JPS61198051A - Formation of electrode for semiconductor ion sensor - Google Patents

Formation of electrode for semiconductor ion sensor

Info

Publication number
JPS61198051A
JPS61198051A JP59221414A JP22141484A JPS61198051A JP S61198051 A JPS61198051 A JP S61198051A JP 59221414 A JP59221414 A JP 59221414A JP 22141484 A JP22141484 A JP 22141484A JP S61198051 A JPS61198051 A JP S61198051A
Authority
JP
Japan
Prior art keywords
photosensitive resin
ion
electrode
metal
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59221414A
Other languages
Japanese (ja)
Inventor
Yoshio Hanasato
善夫 花里
Mamiko Nakako
中子 真美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59221414A priority Critical patent/JPS61198051A/en
Publication of JPS61198051A publication Critical patent/JPS61198051A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Abstract

PURPOSE:To improve the productivity of a semiconductor ion sensor by coating a photosensitive resin on an element substrate on which an ion sensitive film is coated, subjecting the resin to photoengraving and coating a metallic layer thereon, then removing the photosensitive resin thereby forming the electrodes. CONSTITUTION:An n<+> source region 2 and drain region 3 are formed on the surface of a P<-> silicon substrate 1 and electrode junctures are exposed, then the surface is coated with the ion sensitive film 4 to manufacture an element substrate 7. The photosensitive resin 8 of a positive type is provided over the entire surface, is selectively exposed by UV rays and is developed. The substrate is then put into a vacuum deposition device where the metallic layer consisting of chromium, gold, etc. is deposited by evaporation. The photosensitive resin is finally dissolved by acetone, etc. and the unnecessary metal is stripped so that the metallic layer of the electrode junctures remains. The semiconductor ion sensor is thus formed. The contamination of the ion sensitive film is thus prevented and the easy formation of the electrodes with good accuracy is made possible without deterioration of sensitivity characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体イオンセンサの金属電極を形成する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming metal electrodes of semiconductor ion sensors.

〔従来の技術〕[Conventional technology]

半導体イオンセンサは、超小型化か容易なこと。 Semiconductor ion sensors can be easily miniaturized.

大量生触(て安価なものが供給できること、多重化に適
しているなどの特徴を有することから、医療計測や工業
計測、環境計測などのセンサとして注目されて〜・る。
Because it has characteristics such as being able to supply large amounts of raw materials at low cost and being suitable for multiplexing, it is attracting attention as a sensor for medical, industrial, and environmental measurements.

また、近年、半導体イオンセンサと酵素、微生物、抗原
・抗体などの生体物質と組み合せたバイオセンサも提案
され、イオンのみならず、有機物まで計測できるように
なり、その応用範囲を急速に拡大しつつある。
Furthermore, in recent years, biosensors that combine semiconductor ion sensors with biological materials such as enzymes, microorganisms, and antigens/antibodies have been proposed, making it possible to measure not only ions but also organic substances, and their range of applications is rapidly expanding. be.

半導体イオンセンサは、イオン感応部が直接水溶液と接
した状態で測定するので、水溶液との絶縁を必要とする
金属電極部は、イオン感応部から少し離れた所に置く。
Since the semiconductor ion sensor performs measurements with the ion-sensing part in direct contact with the aqueous solution, the metal electrode part, which requires insulation from the aqueous solution, is placed a little away from the ion-sensing part.

金属電極は、半導体イオンセンサ製造行程のほとんど終
りのところで形成され、その従来の形成方法としては、
金属マスクを用いる方法や感光性樹脂を用いて蒸着した
金属を選択的にエツチングする方法が行なわれている。
Metal electrodes are formed almost at the end of the semiconductor ion sensor manufacturing process, and the conventional method for forming them is as follows:
A method using a metal mask and a method of selectively etching deposited metal using a photosensitive resin have been used.

第3図(a)およびΦ)は、従来の金属マスクを用いた
時の電極の形成を工程順に示す断面図であり。
FIGS. 3(a) and Φ) are cross-sectional views showing step-by-step the formation of electrodes using a conventional metal mask.

(a)は金属マスクを重ね合せた時の断面図、Φ)は金
属を蒸着して金属マスクを取りはずした時の断面図であ
る真・嬶において、(1)は半導体イオンセンサのソー
ス・ドレイン領域と金属とのコンタクトをとる部分の断
面図のP−シリコン基板、(2)はP−□シリコン基板
表面に形成したn+のソース (又はドレイン)領域、
(31はP−シリコン基板表面に形成したn+のドレイ
ン(又はソース領域)、+41はイオン感応膜、(5)
は金属マスク、(6)は真空蒸着又はスパッタにより形
成した金属層である。(7)は素子基板である。
(a) is a cross-sectional view when the metal masks are overlapped, and Φ) is a cross-sectional view when the metal mask is removed after metal deposition. A cross-sectional view of the P-silicon substrate showing the part that makes contact with the region and the metal, (2) is the n+ source (or drain) region formed on the surface of the P-□ silicon substrate,
(31 is the n+ drain (or source region) formed on the surface of the P- silicon substrate, +41 is the ion-sensitive film, (5)
is a metal mask, and (6) is a metal layer formed by vacuum evaporation or sputtering. (7) is an element substrate.

即ち、エツチングにより、電極とのコンタクトを必要と
する部分のイオン感応膜(4)を除去した(以後この部
分をホールと称する。)素子基板(7)に、電極の形の
穴を持つ金属のマスク(5)を重ね合せ、コンタクトホ
ールが金属マスクの穴の中心にくるように9位置合せを
する。(第3図(a)位置合せが終ったら、金属マスク
(51と素子基板(7)を固定し、真空蒸着装置やスパ
ッタ装置内に入れて、金属薄膜を形成する。金属蒸着後
、装置内から取り出し、金属マスク(5)を取りはずす
と、金属マスク(5)の穴のあいた部分だけ、電極(6
1が素子基板(71の′ 表面に形成される。
That is, the ion-sensitive film (4) in the part that requires contact with the electrode is removed by etching (hereinafter this part is referred to as a hole).The element substrate (7) is made of metal with a hole in the shape of an electrode. The masks (5) are placed one on top of the other, and the 9 positions are aligned so that the contact hole is in the center of the hole in the metal mask. (Fig. 3 (a) After the alignment is completed, the metal mask (51) and the element substrate (7) are fixed and placed in a vacuum evaporation device or sputtering device to form a metal thin film. When the metal mask (5) is removed, only the perforated part of the metal mask (5) is exposed to the electrode (6).
1 is formed on the surface of the element substrate (71).

第4図(a)、 (b)および(c)は、従来の感光性
樹脂を用いた時の電極の形成を工程順に示す断面図であ
り、(a)は全面に金属を蒸着した時の断面図、(b)
は感光性樹脂を写真製版した断面図、(C)は金属をエ
ツチングした時の断面図である。図において、(1)〜
(7)は第3図と同様であり、(81は感光性樹脂であ
る。
Figures 4 (a), (b) and (c) are cross-sectional views showing the process order of electrode formation using conventional photosensitive resin; Cross-sectional view, (b)
(C) is a cross-sectional view of photolithographically photosensitive resin, and (C) is a cross-sectional view of etched metal. In the figure, (1) ~
(7) is the same as in FIG. 3, and (81 is a photosensitive resin).

即ち、エツチングによりコンタクトホールを形成した基
板(7)上全面に金属を蒸着する(第4図(a))。
That is, metal is deposited over the entire surface of the substrate (7) in which contact holes have been formed by etching (FIG. 4(a)).

その上に、さらに感光性樹脂(8)を全面に塗布し。On top of that, photosensitive resin (8) is further applied to the entire surface.

電極を形成したい部分だけ感光性樹脂を硬化するように
写真製版する(第4図中))。次に、金属を溶解するこ
とのできる薬品か又はスパッタにより金属をエツチング
することにより、感光性樹脂(81が残っている部分以
外の金属を基板(7)から除去する。最後に、感光性樹
脂を除去して電極を形成する(第4図(C))。
Photolithography is performed to harden the photosensitive resin only in the areas where electrodes are to be formed (see FIG. 4). Next, the metal is removed from the substrate (7) except for the portion where the photosensitive resin (81) remains by etching the metal with a chemical that can dissolve the metal or by sputtering.Finally, the photosensitive resin (81) is removed from the substrate (7). is removed to form an electrode (FIG. 4(C)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の金属マスクを用いた電極形成方法で
は、金属マスクと素子基板の位置合せを行ない、さらに
位置合せの後、金属マスクと素子基板を固定しなければ
ならない。このため、特殊な治具が必要であり、操作も
煩雑になるという問題点がある。
In the conventional electrode forming method using a metal mask as described above, the metal mask and the element substrate must be aligned, and after the alignment, the metal mask and the element substrate must be fixed. Therefore, there are problems in that a special jig is required and the operation is complicated.

又、上記のような従来の感光性樹脂を用いた電極形成方
法では、写真製版技術が利用できるので。
Further, in the conventional electrode formation method using photosensitive resin as described above, photolithography technology can be used.

煩雑な操作を必要としないが、素子基板のイオン感応部
上にも直接金属が蒸着されることになり。
Although it does not require complicated operations, metal is also deposited directly onto the ion-sensitive parts of the element substrate.

金属酸化物等によりイオン感応膜表面が汚染されてイオ
ン感応特性が劣化してしまうという問題点がある。
There is a problem in that the surface of the ion-sensitive membrane is contaminated by metal oxides and the like, resulting in deterioration of the ion-sensitivity characteristics.

この発明は、かかる問題点を解決するためになされたも
ので、イオン感応膜に対する汚染がなく。
This invention was made to solve this problem, and there is no contamination of the ion-sensitive membrane.

イオン感応特性を劣化させることなく、容易に電極が形
成でき、しかもその位置合せ精度も高い半導体イオンセ
ンサの電極形成方法を得ることを目的とする。
It is an object of the present invention to provide a method for forming electrodes of a semiconductor ion sensor, in which electrodes can be easily formed without deteriorating ion sensitivity characteristics, and the alignment accuracy is high.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の半導体イオンセンサの電極形成方法は、ソー
ス領域とドレイン領域を有し、ソース領域の電極接続部
とドレイン領域の電極接続部を露出させてイオン感応膜
を被覆した素子基板を備え。
The method for forming electrodes of a semiconductor ion sensor according to the present invention includes an element substrate having a source region and a drain region, with an electrode connection portion of the source region and an electrode connection portion of the drain region exposed and covered with an ion-sensitive film.

この素子基板に感光性樹脂を被覆し、この感光性樹脂を
上記両電極接続部が露出するように写真製版し、この写
真製版された感光性樹脂を有する素子基板に金属層を被
覆し、上記感光性樹脂を除去して上記両電極接続部の金
属を残すようにして電極を形成する方法である。
This element substrate is coated with a photosensitive resin, this photosensitive resin is photoengraved so that the above-mentioned both electrode connection parts are exposed, the element substrate having this photoengraved photosensitive resin is coated with a metal layer, and the above-mentioned This is a method of forming electrodes by removing the photosensitive resin and leaving the metal at the connection portion of both electrodes.

〔作用〕[Effect]

この発明における感光性樹脂が、基板のイオン感応膜と
蒸着金属との直接接触を防ぎ、イオン感応膜のイオン感
応特性を劣化させず、しかも写真製版技術を用いるため
容易しかも位置合せ精度良く電極を形成できる。
The photosensitive resin of this invention prevents direct contact between the ion-sensitive film of the substrate and the vapor-deposited metal, does not deteriorate the ion-sensitive characteristics of the ion-sensitive film, and uses photolithographic technology to easily and accurately align the electrodes. Can be formed.

〔実施例〕〔Example〕

第2図(a)は一般的なイオン感応性電界効果型トラン
ジスタの正面図、第2図の)は第2図(場における1b
−1b線断面図であり、 ゛成極がある部分の断面図で
ある。第2図(C)は第2図(a)におけるIc−1c
線断面図であり、イオン感応膜がある部分の断面図であ
る。図において(1)〜161は第3図と同様であり、
(9)がイオン感応部である。
Figure 2 (a) is a front view of a general ion-sensitive field effect transistor, and Figure 2 (a) is a front view of a general ion-sensitive field effect transistor.
It is a cross-sectional view taken along the line -1b, and is a cross-sectional view of a portion where there is polarization. Figure 2(C) is Ic-1c in Figure 2(a).
It is a line cross-sectional view, and is a cross-sectional view of a portion where an ion-sensitive membrane is present. In the figure, (1) to 161 are the same as in Figure 3,
(9) is the ion sensitive part.

実施例 第1図(al ) 〜(dl )並びに(az)〜(d
2)は、 この発明の一実施例の電極形成方法を工程順
に示す断面図であり、各々電極のある部分並びにイオン
感応膜のある部分の断面図である。図において(1)〜
(81は上記第3図および第2図と同様である。
Example Figure 1 (al) to (dl) and (az) to (d
2) is a cross-sectional view showing the method of forming an electrode according to an embodiment of the present invention in the order of steps, and each is a cross-sectional view of a portion where an electrode is located and a portion where an ion-sensitive membrane is located. In the figure (1) ~
(81 is the same as in FIGS. 3 and 2 above.

即ち、コンタクトホールが多数形成されている4インチ
ウェハーをアセトン・インプロパツールで洗浄し乾燥後
、全面にポジタイプの感光性樹脂(8)(商品名マイク
ロポジット1400−31 、  シプレー社製)を2
00 Orpmで60秒間スピンコートシ。
That is, a 4-inch wafer with a large number of contact holes formed therein was cleaned with acetone-improper tool, dried, and then coated with two coats of positive type photosensitive resin (8) (trade name: Microposit 1400-31, manufactured by Shipley) on the entire surface.
Spin coat at 00 rpm for 60 seconds.

75℃で30分間ベーキングした(第1図(al)。It was baked at 75°C for 30 minutes (Figure 1 (al)).

(C2) )。(C2)).

次に、紫外線で選択的に露光し、クロルベンゼン溶液に
浸して非露光部の表面を更に硬めた後。
Next, it was selectively exposed to ultraviolet light and immersed in a chlorobenzene solution to further harden the surface of the unexposed areas.

22〜23℃に保ったマイクロポジットデベロッパー溶
液と純水の等容量混合液中で1分間現象し。
It was developed for 1 minute in a mixture of equal volumes of Microposit developer solution and pure water kept at 22-23°C.

純水で洗浄し、て乾燥硬化した(第1図(bl)、 (
b2) )。
It was washed with pure water and dried and hardened (Fig. 1 (bl), (
b2) ).

さらに、フッ酸と純水を体積比で1対50に混合した溶
液に30秒浸して、半導体表面の自然酸化膜を除いてか
ら、真空蒸着装置の中に入れ、クロムを約1oooX、
金を約5000λ蒸着した(第1図(C1)、 (C2
) )。
Furthermore, the semiconductor was immersed in a solution containing a mixture of hydrofluoric acid and pure water at a volume ratio of 1:50 for 30 seconds to remove the natural oxide film on the semiconductor surface.
Approximately 5000λ of gold was deposited (Fig. 1 (C1), (C2
) ).

最後にアセトンに浸漬し、ポジタイプの感光性樹脂を溶
解し、不要な金属を剥離し、金属電極を得た。(第1図
(al)、 (d2) )。
Finally, it was immersed in acetone to dissolve the positive type photosensitive resin and remove unnecessary metal to obtain a metal electrode. (Figure 1 (al), (d2)).

なお、上記実施例では、コンタクトホールが多数形成さ
れている4インチウェハーの場合を示したが、ウェハー
の大きさの限界はなく、また、ウェハーではなくチップ
状のものであっても同様の効果を奏する。
In addition, although the above example shows the case of a 4-inch wafer in which many contact holes are formed, there is no limit to the size of the wafer, and the same effect can be obtained even if the wafer is in the form of a chip instead of a wafer. play.

また、上記実施例では、金属としてクロム−金の二層構
造の場合を示したが、基板の半導体とコンタクトのとれ
る金属なら何でも使用できる。例えばアルミニウムーク
ロム−金、クロム−銅−金。
Further, in the above embodiment, a two-layer structure of chromium and gold was used as the metal, but any metal that can make contact with the semiconductor of the substrate can be used. For example, aluminum-chromium-gold, chromium-copper-gold.

ニオブ−クロム−金なども使用できる。Niobium-chromium-gold etc. can also be used.

また、上記実施例では、真空蒸着によって金属薄膜を形
成し?、4合を示したが、スパッタ法などKよる方法で
も同様の効果を奏する。
In addition, in the above embodiment, the metal thin film was formed by vacuum evaporation. , 4 cases are shown, however, a method using K such as a sputtering method can also produce similar effects.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、ソース領域とドレイン
領域を有し、ソース領域の電極接続部とドレイン領域の
電極接続部を露出させてイオン感応膜を被覆した素子基
板を備え、この素子基板に感光性樹脂を被覆し、この感
光性樹脂を上記両電極接続部が露出するように写真製版
し、この写真製版された感光性樹脂を有する素子基板に
金属層を被覆し、上記感光性樹脂を除去して上記両電極
接続部の金属層を残すようにすることにより、イオン感
応膜に対する汚染がな(、イオン感応特性を劣化させる
ことなく、容易に金属電極が形成でき、しかもその位置
合せ精度も高い半導体イオンセンサの電極形成方法を得
ることができる。
As explained above, the present invention includes an element substrate having a source region and a drain region, an electrode connection portion of the source region and an electrode connection portion of the drain region are exposed and covered with an ion-sensitive film, and the element substrate is exposed to light. This photosensitive resin is photoengraved so that the connection portions of both the electrodes are exposed, the element substrate having the photoengraved photosensitive resin is coated with a metal layer, and the photosensitive resin is removed. By leaving the metal layer at the connection between both electrodes, the ion-sensitive membrane is not contaminated (and the metal electrodes can be easily formed without deteriorating the ion-sensitivity characteristics, and the alignment accuracy is also improved. A method for forming electrodes of a semiconductor ion sensor with high quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al) 〜(dl)並びに(C2) 〜(d2
)は、この発明の一実施例の電極形成方法を工程順に示
す断面図、第2図(a)は、一般的なイオン感応性電界
効果型トランジスタの正面図、第2図の)は第2図(a
)Kおける厘b−1b線断面図、第2図(C)は第2図
(a)におけるIc−1c線断面図、第3図(a)、 
(b)および第4図(a)、 (b)はそれぞれ従来の
電極形成方法を工程順に示す断面図である。 図において、(1)は基板、(2)はソース(又はドレ
イン)領域、(3)はドレイン(又はソース)領域。 (4)はイオン感応膜、(6)は金属層、(7)は素子
基板。 (8)は感光性樹脂である。 なお、各図中同一符号は同−又は相当部分を示す。
Figure 1 (al) - (dl) and (C2) - (d2
) is a cross-sectional view showing the method of forming an electrode according to an embodiment of the present invention in the order of steps; FIG. 2(a) is a front view of a general ion-sensitive field effect transistor; Figure (a
2(C) is a sectional view taken along the line Ic-1c in FIG. 2(a), FIG. 3(a),
4(b) and FIGS. 4(a) and 4(b) are cross-sectional views showing the conventional electrode forming method in the order of steps, respectively. In the figure, (1) is a substrate, (2) is a source (or drain) region, and (3) is a drain (or source) region. (4) is an ion-sensitive film, (6) is a metal layer, and (7) is an element substrate. (8) is a photosensitive resin. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] ソース領域とドレイン領域を有し、ソース領域の電極接
続部とドレイン領域の電極接続部を露出させてイオン感
応膜を被覆した素子基板を備え、この素子基板に感光性
樹脂を被覆し、この感光性樹脂を上記両電極接続部が露
出するように写真製版し、この写真製版された感光性樹
脂を有する素子基板に金属層を被覆し、上記感光性樹脂
を除去して上記両電極接続部の金属層を残すようにした
半導体イオンセンサの電極形成方法。
The element substrate has a source region and a drain region, and the electrode connection portion of the source region and the electrode connection portion of the drain region are exposed and coated with an ion-sensitive film. A photolithographic resin is photoengraved so that the electrode connection portions are exposed, a metal layer is coated on the element substrate having the photolithographic photosensitive resin, and the photosensitive resin is removed to expose the electrode connection portions. A method for forming electrodes in a semiconductor ion sensor that leaves a metal layer.
JP59221414A 1984-10-22 1984-10-22 Formation of electrode for semiconductor ion sensor Pending JPS61198051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221414A JPS61198051A (en) 1984-10-22 1984-10-22 Formation of electrode for semiconductor ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221414A JPS61198051A (en) 1984-10-22 1984-10-22 Formation of electrode for semiconductor ion sensor

Publications (1)

Publication Number Publication Date
JPS61198051A true JPS61198051A (en) 1986-09-02

Family

ID=16766362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221414A Pending JPS61198051A (en) 1984-10-22 1984-10-22 Formation of electrode for semiconductor ion sensor

Country Status (1)

Country Link
JP (1) JPS61198051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032209A (en) * 2013-10-18 2014-02-20 Seiko Epson Corp Method for manufacturing sensor element and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032209A (en) * 2013-10-18 2014-02-20 Seiko Epson Corp Method for manufacturing sensor element and semiconductor device

Similar Documents

Publication Publication Date Title
US4894339A (en) Immobilized enzyme membrane for a semiconductor sensor
US4960722A (en) Sensor using a field effect transistor and method of fabricating the same
US6083367A (en) Oxygen electrode and its manufacture
JP2594983B2 (en) Method for manufacturing thin film transistor
JPH03122558A (en) Sensor structure and manufacture thereof
US4302530A (en) Method for making substance-sensitive electrical structures by processing substance-sensitive photoresist material
JPS5816548B2 (en) Method for selectively metallizing microelectronic devices
JPS6285855A (en) Formation of very small gold electrode
GB2030358A (en) Ion selective-field-effect sensor
US4644380A (en) Substance-sensitive electrical structures
JPS61198051A (en) Formation of electrode for semiconductor ion sensor
JPS6188135A (en) Production of semiconductor biosensor
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JPS59164952A (en) Fet ion sensor
JPH0219757A (en) Micro-electrode cell for electrochemical measurement and its production
JPS6047950A (en) Fet multi-sensor
JPH01301159A (en) Very small electrode cell for electrochemical measurement and production thereof
JPH02139972A (en) Manufacture of semiconductor device
JPH02140655A (en) Electrochemical detector and production thereof
US5212117A (en) Method of manufacturing a semiconductor device contact structure using lift
JPS61234349A (en) Manufacture of semiconductor multi-biosensor
JP2580681B2 (en) Method for manufacturing semiconductor device
JPS6040184B2 (en) Manufacturing method of semiconductor device
JP2861149B2 (en) Reference electrode
JP2589471B2 (en) Method for manufacturing semiconductor device