JPS61200407A - Fourier transformation type infrared film thickness measuring apparatus - Google Patents

Fourier transformation type infrared film thickness measuring apparatus

Info

Publication number
JPS61200407A
JPS61200407A JP3870785A JP3870785A JPS61200407A JP S61200407 A JPS61200407 A JP S61200407A JP 3870785 A JP3870785 A JP 3870785A JP 3870785 A JP3870785 A JP 3870785A JP S61200407 A JPS61200407 A JP S61200407A
Authority
JP
Japan
Prior art keywords
infrared
film thickness
film
spectrum
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3870785A
Other languages
Japanese (ja)
Other versions
JPH0721405B2 (en
Inventor
Kinya Eguchi
江口 欣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60038707A priority Critical patent/JPH0721405B2/en
Publication of JPS61200407A publication Critical patent/JPS61200407A/en
Publication of JPH0721405B2 publication Critical patent/JPH0721405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a Fourier transformation type infrared film thickness measuring apparatus available for accurate measurement of film thickness even if the specimen is covered with the film of high absorbability. CONSTITUTION:The apparatus is provided with an infrared polarizer 16 between infrared interference filler 14, specimen 17 and light source 9. When a reflection infrared spectrum is measured by a Brewster's angle, a vertical polarized light measurement assumes pronouncedly overlapped interference spectrums caused by the thickness of the thin film and a horizontal polarized light measurement does not include this feature at all and consequently, when the difference spectrum of both measurements is obtained, the spectrum obtained shows only an interference spectrum by the thickness of the film. By Fourier conversion of this difference spectrum, a noiseless cepstrum including only the side burst caused by the film thickness can be obtained. The higher calculation accuracy of the Fourier conversion, the narrower the wave length range of the infrared light. Further, many thin films do not show absorbability in the range of 2,700-1,800cm and by using an interference filter 14 transmitting the beams of light of this range, considerations not only of the calculation accuracy of the Fourier conversion, but also of the absorption by the thin film can be eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、赤外線の反射干渉を利用して非接触O非破襄
で膜厚を測定する膜厚計に係り、特に赤外線の吸収が大
きい試料に好適な7一リエ変換方式赤外線膜厚計に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a film thickness meter that measures film thickness in a non-contact, non-destructive manner using reflection interference of infrared rays. The present invention relates to a 7-Lie transform type infrared film thickness meter suitable for.

〔発明の背景〕[Background of the invention]

従来、この種の装置は1982年発行の計測技術10月
号P、105〜107における°半導体ウェハー膜O不
純物濃度測定装置“と題する論文において論じられてい
る。第3図はこの論文に記載されたフーリエ変換方式赤
外線膜厚計の概略を示した図である。図において、1は
光源、2は固定平面鏡、3は可動平面鏡、4は半透睨5
.7は平面鏡、6は試料、8は検出器、9はアパチ為ア
ーである。この様な光学系において薄膜を付けた試料を
測定した場合第4図の(tL)の様な信号が得られる。
Conventionally, this type of device has been discussed in a paper entitled "Semiconductor wafer film O impurity concentration measuring device" in the October 1982 issue of Metrology Technology, P, 105-107. 1 is a diagram schematically showing a Fourier transform type infrared film thickness meter. In the diagram, 1 is a light source, 2 is a fixed plane mirror, 3 is a movable plane mirror, and 4 is a semi-transparent mirror 5.
.. 7 is a plane mirror, 6 is a sample, 8 is a detector, and 9 is an aperture. When a sample with a thin film is measured using such an optical system, a signal like (tL) in FIG. 4 is obtained.

中央の大きな信号(センターバースト)は可動平面鏡3
と固定平面鏡2の光路差がゼロの位置を示し、薄膜表面
で反射した光と薄膜を透過した後反射した光の干渉によ
うてセンタバーストを中心として対象な位置にナイドバ
ーストが現われる。このセンタバーストとサイドバース
トとの距離りは膜厚に比例し、次式で表わされる。
The large signal in the center (center burst) is the movable plane mirror 3.
indicates the position where the optical path difference of the fixed plane mirror 2 is zero, and nid bursts appear at symmetrical positions around the center burst due to interference between the light reflected on the thin film surface and the light reflected after passing through the thin film. The distance between the center burst and the side burst is proportional to the film thickness, and is expressed by the following equation.

Al。Al.

4は定数1%は薄膜層の突気に対する赤外光の屈接率、
φは赤外光線の入射角度、+tは膜厚である。この式に
よりLを測定すれば膜厚dが求まる。膜厚が薄いほどL
は小さく、膜厚が2〜3μ囃下となるとサイドバースト
はセンターバーストの信号に埋もれて、測定が不可能と
なる。従りて、従来法では膜厚を付けてない試料(リフ
ァレンス)を予じめ測定して置き、次に薄膜を付は試料
を測定する。この両者のスペクトルの7−リエ変換スペ
クトルの差スペクトルにノイズ処理を行った後、さらに
7−リエ変換を行う。こうして得られたスペクトルは第
4図b)の様に示される。このスペクトルはケプストラ
ムと呼ばれサイドバーストのみが強調される。従りて第
4図b)の2L を測定する事により膜厚を求める事が
できる。
4 is a constant, 1% is the refractive index of infrared light to the sudden air of the thin film layer,
φ is the incident angle of the infrared ray, and +t is the film thickness. By measuring L using this formula, the film thickness d can be determined. The thinner the film thickness, the L
is small, and when the film thickness falls below 2 to 3 μm, the side burst is buried in the signal of the center burst, making measurement impossible. Therefore, in the conventional method, a sample without a film thickness (reference) is measured in advance, and then the sample with a thin film is measured. After noise processing is performed on the difference spectrum between the 7-lier transformed spectra of both spectra, 7-lier transform is further performed. The spectrum thus obtained is shown in Figure 4b). This spectrum is called the cepstrum, and only the side bursts are emphasized. Therefore, the film thickness can be determined by measuring 2L in FIG. 4b).

しかし上記方法では試料の薄膜に吸収がある場合はサイ
ドバースト付近にも信号が現われ、%に膜厚が厚い場合
や、大きな吸収がある試料の場合サイドバーストが明瞭
に現われない欠点を有する。また上記方法は試料の測定
に合せて、薄膜のついてないリファレンス試料の測定が
必要な欠点を有する。試料によりてはリファレンス試料
の入手が困難な場合も有り問題である。
However, the above method has the disadvantage that if the thin film of the sample has absorption, a signal will also appear near the sideburst, and if the film is relatively thick or the sample has large absorption, the sideburst will not appear clearly. Furthermore, the above method has the disadvantage that it is necessary to measure a reference sample without a thin film in addition to measuring the sample. Depending on the sample, it may be difficult to obtain a reference sample, which is a problem.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決するためになされたもの
で、薄MK大きな吸収がある試料でも高精度に膜厚を測
定できろ7一リエ変換方式赤外飯膜厚計を提供すること
を目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an infrared film thickness meter using a 7-layer conversion method that can measure film thickness with high accuracy even in thin MK samples with large absorption. purpose.

〔発明の概要〕[Summary of the invention]

赤外線の試料表面における入射角度と反射率の関係は第
5図の様に示される。入射角度15度以上では垂直偏光
赤外光と水平偏光赤外光の反射率はほとんど同じである
が、入射角度15度以上では前者の反射率の方が著しく
大きくなり、60度附近では水偏光赤外光の反射率は0
となるこの反射率0の角度をブリウスター角という。
The relationship between the angle of incidence of infrared rays on the sample surface and the reflectance is shown in FIG. At an incident angle of 15 degrees or more, the reflectance of vertically polarized infrared light and horizontally polarized infrared light is almost the same, but at an incident angle of 15 degrees or more, the reflectance of the former becomes significantly larger, and at around 60 degrees, the reflectance of the horizontally polarized infrared light is almost the same. The reflectance of infrared light is 0
The angle at which the reflectance is 0 is called the Brioster angle.

この角度で試料の反射赤外スペクトルを測定すれば第6
図の様になる。即ち垂直偏光測定では薄膜の膜厚による
干渉スペクトルが大きく重畳したものになり、水平偏光
測定では全くこれを含まないものである。従って両者の
差スペクトルを求めれば得られたスペクトルは膜厚によ
る干渉スペクトルだけになる。この差スペクトルをフー
リエ変換することにより膜厚に起因するサイドバースト
だけのノイズを含まないケプストラムが得られる。
If the reflected infrared spectrum of the sample is measured at this angle, the 6th
It will look like the figure. That is, in vertical polarization measurement, interference spectra due to the thickness of the thin film are largely superimposed, whereas in horizontal polarization measurement, this is not included at all. Therefore, if the difference spectrum between the two is obtained, the obtained spectrum will be only the interference spectrum due to the film thickness. By Fourier transforming this difference spectrum, a cepstrum that does not include noise only due to side bursts due to film thickness can be obtained.

即ち一つの試料で垂直偏光測定と水平偏光測定を行51
により測定が可能であり、従来方法の様にリファレンス
試料が必要ない。また上記方法で試料の吸収はキニンセ
ルされるので、得られたケプストラムにはノイズを含ま
ない。フーリエ変換の計算精度は赤外光の波長領域が狭
」 いほど高い、また一般に薄膜は2700〜1800cm
Kは吸収をもたない試料が多く、この領域の光だけ適過
する干渉フィルターを用いる事により、7−リエ変換の
計算精度だけでなく、Wl膜による吸収を考瞭する必要
がなくなる。
In other words, vertical polarization measurement and horizontal polarization measurement are performed on one sample51.
It is possible to measure by using this method, and there is no need for a reference sample as in conventional methods. Furthermore, since the absorption of the sample is kinincelled in the above method, the obtained cepstrum does not contain noise. The calculation accuracy of Fourier transform is higher as the wavelength range of infrared light is narrower, and generally thin films are 2700 to 1800 cm.
Many samples of K do not have absorption, and by using an interference filter that allows only light in this region to pass through, it is not necessary to consider not only the calculation accuracy of the 7-Lier transform but also the absorption by the Wl film.

試料以外の光学系の補正は前記方法は優れており後記方
法と合せて行5事により前記目的が達成される。
The above-mentioned method is excellent in correcting optical systems other than the sample, and the above-mentioned objective can be achieved by performing the following steps in combination with the method described below.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例1を第1図、及び第2図により
説明する。第1図において、9は赤外光光源クローバ、
11は平面鏡、12は可動鏡、13は半透鏡、14は干
渉フィルタ、15は平面鏡、16は赤外光偏光子、17
は有機薄膜を付けた試料、18は検出器(水銀、カドミ
ニクム、テルル検出器)、19はアパチェア(絞り)で
ある。ここで用いた干渉フィルタは1800〜2700
 cmの赤外光を透過するフィルターである。第2図は
上記方法で赤外光の試料への入射角度60度で測定した
結果を示す図である。
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, 9 is an infrared light source crowbar;
11 is a plane mirror, 12 is a movable mirror, 13 is a semi-transparent mirror, 14 is an interference filter, 15 is a plane mirror, 16 is an infrared light polarizer, 17
18 is a detector (mercury, cadminicum, tellurium detector), and 19 is an aperture (aperture). The interference filter used here is 1800-2700.
This is a filter that transmits infrared light of cm. FIG. 2 is a diagram showing the results of measurement using the above method at an incident angle of 60 degrees of infrared light on the sample.

a)は垂直偏光測定の結実現われた検出器の信号で、 
b)は平行偏光測定時の信号である。C)は両方のフー
リエ変換後の差スペクトルに若干の処理を行りた後7−
リエ変換した結果を示す図ケグスト2ムである。ノイズ
の少ないケプストラムで、これら膜厚を測定した結果5
.01 amでありだ。繰返し10(ロ)測定したが、
全で5.Oj amであまた。
a) is the detector signal realized as a result of vertical polarization measurement,
b) is a signal during parallel polarization measurement. C) is 7- after performing some processing on the difference spectra after both Fourier transforms.
FIG. The results of measuring these film thicknesses using the cepstrum with less noise5
.. It's 01 am. I measured 10 times (b) repeatedly, but
5 in total. See you at Oj am.

次に本発明の実施例2について説明する。Next, a second embodiment of the present invention will be described.

25%のカポ/粒子を含む約10ttmQ有機薄膜を付
つけた鉄板試料を実施例1の試料18の代りに用い、1
4の干渉フィルタは400〜1000cm  の赤外光
が透過するものを用いて、実施例1と同様の測定を50
0回行い平均値を求めた。測定に掛った時間は約5分間
であった。このもののケプストラムから計算した結果塗
膜の厚さは10.5μmであワた。
A steel plate sample with about 10 ttmQ organic thin film containing 25% capo/particle was used in place of sample 18 of Example 1;
The same measurement as in Example 1 was carried out at 50 cm using the interference filter 4 that transmits infrared light of 400 to 1000 cm.
The test was performed 0 times and the average value was determined. The time required for the measurement was approximately 5 minutes. As a result of calculation from the cepstrum of this product, the thickness of the coating film was 10.5 μm.

次に本発明の実施例3について説明する。Next, Example 3 of the present invention will be described.

実施例2と全(同じ試料を14の干渉フィルタなして測
定を実施例1と同様の測定を1000  回行い平均値
を求めた。このもののケプストラムから計算した結果塗
膜の厚さは10.4βmであった。
The same sample as in Example 2 was measured using 14 interference filters, and the same measurements as in Example 1 were performed 1,000 times to obtain the average value.As a result of calculation from the cepstrum of this sample, the thickness of the coating film was 10.4βm. Met.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係るフーリエ変換方式
赤外線膜厚計は赤外線の吸収が大きい、例えば黒い色の
薄膜でも、高精度でその膜厚が測定可能である。
As explained above, the Fourier transform type infrared film thickness meter according to the present invention can measure the film thickness with high precision even for a thin film that absorbs a large amount of infrared rays, for example, a black film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の7一リエ変換方式赤外線
膜厚計を示す構成図、第2図は同じく測定結果例を示す
線図、第3図は従来の7一リエ変換方式赤外線膜厚計を
示す図、第4図は従来法による測定結果例を示す図、第
5図は赤外光の試料表面における反射率と入射角度の関
係図、第6図a)は赤外光の入射角60度の場合の垂直
偏光測定における赤外スペクトル図、h)は平行偏光測
定における赤外スペクトル図である。 9・・・赤外光々源 11・・・平面鏡 12・・・可動鏡 13・・・半透鏡 14・・・干渉フィルター 15・・・平面鏡 16・・・赤外光偏光子 17・・・試料 18・・・検出器 19・・・アバチエア− 代雇人弁理士小川 勝馬 第2図 第3図 第4図 (’l)              (b)セーター
ハトスト
Fig. 1 is a configuration diagram showing a 71-Lie transform type infrared film thickness meter according to an embodiment of the present invention, Fig. 2 is a diagram showing an example of measurement results, and Fig. 3 is a conventional 71-Lie conversion type infrared film thickness meter. Figure 4 shows an example of measurement results using a conventional method. Figure 5 shows the relationship between the reflectance of infrared light on the sample surface and the angle of incidence. Figure 6 a) shows the relationship between infrared light and the incident angle. h) is an infrared spectrum diagram in vertical polarization measurement when the incident angle is 60 degrees, and h) is an infrared spectrum diagram in parallel polarization measurement. 9... Infrared light source 11... Plane mirror 12... Movable mirror 13... Semi-transparent mirror 14... Interference filter 15... Plane mirror 16... Infrared light polarizer 17... Sample 18...Detector 19...Abachi Air - Patent Attorney Katsuma Ogawa Figure 2 Figure 3 Figure 4 ('l) (b) Sweater Hatst

Claims (1)

【特許請求の範囲】[Claims] 1、赤外光干渉フィルタと、測定対象物と光源の間に赤
外光偏光子を具備することを特徴とするフーリエ変換方
式赤外線膜厚計
1. A Fourier transform type infrared film thickness meter, which is equipped with an infrared light interference filter and an infrared light polarizer between the object to be measured and the light source.
JP60038707A 1985-03-01 1985-03-01 Fourier transform method Infrared film thickness measurement method Expired - Lifetime JPH0721405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038707A JPH0721405B2 (en) 1985-03-01 1985-03-01 Fourier transform method Infrared film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038707A JPH0721405B2 (en) 1985-03-01 1985-03-01 Fourier transform method Infrared film thickness measurement method

Publications (2)

Publication Number Publication Date
JPS61200407A true JPS61200407A (en) 1986-09-05
JPH0721405B2 JPH0721405B2 (en) 1995-03-08

Family

ID=12532785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038707A Expired - Lifetime JPH0721405B2 (en) 1985-03-01 1985-03-01 Fourier transform method Infrared film thickness measurement method

Country Status (1)

Country Link
JP (1) JPH0721405B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152250A (en) * 1988-12-02 1990-06-12 Nec Corp Evaluation of epitaxial growth layer
EP0420113A2 (en) * 1989-09-25 1991-04-03 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of evaluating multilayer thin films
US5654394A (en) * 1994-04-08 1997-08-05 Toray Industries, Inc. Thermoplastic resin film
DE102007062052A1 (en) * 2007-12-21 2009-06-25 Siemens Ag Layer thickness measurement on transparent layers
US7753167B2 (en) 2005-01-13 2010-07-13 Smc Kabushiki Kaisha Silencer
CN107860722A (en) * 2017-10-30 2018-03-30 内蒙古农业大学 A kind of honeydew melon inside quality online test method and system
CN114935313A (en) * 2022-04-26 2022-08-23 香港中文大学(深圳) Film thickness measuring method, device, equipment and computer program product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564842A (en) * 1979-06-26 1981-01-19 Nec Corp Microprogram control unit
JPS59105508A (en) * 1982-12-08 1984-06-18 Canon Inc Measurement of whith interference film thickness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564842A (en) * 1979-06-26 1981-01-19 Nec Corp Microprogram control unit
JPS59105508A (en) * 1982-12-08 1984-06-18 Canon Inc Measurement of whith interference film thickness

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152250A (en) * 1988-12-02 1990-06-12 Nec Corp Evaluation of epitaxial growth layer
EP0420113A2 (en) * 1989-09-25 1991-04-03 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of evaluating multilayer thin films
US5227861A (en) * 1989-09-25 1993-07-13 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of evaluating multilayer thin film
US5654394A (en) * 1994-04-08 1997-08-05 Toray Industries, Inc. Thermoplastic resin film
US7753167B2 (en) 2005-01-13 2010-07-13 Smc Kabushiki Kaisha Silencer
DE102007062052A1 (en) * 2007-12-21 2009-06-25 Siemens Ag Layer thickness measurement on transparent layers
CN107860722A (en) * 2017-10-30 2018-03-30 内蒙古农业大学 A kind of honeydew melon inside quality online test method and system
CN107860722B (en) * 2017-10-30 2020-04-21 内蒙古农业大学 Method and system for online detection of internal quality of honeydew melons
CN114935313A (en) * 2022-04-26 2022-08-23 香港中文大学(深圳) Film thickness measuring method, device, equipment and computer program product
CN114935313B (en) * 2022-04-26 2023-09-15 香港中文大学(深圳) Film thickness measurement method, apparatus, device, and computer-readable storage medium

Also Published As

Publication number Publication date
JPH0721405B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
Jellison Jr Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry
US4332476A (en) Method and apparatus for studying surface properties
US6414302B1 (en) High photon energy range reflected light characterization of solids
McCrackin et al. Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry
JPH054606B2 (en)
Röseler IR spectroscopic ellipsometry: instrumentation and results
JP2001520754A (en) Polarimeter and polarization measurement method
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
US6222199B1 (en) Ultrathin layer measurement having a controlled ambient of light path
JPS61200407A (en) Fourier transformation type infrared film thickness measuring apparatus
JP3311497B2 (en) Fourier transform spectral phase modulation ellipsometry
US7054006B2 (en) Self-calibrating beam profile ellipsometer
US7342661B2 (en) Method for noise improvement in ellipsometers
Ledsham et al. Dispersive reflection spectroscopy in the far infrared using a polarising interferometer
JPH07502344A (en) Reflection-free polarimetry system for small volume sample cells
Smith An automated scanning ellipsometer
JP2002286442A (en) Measurement technology for very thin film oxide
Meyer et al. Optical Effects in Metals: Application of a Least‐Squares Method to Measurements on Gold and Silver
Tolansky Low-order multiple-beam interferometry
US3113171A (en) Method for polarimetric analysis
KR102229335B1 (en) Distortion Correction and Application Method For Micro Spot Spectroscopic Ellipsometer Including High Magnification Optical System
RU2799977C1 (en) Ellipsometric sensor
CN117368114A (en) Snapshot type ellipsometry method and device
US20240011894A1 (en) Mueller matrix ellipsometer
JPS62161041A (en) Method for measuring total reflection infrared spectrum

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term