JPS61200130A - Polymeric semiconductor - Google Patents

Polymeric semiconductor

Info

Publication number
JPS61200130A
JPS61200130A JP60038666A JP3866685A JPS61200130A JP S61200130 A JPS61200130 A JP S61200130A JP 60038666 A JP60038666 A JP 60038666A JP 3866685 A JP3866685 A JP 3866685A JP S61200130 A JPS61200130 A JP S61200130A
Authority
JP
Japan
Prior art keywords
copolymer
polygermane
polysilane
polymeric semiconductor
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60038666A
Other languages
Japanese (ja)
Inventor
Masaya Fujino
藤野 正家
Nobuo Matsumoto
信雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60038666A priority Critical patent/JPS61200130A/en
Publication of JPS61200130A publication Critical patent/JPS61200130A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Abstract

PURPOSE:To provide a polymeric semiconductor composed of a polysilane- polygermane copolymer containing a specific structural unit, having excellent moldability and having variable band gap. CONSTITUTION:The objective polymeric semiconductor is composed of the polysilane-polygermane copolymer containing the structural unit of formula (R1-R4 are H, alkyl or phenyl; n and m are 1-100). The copolymer can be produced e.g. by reacting a dihalide of a silane derivative and a dihalide of a germane derivative with molten sodium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形加工性に優れ、バンドギャップ可変の高分
子半導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polymer semiconductor with excellent moldability and variable bandgap.

〔従来の技術〕[Conventional technology]

一般に高分子材料は成形加工性に優れており、任意基板
上に大面積の薄膜を容易に作製できるという形態的特徴
を有する。また、機能的には半導体的性質を有するもの
としてポリアセチレンがある。しかし、1)−n制御可
能な炭素系高分子はポリアセチレン以外になくバンドギ
ャップは赤外部に固定されている。更に、ポリアセチレ
ンは不溶不融のため成形加工性に乏しい。
In general, polymeric materials have excellent moldability and have a morphological feature that allows them to easily form large-area thin films on arbitrary substrates. In addition, polyacetylene is functionally functional as a material having semiconducting properties. However, the only carbon-based polymer that can control 1)-n is polyacetylene, and its band gap is fixed in the infrared region. Furthermore, since polyacetylene is insoluble and infusible, it has poor moldability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

他方、高分子半導体であるポリシラン、ポリゲルマンは
成形加工性に富むが、それらのバンドギャップはそれぞ
れ固有の値しかもたないという欠点があった。
On the other hand, polysilane and polygermane, which are polymeric semiconductors, have excellent moldability, but have the disadvantage that their band gaps each have a unique value.

本発明の目的は、広い範囲で任意のバンドギャップを持
ち、かつ、成形加工性に優れた高分子半導体を提供する
ことにある。
An object of the present invention is to provide a polymer semiconductor that has a desired band gap within a wide range and has excellent moldability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は高分子半導体に関する発
明であって該高分子半導体が、下記一般式I: (式中R1〜R4は同−又は異なり、水素、アルキル基
又はフェニル基を示し、n及びmは1〜100の数を示
す)で表される構造単位を含有するポリシラン−ポリゲ
ルマン共重合体からなることを特徴とする。
To summarize the present invention, the present invention relates to a polymer semiconductor, and the polymer semiconductor has the following general formula I: (wherein R1 to R4 are the same or different and represent hydrogen, an alkyl group, or a phenyl group. , n and m are numbers from 1 to 100).

第1図にポリシラン−ポリゲルマン共重合体のバンド構
造図を示す。ポリゲルマンはポリシランの高いポテンシ
ャル障壁に囲まれた量子井戸として憑舞い、そのバンド
ギャップはポリゲルマンの長さすなわち、重合度によシ
変化し、m=1〜100で4.0〜λ5θVの範囲で変
化する。
FIG. 1 shows a band structure diagram of a polysilane-polygermane copolymer. Polygermane exists as a quantum well surrounded by a high potential barrier of polysilane, and its band gap varies depending on the length of polygermane, that is, the degree of polymerization, and ranges from 4.0 to λ5θV when m = 1 to 100. It changes with

このようなポリシラン−ポリゲルマン共重合体はドナー
やアクセプターの拡散、加速イオン注入によりp−n制
御が可能であシ、例えばドナーとして金目リチウム、金
属ナトリウムあるいは金(・1カリウムを熱拡散すると
いずれの場合も電導度が10′″lO〜10δ・、−1
の範囲で制御可能なn型半導体となり、アクセプターと
して工!、PF、あるいはAsF、を拡散すると、工2
及びPF、の場合には電導度が10−1’〜10−2δ
°ロー”、AsF5の場合には10″″10〜1Ωδ・
ff1−’の範囲で制御可能なp型半導体となる。また
、ナトリウムイオンの注入によυ、10−1°〜10δ
・鋸−1の範囲で制御可能なn型半導体となる。
Such polysilane-polygermane copolymers can be controlled by p-n control by donor or acceptor diffusion or accelerated ion implantation. In the case of , the conductivity is 10′″lO~10δ・,−1
It becomes an n-type semiconductor that can be controlled within the range of , and is engineered as an acceptor! , PF, or AsF, when diffused,
and PF, the conductivity is 10-1' to 10-2δ
°low", 10""10~1Ωδ・in the case of AsF5
It becomes a p-type semiconductor that can be controlled within the range of ff1-'. In addition, by implanting sodium ions, υ, 10-1° ~ 10δ
・It becomes an n-type semiconductor that can be controlled within the range of saw-1.

上述のドーピング法により得らnるp型、n型半導体か
らp−n接合薄膜を炸裂し発光素子に応用した例を第2
図に示す。
In the second example, a p-n junction thin film is exploded from p-type and n-type semiconductors obtained by the above doping method and applied to a light emitting device.
As shown in the figure.

次に本発明の共重合体の合成法について説明する。この
ような共重合体は、1)シラン誘導体のジハロゲン化物
とゲルマン訪導体のジハロゲン化物を溶融ナトリウムと
反応させることによシ、また2)ポリシラン(重合度n
)のリチウム塩とポリゲルマン(重合度m)のハロゲン
化物との“反応等によシ得られる。
Next, a method for synthesizing the copolymer of the present invention will be explained. Such a copolymer can be produced by 1) reacting a dihalide of a silane derivative and a dihalide of a germanic conductor with molten sodium, and 2) by reacting a polysilane (with a degree of polymerization n
) and a halide of polygermane (degree of polymerization m).

まず1)の方法について、メチルプロピルジクロロシラ
ンとメチルプロピルジクロロゲルマンの反応を例に挙げ
て説明する。
First, method 1) will be explained using the reaction of methylpropyldichlorosilane and methylpropyldichlorogermane as an example.

メチルプロピルジクロロシラン501とメチルプロピル
ジクロコゲルマン64.3Fを500m7!のテ)・ラ
ヒドロフラン(THF)中、11.4fの金属リチウム
とアルゴン雰囲気下室温で3時間かくはん後、少量のエ
タノ′−ルで未反応の金属リチウムを分解し、反応液を
10倍量のアセトン中へ注下するとn:m=5:1の共
重合体が析出する。析出した共重合体を戸別し、水洗、
乾燥後ベンゼン−アセトン系で数回再沈殿し精製する。
500m7 of methylpropyldichlorosilane 501 and methylpropyldichlorogelmane 64.3F! After stirring 11.4 f metallic lithium in THF and argon atmosphere at room temperature for 3 hours, unreacted metallic lithium was decomposed with a small amount of ethanol, and the reaction solution was diluted with 10 times the volume. When poured into acetone, a copolymer with n:m=5:1 is precipitated. The precipitated copolymer was collected door to door, washed with water,
After drying, it is purified by reprecipitation several times using a benzene-acetone system.

ゲルマン系モノマーの仕込み比が0.05〜100(対
シラン系モノマー)の範囲で、m/n ds 0.01
〜100の共重合体が得られる。
m/n ds 0.01 when the charging ratio of germane monomer is in the range of 0.05 to 100 (to silane monomer)
~100 copolymers are obtained.

次に2)の方法について、パーメチルオクタシラン−バ
ーフェニルへ≧サゲルマン共ffi合体を1つの実施例
として説明する。その合成経路は以下のとおシである。
Next, method 2) will be explained using as one example the combination of ≧Sagelman co-ffi to permethyloctasilane-verphenyl. The synthetic route is as follows.

i)パーメチルシクロオクタシラン+Illの合成ジメ
チルジクロロシラン0) 100 tを500rntT
′HF中11.49の金属リチウムと0℃で30時間か
くけん後、反応液を10倍量の水中へ注下し、濾過する
。濾過物はnw 4〜32の混合物であるため、乾燥後
クロロホルムに溶解し、液体クロマトグラフィーにてn
==8の成分を分離する。溶媒を留去しベンゼン−ヘキ
サン系で2回再結晶し、10?のtn+を得る。
i) Synthesis of permethylcyclooctasilane + Ill dimethyldichlorosilane 0) 100t to 500rntT
'After stirring with 11.49% metallic lithium in HF at 0°C for 30 hours, the reaction solution was poured into 10 times the amount of water and filtered. Since the filtrate is a mixture of nw 4 to 32, after drying, it was dissolved in chloroform and analyzed by liquid chromatography.
Separate ==8 components. The solvent was distilled off and recrystallized twice with benzene-hexane system to obtain a 10? Obtain tn+ of .

1i)1.8−ジリチオパーメチルオクタシラン(■)
の合成 (■)の五〇2を15dTHF中、[L17fの金属リ
チウムと35℃で8時間かくはんすると、リチウム塩(
Ill)のTHF溶液が得られ、このまま、次の反応に
供する。
1i) 1,8-dilithiopermethyloctasilane (■)
Synthesis (■) When 502 is stirred with metallic lithium [L17f] in 15 dTHF at 35°C for 8 hours, the lithium salt (
A THF solution of Ill) is obtained and used as is for the next reaction.

iii )パーフェニルシクロヘキサゲルマン(V)ノ
合成 ジフェニルジクロロゲルマンQV)150fを7、4 
tの金属リチウムと1)と同様にして反応させ、22f
の閑を得る。
iii) Synthesis of perphenylcyclohexagermane (V) diphenyldichlorogermane QV) 150f at 7,4
t is reacted with metallic lithium in the same manner as in 1), and 22f
Get some quiet time.

1v)1.6−ジブロモパーフェニルヘキサゲルマン(
Vl)の合成 閑の202を500−ベンゼン中5.72の臭素と室温
で15時間かくはん後、溶媒を留去し、シクロヘキサン
にて2回再結晶し、102の(VDを得る。
1v) 1,6-dibromoperphenylhexagermane (
Synthesis of Vl) After stirring 202 with 5.72 bromine in 500-benzene at room temperature for 15 hours, the solvent was evaporated and recrystallized twice from cyclohexane to obtain 102 (VD).

■)パーメチルオクタンラン−パーツ二二ルヘキサゲル
マン共重合体(■)の合成 a9fの(V)を100−のTHFに溶解し、室温かく
はん下合成直後の(III)のTHIF溶液を徐々に滴
下する。滴下終了後、反応液を10倍量のアセトン中へ
注下し、析出した共重合体(4)を戸別乾燥し、ベンゼ
ン−アセトン系で数回再沈殿し精製する。
■) Synthesis of permethyloctane-pertsinylhexagermane copolymer (■) Dissolve (V) of a9f in 100% THF, and gradually add the THIF solution of (III) immediately after synthesis under stirring at room temperature. Drip. After the dropwise addition is completed, the reaction solution is poured into 10 times the volume of acetone, and the precipitated copolymer (4) is dried individually and purified by reprecipitation several times with a benzene-acetone system.

側鎖置換基(R,−wR,)の組合せが上記以外の共重
合体についても、同様の方法によシ合成でき、今回合成
した共重合体の構造式を以下にまとめて示す。ただし、
Meはメチル基、itはエチル基、Prはプロピル基、
φはフェニル基を示す。
Copolymers having combinations of side chain substituents (R, -wR,) other than those mentioned above can also be synthesized by the same method, and the structural formulas of the copolymers synthesized this time are summarized below. however,
Me is a methyl group, it is an ethyl group, Pr is a propyl group,
φ represents a phenyl group.

水素を側鎖とするものは空気中で容易に分解される。Those with hydrogen as a side chain are easily decomposed in the air.

また、重合度m、nは重合法によって異な9次の様であ
る。
Further, the degrees of polymerization m and n are of the 9th order, which vary depending on the polymerization method.

合成法1)の場合:すべでの共重合体について、m=1
〜100 、m/n−α01〜100である。
In the case of synthesis method 1): m=1 for all copolymers
~100, m/n-α01~100.

合成法2)の場合二骨印の共重合体についてm=a、5
.6.7、n=4.5 その他の共重合体についてmx 4.5.6.7、n=4.5.6.7.8.9.101
11.12.24.32、 である。
In the case of synthesis method 2), m = a, 5 for the copolymer with two bone marks.
.. 6.7, n=4.5 mx 4.5.6.7, n=4.5.6.7.8.9.101 for other copolymers
11.12.24.32.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 第2図に示した構造の発光素子を以下のようにして作製
した。
Example 1 A light emitting device having the structure shown in FIG. 2 was manufactured as follows.

ネサ板等の透明電極の上にスピンコーティング法により
n型5μff1% p型5μ、の共重合体層を積層し、
p−n接合フィルムを作製する。真空蒸着によりアルミ
ニウム電極を形成して発光素子を作製した。この発光素
子は、順方向に10V程度の電圧を印加すると発光した
A copolymer layer of n-type 5 μff1% and p-type 5 μ is laminated by spin coating on a transparent electrode such as a Nesa plate,
Prepare a pn junction film. A light emitting device was manufactured by forming an aluminum electrode by vacuum evaporation. This light emitting element emitted light when a voltage of about 10 V was applied in the forward direction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体はポリシラン−ポリ
ゲルマン共重合体であるから、バンドギャップを広い範
囲で任意に制御でき、アクセプターやドナーによ5 p
、、n制御ができ、成形加工性に富んでいる利点がある
。しだがって、任意色、任意形状、大面積の発光素子が
容易に作製できる。
As explained above, since the semiconductor of the present invention is a polysilane-polygermane copolymer, the band gap can be arbitrarily controlled within a wide range, and the 5 p
, , n control, and has the advantage of being rich in moldability. Therefore, a light-emitting element of any color, any shape, and large area can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の共重合体のバンド構造図、第2図は本
発明の共重合体を用いた発光素子の1例の構造図である
FIG. 1 is a band structure diagram of the copolymer of the present invention, and FIG. 2 is a structural diagram of an example of a light emitting device using the copolymer of the present invention.

Claims (1)

【特許請求の範囲】 1、下記一般式 I : ▲数式、化学式、表等があります▼・・・( I ) (式中R_1〜R_4は同一又は異なり、水素、アルキ
ル基又はフェニル基を示し、n及びmは1〜100の数
を示す)で表される構造単位を含有するポリシラン−ポ
リゲルマン共重合体からなることを特徴とする高分子半
導体。
[Claims] 1. The following general formula I: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In the formula, R_1 to R_4 are the same or different and represent hydrogen, an alkyl group, or a phenyl group, 1. A polymer semiconductor comprising a polysilane-polygermane copolymer containing a structural unit represented by (n and m are numbers from 1 to 100).
JP60038666A 1985-03-01 1985-03-01 Polymeric semiconductor Pending JPS61200130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038666A JPS61200130A (en) 1985-03-01 1985-03-01 Polymeric semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038666A JPS61200130A (en) 1985-03-01 1985-03-01 Polymeric semiconductor

Publications (1)

Publication Number Publication Date
JPS61200130A true JPS61200130A (en) 1986-09-04

Family

ID=12531591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038666A Pending JPS61200130A (en) 1985-03-01 1985-03-01 Polymeric semiconductor

Country Status (1)

Country Link
JP (1) JPS61200130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960666A (en) * 1989-02-27 1990-10-02 Xerox Corporation Toner and developer compositions with polysilylenes
US7491782B1 (en) * 2004-10-08 2009-02-17 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187729A (en) * 1984-10-05 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> Copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187729A (en) * 1984-10-05 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> Copolymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960666A (en) * 1989-02-27 1990-10-02 Xerox Corporation Toner and developer compositions with polysilylenes
US7491782B1 (en) * 2004-10-08 2009-02-17 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7723457B1 (en) 2004-10-08 2010-05-25 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8236916B1 (en) 2004-10-08 2012-08-07 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8455604B1 (en) 2004-10-08 2013-06-04 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions

Similar Documents

Publication Publication Date Title
US4808681A (en) Conductive poly(2,5-furanylene vinylene) and poly(2,5-thienylene vinylene)
CN107056809B (en) It a kind of organic compound containing dimethylanthracene and its is applied on organic electroluminescence device
JPS61200130A (en) Polymeric semiconductor
KR960013131A (en) Organic electroluminescent device and manufacturing method thereof
CN112513004A (en) Novel aromatic amine compound and component for forming hole transport layer of perovskite solar cell
US20040079924A1 (en) Blue light-emitting, ladder-type polymer with excellent heat stability
Pickup Electrochemistry of electronically conducting polymer films
GB1364297A (en) Monomeric and polymeric compounds
Misaki et al. Bis (methylthio) Substituted Unsymmetrical 2, 5-Bis (1', 3'-dithiol-2'-ylidene)-1, 3, 4, 6-tetrathiapentalenes.
JPH04133351A (en) Electronic element using oligothiophene
US5407987A (en) Polycyclic aromatic group - pendant polysilanes and conductive polymers derived therefrom
CN110707214A (en) Perovskite thin film additive, perovskite thin film preparation method and application thereof
GB2334959A (en) Conducting polymers
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
CN112778373A (en) Iridium metal complex, preparation method thereof and organic electroluminescent device
US3274034A (en) Semiconductor material of perylene and ferric chloride having a p-n junction
JP3265766B2 (en) Copoly (1,4-phenylene / 2,5-pyridinediyl) derivative, method for producing the same, organic conductor and electroluminescent material
Wudl et al. 1, 1-Dichloro-2, 5-bis (N-chlorothioimino)-3, 4-dicyanoselenophene
JPS6147713A (en) Polymeric compound and ionic conductive material
ES422685A1 (en) Electroemissive component
JP2974369B2 (en) Diphenylacetylene polymer having a substituent on the aromatic ring
KR940010595B1 (en) Method of manufacturing polyquinoline type photoelectronic materials
Kusumoto et al. Polymerization of monomers containing two ethynyldimethylsilyl groups
KR101354468B1 (en) N type water soluble conjugated polymer compound and method for manufacturing thereof
JP3287200B2 (en) Method for producing conductive polymer