JPS61198685A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS61198685A
JPS61198685A JP60039909A JP3990985A JPS61198685A JP S61198685 A JPS61198685 A JP S61198685A JP 60039909 A JP60039909 A JP 60039909A JP 3990985 A JP3990985 A JP 3990985A JP S61198685 A JPS61198685 A JP S61198685A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor layer
semiconductor device
amorphous
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60039909A
Other languages
Japanese (ja)
Other versions
JPH0550871B2 (en
Inventor
Kazunaga Tsushimo
津下 和永
Shinji Kuwamura
桑村 進次
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60039909A priority Critical patent/JPS61198685A/en
Publication of JPS61198685A publication Critical patent/JPS61198685A/en
Priority to US07/298,282 priority patent/US4862227A/en
Publication of JPH0550871B2 publication Critical patent/JPH0550871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/905Plural dram cells share common contact or common trench

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain excellent characteristics as the solar cell even in case of low intensity of illumination, by eliminating a portion of semiconductor layer by employing the laser ray in the oxidizing atmosphere. CONSTITUTION:For example, ITO of 800Angstrom thickness and SnO2 of 200Angstrom thickness are deposited on a glass plate of 1.1mm thickness by the electron beam vapor deposition method, and the separated electrodes are formed by the pattern etching. The silicon system semiconductor layer constituted of P-type noncrystalline SiC:H/I-type noncrystalline Si:H/N-type microcrystalline Si:H is formed, each layer thickness of which is 150Angstrom , 7,000Angstrom and 300Angstrom , respectively. After then, a portion of the semiconductor layer is eliminated by applying the Q switch YAG laser while blowing oxygen gas of 10l/min along the optical axis against the surface irradiated by the laser ray. In this process, the average amount of oxygen in the semiconductor of 10mum width from the side of eliminated semiconductor is kept at 0.5-10atom%. Thus, the leak current is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリーク電流の少ない半導体装置およびその製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device with low leakage current and a method for manufacturing the same.

[従来の技術] 従来より、レーザースクライビング法により、電極上に
形成された半導体層の一部を除去して半導体装置が製造
されている。
[Prior Art] Conventionally, semiconductor devices have been manufactured by removing a portion of a semiconductor layer formed on an electrode using a laser scribing method.

[発明が解決しようとする問題点] レーザースクライビング法により半導体層の一部を除去
する際に熱が発生するが、半導体層中に非晶質半導体が
含まれているばあいには、咳熱により非晶質半導体の一
部が微結晶化したりするため、電気伝導度が大幅に増加
する。その結果、太陽電池などにして用いたばあいにリ
ーク電流が増加して、性能が低下するという問題が生じ
る。とくに民生用の太陽電池として室内などの低照度下
で使用するばあいには、このリーク電流が大きな問題と
なり、性能が極度に低下する。
[Problems to be solved by the invention] Heat is generated when a part of the semiconductor layer is removed by the laser scribing method, but if the semiconductor layer contains an amorphous semiconductor, it may cause cough fever. This causes part of the amorphous semiconductor to become microcrystalline, resulting in a significant increase in electrical conductivity. As a result, when used as a solar cell or the like, a problem arises in that leakage current increases and performance deteriorates. In particular, when used as a consumer solar cell under low illumination conditions such as indoors, this leakage current becomes a major problem, resulting in extremely poor performance.

[問題点を解決するための手段] 本発明は、レーザースクライビング法により非晶質半導
体を含む半導体層の一部を除去する際に、非晶質半導体
の一部が微結晶化し、電気、伝導度が大きくなるという
問題を解決するためになされたものであり、同一基板上
に存在する分離された電極上に形成された非晶質半導体
を含む半導体層の一部を除去して製造された半導体装置
において、除去された半導体層の端面から10−までの
幅の半導体中の平均酸素量が0.5〜10原子%である
ことを特徴とする半導体装置、および同一基板上に存在
する分離された電極上に形成された非晶質半導体を含む
半導体層の一部を除去して半導体装置を製造する際に、
酸化性雰囲気中でレーザー光線を用いて半導体層の一部
を除去することを特徴とする半導体装置の製法に関する
[Means for Solving the Problems] The present invention provides that when a portion of a semiconductor layer containing an amorphous semiconductor is removed by a laser scribing method, a portion of the amorphous semiconductor becomes microcrystalline, causing electrical and conductive This was done in order to solve the problem of high temperature, and it was manufactured by removing part of the semiconductor layer containing the amorphous semiconductor formed on separate electrodes on the same substrate. A semiconductor device characterized in that the average amount of oxygen in the semiconductor in the width from the end face of the removed semiconductor layer to 10-10 is 0.5 to 10 atomic %, and separation existing on the same substrate. When manufacturing a semiconductor device by removing a part of the semiconductor layer including the amorphous semiconductor formed on the electrode,
The present invention relates to a method for manufacturing a semiconductor device, characterized in that a portion of a semiconductor layer is removed using a laser beam in an oxidizing atmosphere.

[実施例] 本発明に用いる基板としては、半導体装置の製造に用い
られる一般的な基板、たとえばガラス、セラミック、耐
熱性高分子フィルム、耐熱性樹脂などから成形された基
板などがあげられる。
[Example] Examples of the substrate used in the present invention include common substrates used in the manufacture of semiconductor devices, such as substrates molded from glass, ceramic, heat-resistant polymer film, heat-resistant resin, and the like.

前記基板上に電気的に分離されて形成されている電極は
、透明電極であってもよく、一般の金属電極であっても
よい。その具体例としては、ITO,5n02、C「、
No、  Wなどから形成サレタ、膜厚200人〜2−
程度の一般の半導体装置の製造に用いられる電極であっ
て、電気的に分離された電極があげられる。
The electrodes formed on the substrate so as to be electrically isolated may be transparent electrodes or general metal electrodes. Specific examples include ITO, 5n02, C",
Formed from No., W, etc., film thickness 200 ~ 2-
An example of such an electrode is an electrically isolated electrode that is used in the manufacture of general semiconductor devices.

本発明に用いる非晶質半導体を含む半導体層とは、半導
体層が単層からなるばあいには、非晶質半導体のみある
いは非晶質半導体および結晶性半導体の混合物からなる
半導体であることを意味し、半導体層が多層からなるば
あいには、半導体層を形成する層のうちの少なくとも1
層が非晶質半導体のみ、あるいは非晶質半導体および結
晶性半導体の混合物からなる半導体であることを意味す
る。このような非晶質半導体のみあるいは非晶質半導体
および結晶性半導体の混合物からなる半導体は、結晶性
半導体と比較して一般に電気伝導性が低いという特性を
有している。
The semiconductor layer containing an amorphous semiconductor used in the present invention refers to a semiconductor composed of only an amorphous semiconductor or a mixture of an amorphous semiconductor and a crystalline semiconductor when the semiconductor layer is a single layer. In the case where the semiconductor layer consists of multiple layers, at least one of the layers forming the semiconductor layer
It means that the layer is a semiconductor consisting only of an amorphous semiconductor or a mixture of an amorphous semiconductor and a crystalline semiconductor. A semiconductor made of such an amorphous semiconductor alone or a mixture of an amorphous semiconductor and a crystalline semiconductor generally has a characteristic of lower electrical conductivity than a crystalline semiconductor.

前記非晶質半導体の具体例としては、たとえば非晶質シ
リコン、非晶質シリコンカーバイド、非晶質シリコンナ
イトライド、非晶質シリコンゲルマンなどがあげられ、
非晶質半導体および結晶性半導体の混合物からなる半導
体の具体例としては、たとえば微結晶シリコン、フッ素
化シリコン(微結晶)などがあげられ、また非晶質半導
体を含む半導体層の具体例としては、たとえば結晶シリ
コン上に形成された微結晶シリコンを含む非晶質シリコ
ン系半導体などがあげられる。
Specific examples of the amorphous semiconductor include amorphous silicon, amorphous silicon carbide, amorphous silicon nitride, amorphous silicon germane, etc.
Specific examples of semiconductors made of a mixture of amorphous semiconductors and crystalline semiconductors include microcrystalline silicon, fluorinated silicon (microcrystals), and specific examples of semiconductor layers containing amorphous semiconductors include , for example, an amorphous silicon-based semiconductor containing microcrystalline silicon formed on crystalline silicon.

なお本明細書にいう結晶性半導体とは、いわゆる微結晶
状半導体、多結晶状半導体あるいは単結晶半導体を含む
概念である。
Note that the term "crystalline semiconductor" as used herein is a concept that includes so-called microcrystalline semiconductors, polycrystalline semiconductors, and single-crystalline semiconductors.

レーザースクライビング法などの従来の方法により、電
極上に形成された非晶質半導体を含む半導体層の一部を
除去すると、除去する際に発生する熱により除去される
半導体層に隣接する非晶質半導体の一部が微結晶化した
りするため、電気伝導度が増加し、半導体装置を製造し
たばあいのリーク電流が増加する。それゆえ、本発明の
半導体装置においては、非晶質半導体を含む半導体層の
一部を除去する際に、レーザースクライビング法などに
より除去している部分を酸化性雰囲気にし、半導体層が
除去された端面から10.s、好ましくは50ρまでの
幅の半導体、好ましくは非晶質半導体中の平均酸素量を
0.5〜10原子%、好ましくは2〜10原子%になる
ように調整して製造することにより、微結晶化す、るこ
とによる電気伝導度の増加が抑制されている。
When a part of the semiconductor layer containing an amorphous semiconductor formed on the electrode is removed by a conventional method such as a laser scribing method, the amorphous semiconductor layer adjacent to the removed semiconductor layer is removed by the heat generated during removal. Part of the semiconductor becomes microcrystallized, which increases electrical conductivity and increases leakage current when semiconductor devices are manufactured. Therefore, in the semiconductor device of the present invention, when removing a part of the semiconductor layer containing an amorphous semiconductor, the part being removed is made into an oxidizing atmosphere by a laser scribing method, etc., and the semiconductor layer is removed. 10. s, preferably by adjusting the average amount of oxygen in a semiconductor, preferably an amorphous semiconductor, with a width of up to 50 ρ to 0.5 to 10 at%, preferably 2 to 10 at%, Increase in electrical conductivity due to microcrystalization is suppressed.

前記!1!素量が0.5〜10原子%である端面からの
幅が10項未満になったり、また該半導体中の酸素量が
0.5原子%未渦になったりすると、電気伝導度の増加
の抑制が不充分となる。
Said! 1! If the width from the end face where the elemental amount is 0.5 to 10 at% is less than 10 terms, or if the oxygen content in the semiconductor is 0.5 at% unvortexed, the increase in electrical conductivity will decrease. Suppression becomes insufficient.

非晶質半導体を含む半導体層の一部を除去する際に酸化
性雰囲気にする具体的方法としては、酸素またはオゾン
などの酸化性気体を半導体層の一部を除去している部分
に吹き付けたりして存在せしめたり、過酸化水素水溶液
または過マンガン酸溶液などの酸化性溶液を該部分に滴
下あるいは流したり、半導体層を形成した基板を酸化性
溶液中に浸漬し、酸化性溶液を該部分に存在せしめたり
する方法などがあげられる。
A specific method of creating an oxidizing atmosphere when removing a part of the semiconductor layer containing an amorphous semiconductor is to spray an oxidizing gas such as oxygen or ozone onto the part of the semiconductor layer from which part of the semiconductor layer is being removed. by dropping or flowing an oxidizing solution such as an aqueous hydrogen peroxide solution or a permanganic acid solution onto the area, or by immersing the substrate on which the semiconductor layer has been formed in the oxidizing solution and applying the oxidizing solution to the area. Examples include methods of making it exist.

酸素またはオゾンなどの酸化性気体を用いるばあいには
、酸素または酸素中に含有されるオゾンを用いるのが好
ましいが、酸素またはオゾンを含有する酸素をチッ素、
アルゴンなどの不活性気体で30容社%以上の範囲で希
釈して用いてもよい。また過酸化水素水または過マンガ
ン酸溶液などの酸化性溶液を用いるばあいには、0.1
〜20重量%程度の濃度のものを用いるのが好ましい。
When using an oxidizing gas such as oxygen or ozone, it is preferable to use oxygen or ozone contained in oxygen.
It may be used after being diluted with an inert gas such as argon in a range of 30% or more by volume. In addition, when using an oxidizing solution such as hydrogen peroxide solution or permanganic acid solution, 0.1
It is preferable to use a concentration of about 20% by weight.

なお、半導体層の一部が除去されている部分に酸化性気
体を吹き付けたり、酸化性溶液を存在せしめたりすると
、除去される半導体層に隣接する部分が冷却され、非晶
質半導体の微結晶化が抑制され、電気伝導性の増加が抑
制される。
Note that if an oxidizing gas is sprayed or an oxidizing solution is present in the area where a part of the semiconductor layer has been removed, the area adjacent to the removed semiconductor layer will be cooled, and the microcrystals of the amorphous semiconductor will cool down. This suppresses the increase in electrical conductivity.

本発明に用いる半導体層の一部を除去するための装置と
しては、たとえばQスイッチYAGレーザー、炭酸ガス
レーザー、アルゴンレーザー、エキシマレーザ−などが
あげられるが、これらに限定されるものではない。
Examples of devices for removing a portion of the semiconductor layer used in the present invention include, but are not limited to, a Q-switched YAG laser, a carbon dioxide laser, an argon laser, an excimer laser, and the like.

つぎにQスイッチYAGレーザーを用いて半導体層を除
去するばあいの一実施態様について説明する。
Next, an embodiment in which a semiconductor layer is removed using a Q-switched YAG laser will be described.

たとえばガラス基板上にITO,5nOtなどの電極を
電子ビーム蒸着法などの方法により形成し、パターンエ
ツチングにより電極を分離する。その上にグロー放電分
解法などにより、非晶質半導体を含む半導体層を堆積せ
しめる。そののち該半導体層を上にしてX−Yテーブル
上にセットし、QスイッチYAGレーザーを用いて、た
とえばレーザー光線の加工面に対する光軸にそって酸素
を導入し、吹き付けるというような酸化性雰囲気中で半
導体層の一部を除去する。
For example, electrodes of ITO, 5nOt, etc. are formed on a glass substrate by a method such as electron beam evaporation, and the electrodes are separated by pattern etching. A semiconductor layer containing an amorphous semiconductor is deposited thereon by a glow discharge decomposition method or the like. Thereafter, the semiconductor layer is placed on an X-Y table with the semiconductor layer facing up, and a Q-switched YAG laser is used to introduce and blow oxygen into an oxidizing atmosphere, for example, along the optical axis of the laser beam to the processed surface. A part of the semiconductor layer is removed by using the steps.

QスイッチYAGレーザーの運転条件としては、通常第
2高周波(532止)を使用したばあい、パルス周波数
2〜5にH2、好ましくは3Kl(Z、平均出力0.0
7〜2W、好ましくは0.IW、モードTEMoo1パ
ルス幅50〜500n sec、好ましくは100〜3
00n Sec程度の条件があげられる。
The operating conditions for a Q-switched YAG laser are usually when using the second high frequency (532 stops), pulse frequency 2 to 5, H2, preferably 3Kl (Z, average output 0.0
7-2W, preferably 0. IW, mode TEMoo1 pulse width 50-500n sec, preferably 100-3
A condition of about 00n Sec is mentioned.

このようにして製造された同一基板上に存在する分離さ
れた電極上に形成された非晶質半導体を含む半導体層の
一部を除去したものに、ざらに電極が形成され、要すれ
ばパターン化して形成され、本発明の半導体装置が製造
される。
After removing a part of the semiconductor layer containing the amorphous semiconductor formed on the separated electrodes existing on the same substrate manufactured in this way, electrodes are formed roughly, and if necessary, a pattern is formed. The semiconductor device of the present invention is manufactured using the following methods.

このようにして製造された本発明の半導体装置は、主と
して2000ルックス以下で使用される太陽電池に好適
に使用されうる。
The semiconductor device of the present invention manufactured in this way can be suitably used for solar cells mainly used at 2000 lux or less.

つぎに本発明の半導体装!!およびその製法を実施例に
もとづき説明するが、本発明はこれらに限定されるもの
ではない。
Next is the semiconductor device of the present invention! ! and its manufacturing method will be explained based on Examples, but the present invention is not limited thereto.

実施例1 厚さ1.1s*のガラス上に電子ビーム蒸着法にてIT
Oを800人、ITO上にざらにSnO2を200人堆
積させ、パターンエツチングにより分離された電極を形
成した。そののちグロー放電分解法にて、基板温度20
0℃、圧力0.5〜1.0TOrr、旺電力30Wなる
条件で、p型非晶質SiC:H/i型非晶質Si:H/
n型微結晶質Si :Hなる構成で、各層の厚さがそれ
ぞれ150A、 7000A、  300Aのシリコン
系半導体層を形成した。そののち半導体層を上にしてX
−Yテーブル上にセットし、テーブル移動速度50s/
Secにてレーザー光線の照射面に対し、光軸にそって
酸素ガスを約IoJ2/1llinで吹き付けながら、
QスイッチYAGレーザーを用いて半導体層の一部(幅
0.15m>を除去した。
Example 1 IT was deposited on glass with a thickness of 1.1 s* by electron beam evaporation method.
800 layers of O and 200 layers of SnO2 were roughly deposited on the ITO, and separated electrodes were formed by pattern etching. After that, using glow discharge decomposition method, the substrate temperature was 20
P-type amorphous SiC:H/i-type amorphous Si:H/
Silicon-based semiconductor layers with an n-type microcrystalline Si:H structure and thicknesses of 150 Å, 7000 Å, and 300 Å, respectively, were formed. Then, with the semiconductor layer facing up,
-Set on Y table, table movement speed 50s/
While spraying oxygen gas at approximately IoJ2/1llin along the optical axis to the laser beam irradiation surface in Sec,
A portion of the semiconductor layer (width 0.15 m>) was removed using a Q-switched YAG laser.

なおQスイッチYAGレーザーの運転条件は、第2高周
波(532,)を使用し、パルス周波数3にH2,平均
出力0.IW、モードTENoo1パルス幅200n 
Secであった。
The operating conditions for the Q-switched YAG laser are: second high frequency (532,), pulse frequency 3 H2, average output 0. IW, mode TENoo1 pulse width 200n
It was Sec.

レーザースライビングののちNi!極5000Aの厚さ
になるように蒸着し、化学エツチングによりパターン化
した。
Ni after laser sliving! It was deposited to a thickness of 5000 Å and patterned by chemical etching.

このようにして同一面内にある4個の太陽電池を直列に
接続した太陽電池を製造した。この太陽電池の1個の有
効面積は1cdで、合計の有効面積は4 crlであっ
た。
In this way, a solar cell was manufactured in which four solar cells in the same plane were connected in series. The effective area of one solar cell was 1 cd, and the total effective area was 4 crl.

えられた4個の太陽電池を直列に接続じた太陽電池を用
いて蛍光燈150ルックスの下で太陽電池特性を測定し
た。それらの結果を第1表に示す。
Using a solar cell obtained by connecting the four solar cells obtained in series, the solar cell characteristics were measured under a fluorescent light of 150 lux. The results are shown in Table 1.

一方、レーザースクライビングののちの端面から10.
nまでの幅の非晶質半導体部分中の酸素量を光電子分光
法で分析したところ、3原子%であった。
On the other hand, 10.
When the amount of oxygen in the amorphous semiconductor portion having a width up to n was analyzed by photoelectron spectroscopy, it was found to be 3 atomic %.

実施例2 実施例1で用いた酸素ガスのかわりに、X−Yテーブル
上にバットを載置し、該バット内に半導体層を上にして
おき、バット中に5%過酸化水素水を注ぎ、液面により
約10M!l下に半導体層面がくるようにしたほかは実
施例1と同様にして半導体層の一部を除去し、有効面積
1 crAの太陽電池を4個直列に接続した太陽電池を
製造し、太陽電池特性を測定した。またレーザースクラ
イビングののち端面からIOJ+までの幅の非晶質半導
体部分中の酸素量を実施例1と同様にして測定した。そ
れらの結果を第1表に示す。
Example 2 Instead of the oxygen gas used in Example 1, a vat was placed on an X-Y table, the semiconductor layer was placed on top of the vat, and 5% hydrogen peroxide was poured into the vat. , about 10M depending on the liquid level! A solar cell was manufactured by removing a part of the semiconductor layer in the same manner as in Example 1, except that the semiconductor layer surface was placed under 1 crA, and four solar cells each having an effective area of 1 crA were connected in series. Characteristics were measured. Further, after laser scribing, the amount of oxygen in the amorphous semiconductor portion having a width from the end face to IOJ+ was measured in the same manner as in Example 1. The results are shown in Table 1.

比較例1 実施例1で用いた酸素ガスを用いなかりたほかは実施例
1と同様にして、大気中で半導体層の一部を除去し、有
効面積1CIiの太1lijii!池を4個直列に接続
した太@電池を製造し、太陽電池特性を測定した。また
レーザースクライビングののち端面から10ρまでの幅
の半導体部分中の酸素量を実施例1と同様にして測定し
た。それらの結果を第1表に示す。
Comparative Example 1 A part of the semiconductor layer was removed in the atmosphere in the same manner as in Example 1 except that the oxygen gas used in Example 1 was not used. A thick @ battery with four cells connected in series was manufactured, and the solar cell characteristics were measured. Further, after laser scribing, the amount of oxygen in the semiconductor portion having a width of 10 ρ from the end face was measured in the same manner as in Example 1. The results are shown in Table 1.

[以下余白] 第1表の結果から、実施例1のように酸素ガスを吹き付
けながらレーザースクライビングすると、非晶質半導体
を含む半導体中の熱により影響される層が酸化され、微
結晶化しても抵抗値が大きくなり、また酸素ガスにより
熱により影響をうける層が冷却され、微結晶化が抑制さ
れ、これらの効果によりリーク電流が低減することがわ
かる。また実施例2のように、過酸化水素水を用いても
実施例1と同様に効果かえられることがわかる。
[Left below] From the results in Table 1, it can be seen that when laser scribing is performed while spraying oxygen gas as in Example 1, the layers affected by heat in the semiconductor, including amorphous semiconductors, are oxidized, and even if they become microcrystalline. It can be seen that the resistance value increases, the oxygen gas cools the layer affected by heat, suppresses microcrystalization, and these effects reduce leakage current. Further, as in Example 2, it can be seen that the same effect as in Example 1 can be obtained even if hydrogen peroxide solution is used.

[発明の効果] 本発明の方法により製造された本発明の半導体装置はリ
ーク電流が少なく、太陽電池として用いるばあい、とく
に至内などの低照度下で使用する太陽電池として用いる
ばあいにも良好な太陽電池特性を有するものである。
[Effects of the Invention] The semiconductor device of the present invention manufactured by the method of the present invention has low leakage current, and is suitable for use as a solar cell, especially when used as a solar cell under low illuminance such as in the middle of nowhere. It has good solar cell characteristics.

Claims (1)

【特許請求の範囲】 1 同一基板上に存在する分離された電極上に形成され
た非晶質半導体を含む半導体層の一部を除去して製造さ
れた半導体装置において、除去された半導体層の端面か
ら10μmまでの幅の半導体中の平均酸素量が0.5〜
10原子%であることを特徴とする半導体装置。 2 非晶質半導体中の酸素量が2.0〜10原子%であ
る特許請求の範囲第1項記載の半導体装置。 3 同一基板上に存在する分離された電極上に形成され
た非晶質半導体を含む半導体層の一部を除去して半導体
装置を製造する際に、酸化性雰囲気中でレーザー光線を
用いて半導体層の一部を除去することを特徴とする半導
体装置の製法。 4 酸化性雰囲気が酸化性気体または酸化性溶液により
形成される特許請求の範囲第3項記載の製法。 5 酸化性気体が酸素またはオゾンであり、酸化性溶液
が過酸化水素水溶液または過マンガン酸溶液である特許
請求の範囲第4項記載の製法。 6 レーザー光線の照射面に酸化性気体を吹き付けなが
ら、半導体層の一部を除去することを特徴とする特許請
求の範囲第3項記載の製法。 7 半導体装置が主として2000ルックス以下で使用
される太陽電池である特許請求の範囲第3項記載の製法
[Claims] 1. In a semiconductor device manufactured by removing a part of a semiconductor layer including an amorphous semiconductor formed on separate electrodes existing on the same substrate, The average amount of oxygen in the semiconductor within a width of 10 μm from the end face is 0.5 to
A semiconductor device characterized in that the content is 10 atomic %. 2. The semiconductor device according to claim 1, wherein the amount of oxygen in the amorphous semiconductor is 2.0 to 10 at%. 3. When manufacturing a semiconductor device by removing a part of a semiconductor layer including an amorphous semiconductor formed on separate electrodes existing on the same substrate, the semiconductor layer is removed using a laser beam in an oxidizing atmosphere. 1. A method for manufacturing a semiconductor device characterized by removing a part of the . 4. The manufacturing method according to claim 3, wherein the oxidizing atmosphere is formed by an oxidizing gas or an oxidizing solution. 5. The method according to claim 4, wherein the oxidizing gas is oxygen or ozone, and the oxidizing solution is an aqueous hydrogen peroxide solution or a permanganic acid solution. 6. The manufacturing method according to claim 3, wherein a part of the semiconductor layer is removed while blowing an oxidizing gas onto the surface irradiated with the laser beam. 7. The manufacturing method according to claim 3, wherein the semiconductor device is a solar cell mainly used at 2000 lux or less.
JP60039909A 1985-02-27 1985-02-27 Semiconductor device and its manufacture Granted JPS61198685A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60039909A JPS61198685A (en) 1985-02-27 1985-02-27 Semiconductor device and its manufacture
US07/298,282 US4862227A (en) 1985-02-27 1989-01-17 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039909A JPS61198685A (en) 1985-02-27 1985-02-27 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS61198685A true JPS61198685A (en) 1986-09-03
JPH0550871B2 JPH0550871B2 (en) 1993-07-30

Family

ID=12566077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039909A Granted JPS61198685A (en) 1985-02-27 1985-02-27 Semiconductor device and its manufacture

Country Status (2)

Country Link
US (1) US4862227A (en)
JP (1) JPS61198685A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157482A (en) * 1986-12-22 1988-06-30 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
JPH0195570A (en) * 1987-10-07 1989-04-13 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
WO2010064549A1 (en) * 2008-12-04 2010-06-10 三菱電機株式会社 Method for manufacturing thin-film photoelectric conversion device
WO2010101060A1 (en) * 2009-03-03 2010-09-10 日立ビアメカニクス株式会社 Method of working thin layer on work and thin layor working apparatus
JP2011187904A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2011187903A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2015198142A (en) * 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114237B2 (en) * 1987-08-26 1995-12-06 株式会社東芝 Semiconductor device
WO1991007689A1 (en) * 1989-11-14 1991-05-30 Greyhawk Systems, Inc. Improved light addressed liquid crystal light valve incorporating electrically insulating light blocking material
JP2808965B2 (en) * 1992-02-19 1998-10-08 日本電気株式会社 Semiconductor device
US5643801A (en) * 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
US6410374B1 (en) 1992-12-26 2002-06-25 Semiconductor Energy Laborartory Co., Ltd. Method of crystallizing a semiconductor layer in a MIS transistor
US6544825B1 (en) * 1992-12-26 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a MIS transistor
JP3469337B2 (en) 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3778456B2 (en) 1995-02-21 2006-05-24 株式会社半導体エネルギー研究所 Method for manufacturing insulated gate thin film semiconductor device
ES2198833T3 (en) * 1999-03-25 2004-02-01 Kaneka Corporation PROCEDURE OF MANUFACTURE OF SOLAR CELL MODULES OF FINE COAT.
TWI405340B (en) * 2007-08-31 2013-08-11 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof
JP5174900B2 (en) * 2008-06-09 2013-04-03 三菱電機株式会社 Thin film photoelectric conversion device and manufacturing method thereof
WO2010123980A1 (en) * 2009-04-22 2010-10-28 Tetrasun, Inc. Localized metal contacts by localized laser assisted conversion of functional films in solar cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154079A (en) * 1983-02-22 1984-09-03 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS59168680A (en) * 1983-03-14 1984-09-22 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161744A (en) * 1977-05-23 1979-07-17 Varo Semiconductor, Inc. Passivated semiconductor device and method of making same
US4443651A (en) * 1981-03-31 1984-04-17 Rca Corporation Series connected solar cells on a single substrate
US4670088A (en) * 1982-03-18 1987-06-02 Massachusetts Institute Of Technology Lateral epitaxial growth by seeded solidification
US4481230A (en) * 1983-10-27 1984-11-06 Rca Corporation Method of depositing a semiconductor layer from a glow discharge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154079A (en) * 1983-02-22 1984-09-03 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS59168680A (en) * 1983-03-14 1984-09-22 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157482A (en) * 1986-12-22 1988-06-30 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
JPH0195570A (en) * 1987-10-07 1989-04-13 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
WO2010064549A1 (en) * 2008-12-04 2010-06-10 三菱電機株式会社 Method for manufacturing thin-film photoelectric conversion device
CN102239571A (en) * 2008-12-04 2011-11-09 三菱电机株式会社 Method for manufacturing thin-film photoelectric conversion device
JPWO2010064549A1 (en) * 2008-12-04 2012-05-10 三菱電機株式会社 Method for manufacturing thin film photoelectric conversion device
US8507310B2 (en) 2008-12-04 2013-08-13 Mitsubishi Electric Corporation Method for manufacturing thin-film photoelectric conversion device
WO2010101060A1 (en) * 2009-03-03 2010-09-10 日立ビアメカニクス株式会社 Method of working thin layer on work and thin layor working apparatus
CN102341211A (en) * 2009-03-03 2012-02-01 日立Via机械株式会社 Method of working thin layer on work and thin layor working apparatus
JPWO2010101060A1 (en) * 2009-03-03 2012-09-10 日立ビアメカニクス株式会社 Thin film processing method and thin film processing apparatus for work
JP2011187904A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2011187903A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2015198142A (en) * 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module

Also Published As

Publication number Publication date
US4862227A (en) 1989-08-29
JPH0550871B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JPS61198685A (en) Semiconductor device and its manufacture
JP5374147B2 (en) Photovoltaic cell with thick silicon oxide and silicon nitride protective layer and its fabrication
KR101058735B1 (en) Solar cell and manufacturing method
KR100971658B1 (en) Method for texturing of silicon solar cell
US4152824A (en) Manufacture of solar cells
JP3152328B2 (en) Polycrystalline silicon device
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH0394476A (en) Manufacture of substrate for selective crystal growth and selective crystal growth method and manufacture of solar cell by using these substrates
GB2360391A (en) Method of manufacturing a solar cell
JPS5821324A (en) Pretreatment of metal surface substrate for semiconductor thin film growth added with hydrogen
JP2013098241A (en) Crystalline silicon solar cell and method for manufacturing the same
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
CN112086344B (en) Preparation method of aluminum gallium oxide/gallium oxide heterojunction film and application of aluminum gallium oxide/gallium oxide heterojunction film in vacuum ultraviolet detection
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
JPH07326784A (en) Manufacture of solar battery element
JPS63157482A (en) Semiconductor device and manufacture thereof
JP4197863B2 (en) Photovoltaic device manufacturing method
JPH0568097B2 (en)
JPH01225371A (en) Manufacture of semiconductor device
CN109904250B (en) Photodiode and preparation method thereof
CN112366254B (en) LED chip preparation method and LED chip thereof
JPH1070297A (en) Production of solar cell
JPS61259524A (en) Semiconductor device and manufacture thereof
JPH08148707A (en) Manufacture of solar cell module
JP4052782B2 (en) Integrated photovoltaic device and method for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term