JPS61198687A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61198687A
JPS61198687A JP60038168A JP3816885A JPS61198687A JP S61198687 A JPS61198687 A JP S61198687A JP 60038168 A JP60038168 A JP 60038168A JP 3816885 A JP3816885 A JP 3816885A JP S61198687 A JPS61198687 A JP S61198687A
Authority
JP
Japan
Prior art keywords
region
junction
inp
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60038168A
Other languages
Japanese (ja)
Inventor
Kenko Taguchi
田口 剣甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60038168A priority Critical patent/JPS61198687A/en
Publication of JPS61198687A publication Critical patent/JPS61198687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase low noise property and reproducibility, by forming the 2nd semiconductor layer region representing the inverse conduction type in a part of region of semiconductor layer and making the P-N junction approx. similar to the slanted junction in the boundary part. CONSTITUTION:After the N<+> InP layer 12 is formed on the N<+> InP substrate 11 having the (100) face, the N-type InGaAs layer 13, the N-type InGaAsP layer 14, the N-type InP layer 15 and the N<-> type InP layer 16 are formed. An the surface of the wafer thus obtained, the SiO2 film is formed, a circular part of which is eliminated and Be atoms are implanted thereinto. After the photoresist SiO2 is eliminated, the P-InP substrate region 17 and the P-N junction 18 approx. similar to the slanted junction are obtained. After the SiO2 or SiNx insulative film is formed, the insulative film of circular region concentric to the P-InP substrate region 17 is eliminated, and the P<+> InP region 19 is formed by applying Cd3P2 to the diffusion source. The SiNx or SiO2 film 20, the P-type electrode 21 and the N-type electrode 22 are formed to obtain the desired semiconductor device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、逆バイアス動作で使用する半導体装置に関し
、特に光通信用光検出器に用いるアバランシ・フォトダ
イオードに適する構造の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device used in reverse bias operation, and more particularly to a semiconductor device having a structure suitable for an avalanche photodiode used in a photodetector for optical communications.

(従来技術とその問題点) 半導体光検出器の中でフォトダイオード(以下FDと呼
ぶ)あるいはアバランシ・フォトダイオード(以下AP
Dと呼ぶ)は光通信用システムにおける光検出器として
重要なものであり、光源としての半導体レーザ、発光ダ
イオードと共にその開発が進められている。現在その光
通信システムとしては、0.8−波長域あるいは、1.
3〜1.6Nn波長域がその主流となっている。0.8
7JI′n波長域としては、GaAs−GaAlAs系
光源と5iJL結晶を用いたFDあるいはAPDが実用
に供されている。これと較べて、波長1.3〜1.6−
域の伝送媒体としての光ファイバーの極低損失に反応す
る波長域用としては、InGaAsP−InP光源が主
流となっている。この波長域用の光検出としては、Si
材料はその吸収係数が小さくなり使用不可能であること
、Ge−APD、 FDは暗電流、過剰雑音の問題等が
あり新材料による高品質APDの開発が待たれる。
(Prior art and its problems) Among semiconductor photodetectors, there are photodiodes (hereinafter referred to as FD) or avalanche photodiodes (hereinafter referred to as AP).
D) is important as a photodetector in optical communication systems, and its development is progressing along with semiconductor lasers and light emitting diodes as light sources. Currently, the optical communication systems are in the 0.8-wavelength range or the 1.8-wavelength range.
The 3-1.6Nn wavelength range is the mainstream. 0.8
In the 7JI'n wavelength range, an FD or APD using a GaAs-GaAlAs light source and a 5iJL crystal is in practical use. Compared to this, the wavelength is 1.3-1.6-
InGaAsP-InP light sources have become mainstream for wavelength ranges that respond to the extremely low loss of optical fibers as transmission media in the wavelength range. For photodetection in this wavelength range, Si
The material has a small absorption coefficient and cannot be used, and Ge-APDs and FDs have problems such as dark current and excessive noise, so the development of high-quality APDs using new materials is awaited.

現在進められているこの1.3〜1,6−波長域用の光
検出器材料としては、InGaAs、InGaAsP、
GaAlSb、 GaAsSb、 GaAlAsSb、
 Garb等のm−v族化合物半導体による報告例があ
る。例えば最近報告きれたものに、エレクトロニクス・
レターズ、 20巻、16分冊653−654ページ所
載のAPDがある。このAPDの構造は82図に断面図
で示したごとくであり、n”−InP基板11.12上
に光吸収層としてのn型InGaAs層13、及び高速
応答を得る目的でn型InGaAsPye14及びn型
InP層15.16を層構造とし、n−Ink層にp“
−n接合18を形成することにより、低暗電流、低雑音
特性が改善されている。ここで、p+−〇接合18周縁
はいわゆるエツジ・−jレークダウンを防止する為にB
e原子のイオン注入及び熱処理によるp領域17を形成
し、傾斜接合に近いP−n接合18′により保護されて
いる。しかしながら、第2図のp 4− n接合18の
平坦性にバラツキがあり、再現性にやや劣り、また一層
の低雑音化が求められる。
Photodetector materials for the 1.3-1,6-wavelength range that are currently being developed include InGaAs, InGaAsP,
GaAlSb, GaAsSb, GaAlAsSb,
There are reports of m-v group compound semiconductors such as Garb et al. For example, one of the things that has been reported recently is the electronics
There is an APD containing Letters, Volume 20, Volume 16, pages 653-654. The structure of this APD is as shown in the cross-sectional view in FIG. The type InP layers 15 and 16 have a layered structure, and the n-Ink layer has a p"
By forming the -n junction 18, low dark current and low noise characteristics are improved. Here, the periphery of the p+-〇 junction 18 is
A p region 17 is formed by ion implantation of e atoms and heat treatment, and is protected by a P-n junction 18' which is close to a tilted junction. However, there are variations in the flatness of the p4-n junction 18 in FIG. 2, and the reproducibility is somewhat poor, and further reduction in noise is required.

(発明の目的) 本発明の目的は、APDに適用した場合に、従来よりさ
らに低雑音で再現性に優れる半導体装置の提供にある。
(Objective of the Invention) An object of the present invention is to provide a semiconductor device which, when applied to an APD, has lower noise and better reproducibility than the conventional one.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、第1の導電型を示す第1の半導体層の一部の領域に前
記第1の導電型とは逆の第2の導電型を示す第2の半導
体層領域が形成してあり、前記第1及び第2の半導体層
領域の境界部が傾斜型接合に近いp−n接合をなす半導
体装置であって、前記第2の半導体層の一部の領域に高
濃度な第2の導電型の不純物領域が形成してあることを
特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a means for solving the above-mentioned problems by adding the first conductivity to a partial region of the first semiconductor layer exhibiting the first conductivity type. A semiconductor in which a second semiconductor layer region exhibiting a second conductivity type opposite to the type is formed, and a boundary between the first and second semiconductor layer regions forms a p-n junction close to a graded junction. The device is characterized in that a highly concentrated impurity region of a second conductivity type is formed in a part of the second semiconductor layer.

(作用) 本発明は、上述の手段により、逆バイアス印加時でのp
−n接合周縁での降伏を阻止して、かつ、片側接合に近
いp−n接合により得られる内部電界分布を低雑音に適
した形状にすることにより低雑音性を増しかつ再現性の
向上を可能とした。
(Function) The present invention uses the above-mentioned means to reduce p when applying a reverse bias.
-By preventing breakdown at the periphery of the n-junction and shaping the internal electric field distribution obtained by the p-n junction, which is close to the one-sided junction, to a shape suitable for low noise, it is possible to increase low noise and improve reproducibility. made possible.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の半導体装置の一実施例を示す概略横
断面図である。本実施例は、Ink−InGaAs系材
料を用いたものである。この実施例の製造では、まず(
100)面を有するn”−InP基板11の上にエピタ
キシャル成長法(例えば気相成長法)により数−厚のn
”−InP届12を形成した後、膜層3Plrn、不純
物濃度5XIQ”cm−”のn型InGaAs層13を
形成する。次に膜層1ooo人不純物濃度1×IQ”c
m−”のn型InGaAsPJi! 14を形成し、ひ
き読き、膜層1.8−不純物濃度1.2X10”cm−
”ノl型InPJi! 15及び膜層2−1不純物濃度
lXl0”cm−”のn−型Ink層16を形成する。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the semiconductor device of the present invention. This example uses an Ink-InGaAs material. In the production of this example, first (
On the n''-InP substrate 11 having a 100) plane, a several-thick n
After forming the InP layer 12, an n-type InGaAs layer 13 with an impurity concentration of 5XIQ"cm-" is formed in a film layer 3Plrn.Next, a film layer 3Plrn and an n-type InGaAs layer 13 with an impurity concentration of 5XIQ"cm-" are formed.
m-” n-type InGaAsPJi!
15 and an n-type Ink layer 16 having an impurity concentration of 1X10 cm- in the film layer 2-1 are formed.

この様にして得られたウェーハの表面にスパッタリング
法等によりSin、膜を形成した後、フォトレジスト目
金せ工程により前記Sin、膜を円状に除去し、イオン
注入技術によりこの5i0.除去領域にBe原子を5X
10”/cm’程度注入する。次に上記つニー八のフォ
トレジストSiO、を除去した後、700°C程度のリ
ン圧力下での熱処理によりp−InP基板領域17及び
傾斜型接合に近いp−n接合18を得る。次に、前記同
様にSin!あるいはsiNxMAii!:膜を形成し
た後、p−InPl 7域上でかっp−InPl7と同
心円状領域に位置する絶縁膜を除去する。次に、Cd5
Pzを拡散源として排気した閉管中に上記つニー八と共
に配し、約570”Cの熱処理を加えてCdの選択拡散
を施すことにより、p”−InP域19を形成する。試
作では約40分の熱処理により深き約1.8−が得られ
る。次に前記と同様な方法によりSiNxあるいはSi
Ox[20を形成し、図に示す様にフォトレジスト目金
せ工程等によりp型電極21及びn型電極22を形成す
ることにより本実施例の半導体装置を得ることができる
After forming a Sin film on the surface of the wafer obtained in this manner by sputtering or the like, the Sin film is removed in a circular shape by a photoresist plating process, and the 5i0. 5X Be atoms in the removal area
10"/cm'. Next, after removing the above-mentioned photoresist SiO, heat treatment is performed under phosphorus pressure at about 700°C to form p-InP substrate region 17 and p-InP near the inclined junction. -N junction 18 is obtained.Next, after forming a Sin! or siNxMAii! film in the same manner as described above, the insulating film located on the p-InPl 7 region in a concentric region with the p-InPl 7 is removed.Next , Cd5
The p''-InP region 19 is formed by placing the above-mentioned knee and eight in a closed tube that is evacuated with Pz as a diffusion source, and applying heat treatment at about 570''C to selectively diffuse Cd. In the prototype, a depth of about 1.8- is obtained by heat treatment for about 40 minutes. Next, by the same method as above, SiNx or Si
The semiconductor device of this example can be obtained by forming Ox[20 and forming a p-type electrode 21 and an n-type electrode 22 by a photoresist plating process or the like as shown in the figure.

上記した本発明の一実施例により得られた素子のブレー
クダウン電圧は約100Vで暗電流も数nA程度と低く
、450Mb/S、波長1.3−光に対する受信特性と
して誤り率1oす保障で平均−43dBmという極めて
高い感度特性が得られた。
The breakdown voltage of the device obtained by the embodiment of the present invention described above is about 100V, the dark current is low at about several nA, and the reception characteristics for 450Mb/S and wavelength 1.3-light are guaranteed to have an error rate of 1o. Extremely high sensitivity characteristics of -43 dBm on average were obtained.

本実施例の効果を第3図を用いて説明する。即ち第3図
には、例えば第2図に示したと同様な構造により得られ
るブレークダウン時の内部電界分布線Iと、本実施例に
より得られるブレークダウン時の内gJ電界分布線■が
示しである。本図から本実施例の構造により、最大i異
強度が低下し、かつ高電界域幅が増大していることが分
る。このことが本実施例の効果をもたらす要点である。
The effects of this embodiment will be explained using FIG. 3. That is, FIG. 3 shows, for example, the internal electric field distribution line I during breakdown obtained by a structure similar to that shown in FIG. 2, and the internal gJ electric field distribution line ■ during breakdown obtained by this example. be. It can be seen from this figure that the structure of this example reduces the maximum i-differential strength and increases the high electric field width. This is the key point that brings about the effects of this embodiment.

即ち、APDの雑音特性を支配するのは正孔及び電子の
衝突イオン化率比が大きいほど低雑音化が達成されるの
であり、この比は、最大電界強度が低いときほど大きく
なる傾向にあるから、最大電界強度が低いことが重要で
ある。又、本実施例で示した様に、傾斜型接合により得
られたp−n接合18′は比較的平坦性に優れており、
内部電界の接合面内分布むらも小さくなる傾向を有して
いるから、特性の再現性の向上即ち素子歩留りの向上に
も適している。以上、一実施例にもとづき本発明を詳 
5しく説明したが、結晶の面方位、結晶の組合せが実施
例とは異なる場合にも本発明の構成によれば同様の効果
が得られるのは明らかである。
In other words, what governs the noise characteristics of APD is that the larger the ratio of impact ionization rates between holes and electrons, the lower the noise will be achieved, and this ratio tends to become larger as the maximum electric field strength is lower. , it is important that the maximum electric field strength is low. Furthermore, as shown in this example, the p-n junction 18' obtained by the inclined junction has relatively excellent flatness.
Since the distribution unevenness of the internal electric field within the junction surface tends to be reduced, it is also suitable for improving the reproducibility of characteristics, that is, improving the device yield. The present invention has been described in detail based on one embodiment.
Although the explanation has been made in detail, it is clear that the same effects can be obtained according to the configuration of the present invention even when the crystal plane orientation and the crystal combination are different from those in the embodiment.

(発明の効果) 以上に詳しく説明したように、本発明によれば、APD
に適用した場合に、従来よりさらに低雑音で再現性に優
れる半導体装置が提供できる。
(Effects of the Invention) As explained in detail above, according to the present invention, the APD
When applied to the present invention, it is possible to provide a semiconductor device with lower noise and better reproducibility than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略横断面図、第2図
は従来のAPDを示す概略断面図、第3図は第1図実施
例及び第2図のAPDのブレークダウン時の内部電界分
布を示す図である。 11−n”−InP基板、12 =n”−InPエピタ
キシャル、l 3 ・・・n−InGaAs層、14−
n−InGaAsP層、15 =n−InP層、16 
=n−InP層、17−p−InP領域、18 、18
 ’−p−n接合、19 ・・・p”−InP領域、2
0 ・=SiNx又はSin、膜、21 ・p型電極、
22 ・・・n型電極。 代理人弁理士  本 庄 伸 介 第1図 第2図 第3rA 3采  さ
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view showing a conventional APD, and FIG. 3 is a breakdown diagram of the APD shown in the embodiment shown in FIG. FIG. 3 is a diagram showing an internal electric field distribution. 11-n"-InP substrate, 12 =n"-InP epitaxial, l3...n-InGaAs layer, 14-
n-InGaAsP layer, 15 = n-InP layer, 16
=n-InP layer, 17-p-InP region, 18, 18
'-p-n junction, 19...p''-InP region, 2
0 ・=SiNx or Sin, film, 21 ・p-type electrode,
22...n-type electrode. Representative patent attorney Shinsuke Honjo Figure 1 Figure 2 Figure 3 rA 3 posts

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型を示す第1の半導体層の一部の領域に前記
第1の導電型とは逆の第2の導電型を示す第2の半導体
層領域が形成してあり、前記第1及び第2の半導体層領
域の境界部が傾斜型接合に近いp−n接合をなす半導体
装置において、前記第2の半導体層の一部の領域に高濃
度な第2の導電型の不純物領域が形成してあることを特
徴とする半導体装置。
A second semiconductor layer region exhibiting a second conductivity type opposite to the first conductivity type is formed in a partial region of the first semiconductor layer exhibiting the first conductivity type; and a semiconductor device in which a boundary portion of a second semiconductor layer region forms a p-n junction close to a graded junction, wherein a high concentration impurity region of a second conductivity type is provided in a part of the region of the second semiconductor layer. A semiconductor device characterized in that:
JP60038168A 1985-02-27 1985-02-27 Semiconductor device Pending JPS61198687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038168A JPS61198687A (en) 1985-02-27 1985-02-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038168A JPS61198687A (en) 1985-02-27 1985-02-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61198687A true JPS61198687A (en) 1986-09-03

Family

ID=12517866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038168A Pending JPS61198687A (en) 1985-02-27 1985-02-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61198687A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168283A (en) * 1982-03-30 1983-10-04 Fujitsu Ltd Semiconductor light receiving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168283A (en) * 1982-03-30 1983-10-04 Fujitsu Ltd Semiconductor light receiving device

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
CA1261450A (en) Avalanche photodiode with double guard ring
US7187013B2 (en) Avalanche photodiode
EP1294027A2 (en) Sequential mesa avalanche photodiode capable of realizing high sensitization and method of manufacturing the same
KR100617724B1 (en) Method for manufacturing avalanche photo diode
JP4861388B2 (en) Avalanche photodiode
KR100509355B1 (en) Photo-diode and method for fabricating the same
JP4166560B2 (en) Avalanche photodiode and manufacturing method thereof
JPH11330536A (en) Semiconductor light receiving element
JPS61198687A (en) Semiconductor device
JPH04342174A (en) Semiconductor photoelectric receiving element
KR100307919B1 (en) Method for manufacturing planar pin photodiode using ion implantation
JPH11354827A (en) Photodetector and manufacture thereof
JPS61101085A (en) Manufacture of group iii-v semiconductor light-receiving element
JP2002141547A (en) Semiconductor photodetector
JPS61267376A (en) Semiconductor device
US20080006895A1 (en) Surface illuminated photodiode and optical receiver module
JP2001237454A (en) Semiconductor light-receiving element
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPH02296379A (en) Avalanche photodiode
JPS61204988A (en) Semiconductor light receiving element
JP2991555B2 (en) Semiconductor light receiving element
JPH065785B2 (en) Method for manufacturing semiconductor light receiving element
JPH02253666A (en) Semiconductor photodetector
JPS63187671A (en) 1.3mum-range semiconductor photodetector