bundled together. It is related to.

〈従来の技術とその問題点〉 従来、光ファイバとしては石英ガラス系のガラスファイ
バあるいはプラスチックファイバが知られており、これ
らを複数本束ねたバンドルファイバにより画像の伝送が
できる。
<Prior art and its problems> Conventionally, silica glass fibers or plastic fibers have been known as optical fibers, and images can be transmitted using a bundle fiber made by bundling a plurality of these fibers.

しかしながら、これらのファイバは赤外域では大きな吸
収があり、2〜3μm以上の波長の光は透過しないとい
う問題がある。
However, these fibers have a problem in that they have large absorption in the infrared region and do not transmit light with a wavelength of 2 to 3 μm or more.

一方、金属ハライド結晶は赤外光なかでもCO2レーザ
光のような遠赤外光を透過できる金属ハライド結晶ファ
イバを用いるバンドルファイバは温度計測、熱画像の測
定に用いることができる。
On the other hand, a bundle fiber using a metal halide crystal fiber that can transmit far infrared light such as CO2 laser light among infrared light can be used for temperature measurement and thermal image measurement.

しかし、金属ハライド結晶は機械的強度が小ざく脆い。However, metal halide crystals have low mechanical strength and are brittle.

また使用環境中の水分あるいは薬品等により浸食される
という欠点がある。
Another drawback is that it is eroded by moisture or chemicals in the environment in which it is used.

予め作製した金属ハライド結晶ファイバを複数本束ねて
バンドルファイバとする場合、折れやすい欠点があり、
またバンドルファイバも環境の雰囲気により浸食し、破
損あるいは伝送損失の増加が生じる問題がある。
When bundling multiple metal halide crystal fibers prepared in advance to make a bundle fiber, there is a drawback that it is easy to break.
Furthermore, the bundle fibers are also eroded by the environmental atmosphere, resulting in damage or increased transmission loss.

このため事実上は補強材および保護層が必要とされる。This effectively requires reinforcement and protective layers.

く問題点を解決するための手段〉 この発明は上記に鑑みて、強度、耐環境性、透過特性な
どにすぐれた赤外光ファイバを得るべく検討の結果、1
qられたものである。
Means for Solving the Problems In view of the above, the present invention has been made based on studies to obtain an infrared optical fiber with excellent strength, environmental resistance, transmission characteristics, etc.
It was q.

即ち、この発明は金属ハライドのプリフォーム結晶を複
数個のダイス穴を有するダイスを通して押出加工し、得
られた複数本の多結晶ファイバにガイドに用いるロール
あるいはリールに触れる前に強度および耐環境性にすぐ
れた樹脂を被覆すると同時に束ねることを特徴とする強
度、耐環境性そして透過特性にすぐれた金属ハライド結
晶ファイバによるバンドルファイバの製造法を提供する
ものである。
That is, the present invention extrudes a metal halide preform crystal through a die having a plurality of die holes, and the resulting plurality of polycrystalline fibers are given strength and environmental resistance before touching the roll or reel used for guiding. The present invention provides a method for manufacturing bundle fibers using metal halide crystal fibers having excellent strength, environmental resistance, and transmission characteristics, which are characterized by coating the fibers with a resin having excellent properties and bundling them at the same time.

〈作用〉 以下、図面に基づいてこの発明を説明する。<Effect> The present invention will be explained below based on the drawings.

第1図はこの発明の方法にて赤外光ファイバを製造する
際の例を示すものである。
FIG. 1 shows an example of manufacturing an infrared optical fiber by the method of the present invention.

同図において、コンテナ1に入れた金属ハライドのプリ
フォーム結晶2は、ラム3で加圧され、複数個のダイス
穴12を有するダイス4を通し、複数本の多結晶ファイ
バ5を同時に作製する。
In the figure, a metal halide preform crystal 2 placed in a container 1 is pressurized by a ram 3, passed through a die 4 having a plurality of die holes 12, and a plurality of polycrystalline fibers 5 are produced simultaneously.

次いで、この複数本の多結晶ファイバ5はガイド用ロー
ル6あるいはリール(図示せず)に接触させる前に補強
用おるいは耐環境性の樹脂7を入れたるつぼ8を通して
樹脂被覆したのち、加熱炉9で樹脂を硬化させ、被覆層
とするのである。
Next, before the plurality of polycrystalline fibers 5 are brought into contact with a guide roll 6 or reel (not shown), they are passed through a crucible 8 containing reinforcing or environmentally resistant resin 7, coated with resin, and then heated. The resin is cured in the furnace 9 to form a coating layer.

かくして押出し加工された複数本の金属ハライドファイ
バは溶融状態の樹脂の表面張力により束ねられる。
The plurality of metal halide fibers thus extruded are bundled by the surface tension of the molten resin.

第2図は複数個のダイス穴12を有するダイス4の概略
を示す拡大斜視図であり、金属ハライド結晶が押出され
る時、均一な圧力が加わるよう回転対称にダイス穴を配
置しである。
FIG. 2 is an enlarged perspective view schematically showing the die 4 having a plurality of die holes 12, and the die holes are arranged rotationally symmetrically so that uniform pressure is applied when the metal halide crystal is extruded.

このダイス穴12の断面(アプローチ)は一定のテーパ
角あるいは滑らかな円弧をもつようにすることか好まし
い。
It is preferable that the cross section (approach) of this die hole 12 has a constant taper angle or a smooth circular arc.

第3図は第2図に示すダイス4のA−A線断面図であっ
て、ダイスが円弧形のアプローチをもつことを示してい
る。
FIG. 3 is a cross-sectional view of the die 4 shown in FIG. 2 taken along line A--A, showing that the die has an arcuate approach.

樹脂7は押出加工後の複数本の軟かい金属ハライド結晶
ファイバ5を傷つけることのないようるつぼ8中にて溶
融状態で、該ファイバ5の外周に付着させ、その後加熱
炉9で硬化させることによって機械的な補強および耐食
性などを得ることができるタイプが好ましい。
The resin 7 is applied to the outer circumference of the fibers 5 in a molten state in a crucible 8 so as not to damage the plurality of soft metal halide crystal fibers 5 after extrusion processing, and then hardened in a heating furnace 9. A type that can provide mechanical reinforcement and corrosion resistance is preferred.

そのような樹脂としては熱硬化性樹脂があるが、このほ
か溶剤に溶かした樹脂を金属ハライドファイバに塗布し
、溶剤を揮発させて樹脂層を被覆させてやってもよい。
Such resins include thermosetting resins, but it is also possible to apply a resin dissolved in a solvent to the metal halide fibers and evaporate the solvent to cover the resin layer.

適応しつる樹脂の種類としては、第1表に示すように金
属ハライド結晶ファイバとしての材料の屈折率より小さ
い値を示すフッ素樹脂をはじめポリエチレン、ポリプロ
ピレン、ポリカーボネート、ポリスチレンなどが好まし
い。
As shown in Table 1, suitable types of resins include fluororesins, which have a refractive index smaller than that of the material for the metal halide crystal fiber, as well as polyethylene, polypropylene, polycarbonate, polystyrene, and the like.

注 *nDはナトリウムの5893人光における屈折率
である。
Note *nD is the refractive index of sodium in 5893 human light.

第4図はこの発明の第1図の製造工程にて得た金属ハラ
イド結晶のバンドルファイバの断面図であって、補強お
よび耐食性のある樹脂被覆層10を有しているが、ざら
に光通信用の石英ガラスフフィバに用いられている樹脂
および金属による保護層11を被覆してもよい。
FIG. 4 is a cross-sectional view of a metal halide crystal bundle fiber obtained in the manufacturing process shown in FIG. 1 of the present invention, which has a reinforcing and corrosion-resistant resin coating layer 10. It may be coated with a protective layer 11 made of resin and metal used for quartz glass fibers.

金属ハライド結晶としては、CsBr、C,sIなどの
7 /L/ 7J ’、J金属ハライド、TrlBr、
TrlI、T2Cf、T4Br−TfjI混晶(KR3
5)、TrlBr・T rlCR混晶(KR3−6>な
どタリウムハライドあるいはAgBr、 AgCR,A
gCR−Ag Br混品などの銀ハライドを用いること
ができる。
Examples of metal halide crystals include 7/L/7J' such as CsBr, C, and sI, J metal halide, TrlBr,
TrlI, T2Cf, T4Br-TfjI mixed crystal (KR3
5), TrlBr/TrlCR mixed crystal (KR3-6> etc.) or thallium halide, AgBr, AgCR,A
Silver halide such as gCR-AgBr mixture can be used.

以上、この発明の方法によって、 (1)バンドルファイバに用いる金属ハライドファイバ
も同一結晶から同時に作製するため、ファイバ間のバラ
ツキが小さい。
As described above, according to the method of the present invention, (1) Since the metal halide fibers used for the bundle fibers are simultaneously produced from the same crystal, the variation between the fibers is small.

(2)でき上った複数本のファイバはガイドあるいは巻
取りのロールあるいはリールに接触する前に補強および
耐環境性の樹脂で被覆されるため、機械的強度の補強、
使用環境中での耐候性、耐薬品性にすぐれ、ファイバ作
製俊に傷などの欠陥が入りにくく透過特性のすぐれたフ
ァイバが得られる。
(2) The resulting multiple fibers are coated with a reinforcing and environmentally resistant resin before coming into contact with the guide or winding roll or reel, so they are reinforced with mechanical strength,
The fiber has excellent weather resistance and chemical resistance in the usage environment, is resistant to defects such as scratches during fiber manufacturing, and has excellent transmission characteristics.

などの利点が得られるのである。Benefits such as these can be obtained.

しかして、この発明の方法で得られた赤外光ファイバは
温度計測用、熱画像伝送用などのファイバとして有用で
ある。
Therefore, the infrared optical fiber obtained by the method of the present invention is useful as a fiber for temperature measurement, thermal image transmission, etc.

〈実施例〉 以下、この発明を実施例により説明する。<Example> This invention will be explained below with reference to Examples.

直径10mφのAg Brプリフt−ム結晶を第2図の
ように19個の0.5mφ径ダイス穴を有するダイスを
使用して100〜300℃の押出し温度で熱間押出し加
工し、同時に19本AgBr多結晶ファイバを作製した
のら、ポリフッ化ビニリデンとテトラフルオロエチレン
共重合体よりなるフッ素樹脂のアセトン1〜20重量%
溶融液を満たしたるつぼ内にこのAg Br多結晶ファ
イバを通して融液をファイバに塗布後加熱し、溶剤を揮
発させることにより樹脂を被覆した直径約31rIJr
1のバンドルファイバを19だ。
Ag Br preform crystals with a diameter of 10 mφ were hot extruded at an extrusion temperature of 100 to 300°C using a die with 19 0.5 mφ diameter die holes as shown in Figure 2, and 19 crystals were simultaneously processed. After producing the AgBr polycrystalline fiber, 1 to 20% by weight of acetone of a fluororesin made of polyvinylidene fluoride and tetrafluoroethylene copolymer was added.
This Ag Br polycrystalline fiber is passed through a crucible filled with the melt, and the melt is applied to the fiber and then heated to volatilize the solvent, resulting in a resin-coated material with a diameter of approximately 31rIJr.
1 bundle fiber is 19.

一方、比較例として直径10aφのAg Brプリフォ
ーム結晶を0.5.φ径のダイスを用いて同様に押出し
加工し、ついでフッ素樹脂を被覆したのち、所定の単長
に切断したファイバ19本を束ねてバンドルファイバと
した。
On the other hand, as a comparative example, an Ag Br preform crystal with a diameter of 10aφ was prepared with a diameter of 0.5. The fibers were extruded in the same manner using a die having a diameter of φ, and then coated with a fluororesin, and 19 fibers cut into a predetermined length were bundled to form a bundle fiber.

かくして得た2種のハンドルファイバの50cm長の透
過率を測定したところ第5図a、bに示すような結果が
得られた。
When the transmittance of the two types of handle fibers thus obtained was measured over a length of 50 cm, the results shown in FIGS. 5a and 5b were obtained.

そしてこの発明の場合は、ファイバ間のバラツキが小ざ
く、温度計測時の補正も小さくてすみ、特に熱映像伝送
用としてより正確な熱映像を得ることができるのである
In the case of the present invention, the variation between fibers is small, and the correction during temperature measurement is also small, making it possible to obtain more accurate thermal images, especially for thermal image transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法にて用いる装置の1例を示
す側面図、第2図はダイスの概略説明図、第3図は第2
図のA−A線断面図、第4図はこの発明で得たバンドル
ファイバの断面図、第5図(a)はこの発明で得たハン
ドルファイバの透過率を示すグラフ、第5図(b)は比
較例で得たバンドルファイバの透過率示すグラフである
。 1・・・コンテナ
FIG. 1 is a side view showing an example of an apparatus used in the manufacturing method of the present invention, FIG. 2 is a schematic explanatory diagram of a die, and FIG.
4 is a sectional view of the bundle fiber obtained by this invention, FIG. 5(a) is a graph showing the transmittance of the handle fiber obtained by this invention, and FIG. ) is a graph showing the transmittance of bundle fibers obtained in comparative examples. 1...Container

Claims (3)

【特許請求の範囲】[Claims] (1)複数個のダイス穴を有するダイスを用いて熱間押
出し加工により一度に作製した複数本の金属ハライド多
結晶ファイバに、溶融樹脂を塗布し、加熱して被覆する
とともに束ねてバンドルファイバとすることを特徴とす
る赤外光ファイバの製造方法。
(1) Molten resin is applied to multiple metal halide polycrystalline fibers produced at once by hot extrusion using a die with multiple die holes, and the fibers are coated by heating and bundled to form bundle fibers. A method of manufacturing an infrared optical fiber, characterized by:
(2)ダイスは複数個のダイス穴が回転対称に設けられ
ている特許請求の範囲第1項記載の赤外光ファイバの製
造方法。
(2) The method for manufacturing an infrared optical fiber according to claim 1, wherein the die has a plurality of die holes provided rotationally symmetrically.
(3)樹脂としてポリエチレン、ポリプロピレン、ポリ
カーボネート、ポリエチレン、フッ素樹脂などを用いる
特許請求の範囲第1項記載の赤外光ファイバの製造方法
(3) The method for manufacturing an infrared optical fiber according to claim 1, in which polyethylene, polypropylene, polycarbonate, polyethylene, fluororesin, or the like is used as the resin.
JP60041510A 1985-03-01 1985-03-01 Production of infra-red optical fiber Pending JPS61200504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041510A JPS61200504A (en) 1985-03-01 1985-03-01 Production of infra-red optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041510A JPS61200504A (en) 1985-03-01 1985-03-01 Production of infra-red optical fiber

Publications (1)

Publication Number Publication Date
JPS61200504A true JPS61200504A (en) 1986-09-05

Family

ID=12610362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041510A Pending JPS61200504A (en) 1985-03-01 1985-03-01 Production of infra-red optical fiber

Country Status (1)

Country Link
JP (1) JPS61200504A (en)

Similar Documents

Publication Publication Date Title
US4397524A (en) Image-transmitting bundled optical fibers
CN107209337A (en) Loose tube, Loose tube type fiber optic cables, the single separation method of the fibre ribbon of Loose tube, the collection line method of the manufacture method of Loose tube and multifiber
NO177384B (en) Fiber optic reel with orthotropic controlled thermal expansion coil
US4583821A (en) Infrared fibers
JPS60246240A (en) Manufacture of fluorine glass optical fiber and optical element and device for carrying out same
JPS58178302A (en) Optical fiber of heat resistant plastic
RU2712991C2 (en) Wire with core, method and device for manufacturing
CN110683753A (en) Low-cost batch preparation method and system for multi-material multi-structure mid-infrared optical fiber
JPS61200504A (en) Production of infra-red optical fiber
JPS5893003A (en) Light transmissive fiber and its production
JPS5848493B2 (en) Hikari Densosenno Seizouhouhou
JP2519699B2 (en) Optical fiber bundle manufacturing method
DE60318046T2 (en) OPTICAL PLASTIC PRODUCT, OPTICAL PLASTIC FIBER, DEVICE FOR PRODUCING AN OPTICAL PLASTIC PART AND METHOD FOR PRODUCING AN OPTICAL PLASTIC PART AND OPTICAL PLASTIC PRODUCT
Hilton Sr et al. Fabrication of a 10-m-length IR imaging bundle from arsenic trisulfide glass fibers
JPS5926001B2 (en) Method for manufacturing flexible light guide
JPS60120304A (en) Manufacture of fiber for infrared light
JPS6029656B2 (en) Optical fiber manufacturing method
JPS63167305A (en) Taper-like optical transmission body and its production
JPH0219921B2 (en)
JPS60101502A (en) Infrared transmitting fiber and its manufacture
JPS5688850A (en) Heat-resistant optical fiber and its preparation
JPS58102903A (en) Fiber for infrared ray
JPS61205907A (en) Manufacture of plastic optical cable
JPS63106613A (en) Plastic optical fiber cord
JPS6026913A (en) Optical fiber core and its production