JPS61197862A - Open/close control method of irrigation valve - Google Patents

Open/close control method of irrigation valve

Info

Publication number
JPS61197862A
JPS61197862A JP3499185A JP3499185A JPS61197862A JP S61197862 A JPS61197862 A JP S61197862A JP 3499185 A JP3499185 A JP 3499185A JP 3499185 A JP3499185 A JP 3499185A JP S61197862 A JPS61197862 A JP S61197862A
Authority
JP
Japan
Prior art keywords
water
pressure
valve
irrigation
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3499185A
Other languages
Japanese (ja)
Inventor
Yoshiki Kawamura
川村 喜紀
Katsuro Ishihara
石原 勝郎
Masaichi Tanaka
政一 田中
Tomoo Inaba
稲葉 朋生
Masahiko Watanabe
正彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3499185A priority Critical patent/JPS61197862A/en
Publication of JPS61197862A publication Critical patent/JPS61197862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To facilitate remote control of irrigation valve without employing special controlling fluid or power by utilizing the hydraulic pressure of irrigation water for open/close control of valve. CONSTITUTION:The irrigation water is blocked at the take-in port 14 by means of a diaphragm 10 and a portion of the irrigation water is within the pressure chamber 20 under closed condition of solenoid valve 25. Here, the pressure in the pressure chamber 20 is prevailing with respect to the relationship of forces which are applied onto both sides of diaphragm 10, which will choke the intake port 14. Upon opening of the solenoid valve 25, the water in the pressure chamber 25 is discharged to release the pressure in the pressure cham ber 20 thereby the irrigation water to be fed continuously through the pressure supply hole 16 will pass through the pressure discharge hole to the head of the solenoid valve 25. Consequently, only the hydraulic pressure at the take-in port 14 will function onto the diaphragm 10 thus to discharge the water in the water path through the discharge port 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はかんがいにおける給水制御を行なう為のバルブ
の開閉制御方法に関し、詳細にはかんがい用水をうね間
へ供給する為の放水口にバルブを設け、該バルブの開閉
によってうね間への給水制御するかんがい方法において
、前記バルブの開閉をかんがい用水の水圧を利用して集
中的に遠隔制御する方法に関するものである。 [従来の技術] 作物の収穫量の増減は地域の気象条件によって大きな影
響を受け、特に降雨量の多少による作物生育への影響は
wIgであり、洪水や干ばつに伴なう収穫の激減は有史
以来世界各地において無数の悲劇を生み出してきた。 そこで例えば降雨量の少ない地域では圃場内に人工的な
給水設備を設けて作物に給水し、これによって作物の生
育を補助するという所謂かんがいが実施されている。か
んがいの実施に際しては作物の栽培形態によって幾つか
の種類が考えられるが、現在では(イ)越流かんがい、
(ロ)うね聞かんがい、(ハ)ホースかんがい、(ニ)
散水かんがい等の方法が主流となっており、圃場の地形
条件等によって上記(イ)〜(ニ)のいずれかの方法が
利用されている。 ところでうね栽培作物のかんがいには、設備が簡易で給
水量の調節が容易な(ロ)うね聞かんがいが汎用されて
おり、その具体的実施手段としては第2図(a)、(b
)、(c)に示す様な方法が考えられている。第2図(
a)に示すものは、うね6同士の間の溝部(うね間)へ
通水路4から給水を行なう方法であり、水位5の高い通
水路4とうねの間にサイホン7をかけわたすことによっ
て水位の低い圃場内に給水を行なう、そして給水を停止
する場合にはサイホン7を通水路4から撤去する。第2
図(b)に示すかんがい設備では。 通水路4の通水路側壁にスライドゲート状の堰を設け、
堰を開放したときはうね間への給水がなされ、堰を閉鎖
したときには圃場への給水が停止される。第2図(C)
に示すかんがい設備では通水路4内の水流を分岐パイプ
及びバルブを介してうね間に分流し、バルブの開閉操作
によって圃場への給水、断水を行なうものである。この
ようなかんがい設備では圃場に沿って設けられた通水路
4からうね間の一方端側へかんがい用水を流し込む方法
であるから、圃場に対するかんがい用水の給水状態は第
3図に示す様に通水路4に近い側で多く、通水路4より
遠い側で少なくなる傾向がある。そこでかんがい給水量
を増やして遠い側の給水量を希望量に近づける様にすれ
ば通水路4に近い側での給水量が過剰となり、通水路4
に近い側で根腐れ等を起こすこともある。このことから
理解される様に圃場内の土中に含まれる含水量をうね間
の全長に亘って常に最適含水状態に維持することは決し
て容易なことではなく、これを実現する為にはかんがい
水の供給制御についてなんらかの方策を確立する必要が
ある。この様な要望からかんがい用水の給水サイクルに
ついての研究が進められ、その結果、給水と給水停止を
一定のサイクルで断続的に繰り返せば圃場全域にわたっ
て均一な給水状態が得られることが分かる様になってき
た。そこで通水路に形成される各給水口毎に或は数本の
分岐管に1個の割合で電磁弁やダイヤプラム式エアバル
ブ等のコントロールバルブヲ、41t、かんがい用水の
給水開始及び給水停止を特定のサイクルタイムで繰返し
実行することにより圃場内の含水量を全面に亘って最適
状態に調整することが推奨されるに至った。 [発明が解決しようとする問題点] 特に広大な耕作面積を有する圃場に対するうね間かんが
いを行なう場合において、労力の効率的利用を考慮して
自動化を進めていこうとすれば。 通水路及び/又は通水路端末から圃場へ給水する為の装
置(前記堰やサイホン等)を、集中的に管理並びに調整
を行なうことのできる装置に変換する必要がある。そこ
で上記した如く堰やサイホンの代りに電磁弁やダイヤプ
ラム式バルブ等のコントロールバルブを設置し、給水の
開始及び停止操作をバルブの遠隔操作で行なうというこ
とが第1番に考えられる。第4図は従来汎用されている
ダイヤフラム式バルブの概略図であり、これに基づいて
説明すると、第4図では弁が閉鎖された状態を示しおり
、エア導入孔22から圧縮空気が供給されるとダイヤプ
ラム10が下方に押圧変形され、押圧力によって弁棒2
1が矢印A方向に押し下げられる。その為弁棒21の先
端に設けられているパツキン23が弁座24から離れて
降下し。 矢印Fa力方向流れてくる水は弁座24とパツキン23
の隙間を通って図面右側(矢印Fb)へ流れていく、そ
してエア導入孔22からの圧縮空気の供給が停止・放圧
されるとばねの復元力によって弁棒21がダイヤフラム
10を押上げる様に上昇しパツキン23が弁座24に圧
接されて水流Faは停止状態となる。 ところが前記した様なエア稼動型のダイヤプラム弁を利
用する場合においても、広大の圃場内に多数の弁を配設
しなければならない点に変りなく、該弁を稼動する為の
コンプレッサーを用意し圧縮空気をダイヤフラム弁に供
給しなければならない、換言するならばかんがい用水を
制御する間には連続的或は間欠的にエンジンを駆動する
或はモーターを駆動することによってエネルギーを投入
してやらねければならない。 そこで本発明者らは、かんがい用水の水圧を利用するこ
とによってモーター類等によってエネルギーの余分な投
入を省略することを考え、種々研究を重ねて本発明を完
成するに至った。 E問題点を解決する為の手段] 上記問題点を解決する為、かんがい用水の供給流路から
分岐された放水部に、制御用圧力水の導入・放出によっ
てかんがい用水の供給を断続するバルブを取り付け、か
んがい用水の一部を前記バルブの圧力室内に圧入して圧
力室側と取水口側の押圧面積差によって生じる圧力差で
バルブを閉鎖状態とし、且つ前記圧力室内の圧力水を抜
き出すことによってバルブを開放状態とする点に本発明
の要旨が存在する。 [作用] バルブ内に設けられた圧力室に制御用圧力水を導入又は
放出することによってバルブの開閉を行ないかんがい用
水の供給或は供給停止を行なうバルブを、かんがい用通
水路から圃場までの間の任意位置、通常は通水路の壁面
に配設して放水の断続を遠隔操作する方法において、バ
ルブの開閉制御用圧力の一部として通水路中を流れるか
んがい用水を利用するものである。まずバルブを閉鎖状
態とするには通水路内の圧力水(通水路は一般にパイプ
で構成され、該パイプ内にはかんがい用水が加圧供給さ
れている)をバルブ内に設けられる圧力室内に圧入し、
該圧力によって作用される押圧力を利用してかんがい水
が流れ込んでくる側(取水口)を閉塞するものである。 該取水口におけるかんがい用水導入側は、かんがい用水
の供給圧力が作用しているが、いまかんがい用水による
単位面積当たりの押圧力をP (kg/cm2 ニ一定
)であるとすると、その取水口側全体で受ける水圧Qは
PX(取水口の面a)  [kgl となる、従って取
水口を塞ごうとすれば、取水口の反対側(かんがい用水
を放出していく側)から水圧Qより大きな力で弁蓋を抑
圧すればよいことになる。そこでこの押圧力として前記
かんがい用水の押圧力を利用することを考えた。かんが
い用水を閉鎖用に利用する場合は単位面積当たりの圧力
は前記と同じくP (Itg/C52) Lか得られな
い、しかし該圧力Pが作用する面積を広くしてやれば、
その面に及ぼされる総圧力を大きくすることができる。 即ち取水口側よりも放水側において大きな面積を持つ弁
蓋を利用して圧力室内を密封し通水方向の反対側から押
してやれば、取水口を塞いで通水を遮断することができ
る0次にバルブを開放状態とするには圧力室内に密封さ
れている圧力水を系外へ抜き出すだけでよく、これによ
り放水側から取水口側へ押圧していた弁蓋閉鎖圧力が無
くなることになるので、かんがい用水は水圧Qによって
弁蓋を押しのけ取水口を通って放水されることになる。 バルブの開閉制御を上記の様に行なえば、バルブを開閉
制御するために特別の圧力流体を系外から供給する必要
性がなくなり、エネルギーの過剰消費が回避される。 また圧力室内の圧力水のとじこめ又は抜き出し操作のみ
によってバルブの開閉が行なえるので簡易な配管を施す
だけでも自動遠隔操作が可能となる。 [実施例] 本発明方法を実施する為の代表的な実施例を第1図に示
して説明する。かんがい用水通水路4の壁面を穿孔し、
バルブの接続部27をパツキン28を介して支持固定す
る。接続部27はバルブ内部の取水口14まで連続して
いる。該連続部の周囲にはチューブ状の中空部を形成し
、これを面積する様に外部ケース29を構成する。また
該外部ケース29の下方部にはうね間に放水するための
放水口15が設けられる。取水口14の反通水路4側に
はダイヤフラムlOを挟んで圧力室20が形成され、圧
力室20の一部を包囲する外側ケース30が圧力室20
の背面(第1図では左側)に設けられる。圧力室20は
圧力水導入孔16、チューブ18を介して通水路の取水
口側と連結され、かんがい用水の一部は常にこの中を流
れて圧力室20に導入連通される。また圧力室20は圧
力水抜出し孔17及び制御用チューブ26を介して電磁
弁25と接続されており、電磁弁25の先には流出する
水を再びかんがい用水に循環するための溝(図示せず)
が設けられている。第1図はバルブの停止状態を示して
おり、矢印Waで示される方向に流れてくるかんがい用
水は取水口14でダイヤフラム10によって閉塞されて
いる、このとき電磁弁25は閉となっており、かんがい
用水の一部は矢印Caで示す如く圧力室20内に入って
いる0図のダイヤフラム10においては、弁座31の面
積が圧力室20の断面積より狭いので圧力室20側から
押圧される面積は取水口14側からの抑圧面積より広く
なっており、ダイヤフラム10の左右における力関係は
、圧力室20側が勝っており、ダイヤフラム10は図の
様に取水口14を塞ぐ形になり、放水口15から圃場へ
の給水は行なわれない。 次に電磁弁25を開にすると圧力室20内の水が放出さ
れて圧力室20内は放圧され、圧力導入孔16から導入
され続けるかんがい用水は圧力室20から圧力水抜出孔
を通過して電磁弁25の先へ流出する。従ってダイヤプ
ラムlOには取水口14側の水圧だけが作用し、ダイヤ
フラム10は破線で示す位置まで押し戻され、通水路の
水は放水口15かも矢印wb力方向放水される。 [実施例A] 上記第1図の様なバルブを使用して以下に示す条件でバ
ルブが開→閉及び閉→開状態に移行する時間を測定した
[Industrial Application Field] The present invention relates to a method for controlling the opening and closing of a valve for controlling water supply in irrigation, and more specifically, a valve is provided at a water outlet for supplying irrigation water to furrows, and the opening and closing of the valve is performed. The present invention relates to an irrigation method for controlling water supply between ridges by centrally and remotely controlling the opening and closing of the valves using the water pressure of irrigation water. [Conventional technology] Increases and decreases in crop yields are greatly affected by local weather conditions, and in particular, the amount of rainfall affects crop growth, and drastic decreases in yields due to floods and droughts are unprecedented. Since then, it has caused countless tragedies around the world. Therefore, for example, in areas with low rainfall, so-called irrigation is carried out in which artificial water supply equipment is installed in a field to supply water to crops, thereby assisting the growth of the crops. There are several types of irrigation that can be considered depending on the cultivation form of the crop, but currently (a) overflow irrigation;
(b) ridge irrigation, (c) hose irrigation, (d)
Methods such as watering irrigation are the mainstream, and one of the methods (a) to (d) above is used depending on the topographical conditions of the field. By the way, ridge irrigation is commonly used for irrigation of ridge-cultivated crops, as the equipment is simple and the amount of water supplied can be easily adjusted.
) and (c) have been considered. Figure 2 (
The method shown in a) is a method of supplying water from the passageway 4 to the grooves (between the ridges) between the ridges 6, and a siphon 7 is passed between the passageway 4 where the water level 5 is high and the ridges. Water is supplied to the field where the water level is low, and when the water supply is to be stopped, the siphon 7 is removed from the passageway 4. Second
In the irrigation equipment shown in Figure (b). A slide gate-shaped weir is provided on the side wall of the waterway 4,
When the weir is opened, water is supplied to the furrows, and when the weir is closed, water supply to the field is stopped. Figure 2 (C)
In the irrigation equipment shown in Fig. 1, the water flow in the water passage 4 is divided between the furrows through branch pipes and valves, and water is supplied to the field or cut off by opening and closing the valves. In this type of irrigation equipment, irrigation water is poured into one end of the ridges from the water passage 4 provided along the field, so the irrigation water supply status to the field is as shown in Figure 3. There is a tendency for it to be more on the side closer to the waterway 4 and less on the side farther from the waterway 4. Therefore, if the amount of water supplied for irrigation is increased to bring the amount of water supplied on the far side closer to the desired amount, the amount of water supplied on the side closer to the water passage 4 will become excessive, and the amount of water supplied on the side closer to the water passage 4 will become excessive.
Root rot may occur on the side closer to the root. As can be understood from this, it is by no means easy to maintain the moisture content in the soil in the field at an optimal moisture content over the entire length of the furrows, and in order to achieve this, It is necessary to establish some strategy for controlling the supply of irrigation water. In response to these demands, research into irrigation water supply cycles has progressed, and as a result, it has become clear that by repeating water supply and water supply interruption intermittently in a fixed cycle, a uniform water supply condition can be obtained throughout the field. It's here. Therefore, control valves such as solenoid valves and diaphragm air valves are specified for each water supply port formed in the water passage or for several branch pipes, and the start and stop of irrigation water supply is specified. It has come to be recommended that the water content in the field be adjusted to the optimum state over the entire field by repeatedly executing the process with a cycle time of . [Problems to be solved by the invention] Particularly when performing furrow irrigation for fields with vast cultivated areas, automation should be promoted in consideration of efficient use of labor. It is necessary to convert the devices for supplying water from the canals and/or the terminals of the canals to the fields (such as the weirs and siphons) into devices that can be centrally managed and regulated. Therefore, as mentioned above, the first idea is to install a control valve such as a solenoid valve or a diaphragm valve in place of the weir or siphon, and to start and stop the water supply by remotely controlling the valve. FIG. 4 is a schematic diagram of a conventionally used diaphragm valve. Based on this, FIG. 4 shows the valve in a closed state, and compressed air is supplied from the air introduction hole 22. The diaphragm 10 is pressed downward and the valve stem 2 is deformed by the pressing force.
1 is pushed down in the direction of arrow A. Therefore, the gasket 23 provided at the tip of the valve stem 21 separates from the valve seat 24 and descends. The water flowing in the direction of the arrow Fa force flows through the valve seat 24 and the gasket 23.
The compressed air flows through the gap to the right side in the drawing (arrow Fb), and when the supply of compressed air from the air introduction hole 22 is stopped and the pressure is released, the valve stem 21 pushes up the diaphragm 10 by the restoring force of the spring. The gasket 23 is brought into pressure contact with the valve seat 24, and the water flow Fa is stopped. However, even when using the air-operated diaphragm valve as described above, a large number of valves must be installed in a large field, and a compressor must be prepared to operate the valves. Compressed air must be supplied to the diaphragm valve, in other words, energy must be input by driving the engine or driving the motor continuously or intermittently while controlling the irrigation water. No. Therefore, the present inventors thought of omitting the unnecessary input of energy by motors and the like by utilizing the water pressure of irrigation water, and after conducting various researches, they completed the present invention. Measures to solve problem E] In order to solve the above problem, a valve is installed in the water discharge part branched from the irrigation water supply flow path to cut off the supply of irrigation water by introducing and releasing control pressure water. By pressurizing a part of the irrigation water into the pressure chamber of the valve, closing the valve by the pressure difference caused by the pressure area difference between the pressure chamber side and the water intake side, and drawing out the pressure water in the pressure chamber. The gist of the present invention lies in the fact that the valve is in an open state. [Function] The valve, which opens and closes the valve to supply or stop the supply of irrigation water by introducing or releasing control pressure water into the pressure chamber provided in the valve, is installed between the irrigation waterway and the field. In this method, the irrigation water flowing through the waterway is used as part of the pressure for controlling the opening and closing of the valve. First, to close the valve, pressurized water in the water passage (generally, the water passage is made up of a pipe, and irrigation water is supplied under pressure inside the pipe) is pressurized into the pressure chamber provided inside the valve. death,
The pressing force exerted by this pressure is used to close the side (water intake) into which irrigation water flows. The supply pressure of irrigation water is acting on the irrigation water introduction side of the water intake, but if the pressing force per unit area by irrigation water is P (kg/cm2 constant), then The water pressure Q received as a whole is PX (surface a of the water intake) [kgl].Therefore, if you try to block the water intake, a force greater than the water pressure Q will come from the opposite side of the water intake (the side from which irrigation water is released). All you have to do is suppress the valve flap. Therefore, we considered using the pressing force of the irrigation water as this pressing force. When irrigation water is used for closure, the pressure per unit area is P (Itg/C52) L, which is the same as above, but if the area on which the pressure P acts is widened,
The total pressure exerted on that surface can be increased. In other words, if you use a valve cover that has a larger area on the water outlet side than the water intake side to seal the inside of the pressure chamber and push it from the opposite side to the water flow direction, you can block the water intake and shut off the water flow. In order to open the valve, all you have to do is drain the pressure water sealed inside the pressure chamber to the outside of the system, and this will eliminate the valve cover closing pressure that was pressing from the water discharge side to the water intake side. , the irrigation water is pushed away by the valve cover by the water pressure Q and is discharged through the water intake. If the opening and closing of the valve is controlled as described above, there is no need to supply special pressure fluid from outside the system to control the opening and closing of the valve, and excessive energy consumption is avoided. Further, since the valve can be opened and closed only by locking in or extracting pressure water from the pressure chamber, automatic remote control is possible with simple piping. [Example] A typical example for carrying out the method of the present invention is shown in FIG. 1 and will be described. Drill holes in the wall of irrigation water channel 4,
The connecting portion 27 of the valve is supported and fixed via the packing 28. The connecting portion 27 is continuous to the water intake port 14 inside the valve. A tube-shaped hollow part is formed around the continuous part, and the outer case 29 is constructed so as to cover this hollow part. Further, a water outlet 15 for discharging water between the ridges is provided in the lower part of the outer case 29. A pressure chamber 20 is formed on the side opposite to the water passage 4 of the water intake 14 with a diaphragm lO in between, and an outer case 30 that surrounds a part of the pressure chamber 20 serves as the pressure chamber 20.
It is provided on the back side (left side in Fig. 1). The pressure chamber 20 is connected to the water intake side of the water passage through the pressure water introduction hole 16 and the tube 18, and a portion of the irrigation water always flows through this and is introduced into the pressure chamber 20 and communicated therewith. The pressure chamber 20 is also connected to a solenoid valve 25 via a pressure water outlet hole 17 and a control tube 26, and at the end of the solenoid valve 25 there is a groove (not shown) for circulating outflowing water back into irrigation water. figure)
is provided. FIG. 1 shows the valve in a stopped state, and the irrigation water flowing in the direction indicated by the arrow Wa is blocked by the diaphragm 10 at the water intake 14. At this time, the solenoid valve 25 is closed. A portion of the irrigation water enters the pressure chamber 20 as shown by the arrow Ca. In the diaphragm 10 shown in Figure 0, the area of the valve seat 31 is narrower than the cross-sectional area of the pressure chamber 20, so it is pressed from the pressure chamber 20 side. The area is larger than the suppression area from the water intake 14 side, and the force relationship between the left and right sides of the diaphragm 10 is superior to the pressure chamber 20 side, and the diaphragm 10 is shaped to block the water intake 14 as shown in the figure, and the air is released. Water is not supplied to the field from the water outlet 15. Next, when the solenoid valve 25 is opened, the water in the pressure chamber 20 is released and the pressure inside the pressure chamber 20 is released, and the irrigation water that continues to be introduced from the pressure introduction hole 16 passes from the pressure chamber 20 through the pressure water extraction hole. and flows out beyond the solenoid valve 25. Therefore, only the water pressure on the water intake port 14 side acts on the diaphragm lO, the diaphragm 10 is pushed back to the position shown by the broken line, and the water in the water passage is also discharged from the water discharge port 15 in the direction of the arrow wb force. [Example A] Using a valve as shown in FIG. 1 above, the time taken for the valve to change from open to closed and from closed to open was measured under the conditions shown below.

【設定条件】[Setting conditions]

通水管の圧力水頭:0.3m 連結チューブ1日の長さ: 1.711層制御用チュー
ブ26の長さ: 200 mm以上の設定条件において
電磁弁25を開としてバルブが閉→開状態となるまでの
応答時間を求めたところわずか2秒であり、一方電磁弁
25を閉としてバルブが開→閉状態になるまでの応答時
間は23秒であった。 本発明方法は第1図で示した装置に限定されず第5図に
示す様に小径シリンダ2と大径シリンダlを組み合わせ
、ピストン3a、3bを連結11で接続したものでもよ
く1本装置であっても圧力室20にかんがい用水を連通
させることによって圧力流体として利用され、バルブを
簡単に開閉させることができる。 [発明の効果] 本発明方法では、かんがい用水の水圧を利用してバルブ
の開閉を制御するので、特に圧縮空気等の流体を準備す
る必要がなく、従ってエンジンやモーター等の動力を使
用する必要がなくなった。 またバルブ内に設けた圧力室へのかんがい水の一部の密
封・抜き出しするだけの操作によってバルブの開閉が行
なえるので遠隔操作が容易に行なえる様になった。その
為本発明方法を用いることによりうね間かんがいの完全
自動遠陳操作が安全かつ確実に行なえる様になった。
Water pipe pressure head: 0.3 m Length of connecting tube per day: 1.7 Length of 11-layer control tube 26: 200 mm or more When the solenoid valve 25 is opened, the valve changes from closed to open. When the response time was calculated, it was only 2 seconds, and on the other hand, the response time from closing the electromagnetic valve 25 to changing the valve from open to closed was 23 seconds. The method of the present invention is not limited to the apparatus shown in FIG. 1, but may be a combination of a small-diameter cylinder 2 and a large-diameter cylinder 1 as shown in FIG. Even if there is water, it is used as a pressure fluid by communicating irrigation water to the pressure chamber 20, and the valve can be easily opened and closed. [Effects of the Invention] In the method of the present invention, since the water pressure of irrigation water is used to control the opening and closing of the valve, there is no need to prepare fluid such as compressed air, and therefore there is no need to use power from an engine or motor. is gone. Additionally, the valve can be opened and closed simply by sealing and drawing out a portion of the irrigation water from the pressure chamber provided within the valve, making remote control easier. Therefore, by using the method of the present invention, it has become possible to safely and reliably carry out fully automatic long-distance irrigation between furrows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為の代表的な実施例を示
す断面図、第2図は従来のうね聞かんがい方法を示す説
明図、第3図は従来のかんがい方法の土壌含水分布を示
す説明図、第4図は従来の空気稼動型ダイヤフラム式バ
ルブを示す断面図、第5図は本発明方法を行なう為の他
の実施例を示す説明図である。 1・・・大径シリンダ   ?・・・小径シリンダ3a
、3b・・・ピストン   4・・・通水路5・・・水
位線      6・・・うね7・・・サイホン   
  8・・・堰9・・・ダイヤプラム式バルブ 10・・・ダイヤフラム   11・・・連結12・・
・ストッパ     14・・・取水口15・・・放水
口      1B・・・圧力導入孔17・・・圧力抜
出孔    18・・・連結チューブ19・・・分岐バ
イブ    20・・・圧力室21・・・弁棒    
   22・・・空気導入孔23・・・パツキン   
  24・・・弁座25・・・電磁弁      2B
・・・制御用チューブ27・・・接続部      2
8・・・パツキン29・・・外部ケース    30・
・・外側ケース31・・・弁座 第3図 第5図 ム
Figure 1 is a cross-sectional view showing a typical example for carrying out the method of the present invention, Figure 2 is an explanatory diagram showing the conventional ridge irrigation method, and Figure 3 is the soil moisture distribution of the conventional irrigation method. FIG. 4 is a sectional view showing a conventional air-operated diaphragm valve, and FIG. 5 is an explanatory view showing another embodiment for carrying out the method of the present invention. 1...Large diameter cylinder? ...Small diameter cylinder 3a
, 3b... Piston 4... Water passage 5... Water level line 6... Ridge 7... Siphon
8... Weir 9... Diaphragm valve 10... Diaphragm 11... Connection 12...
・Stopper 14...Water intake 15...Water outlet 1B...Pressure introduction hole 17...Pressure extraction hole 18...Connection tube 19...Branch vibe 20...Pressure chamber 21...・Valve stem
22...Air introduction hole 23...Packskin
24... Valve seat 25... Solenoid valve 2B
... Control tube 27 ... Connection part 2
8... Packing 29... External case 30.
... Outer case 31 ... Valve seat Fig. 3 Fig. 5 M

Claims (1)

【特許請求の範囲】[Claims] かんがい用水の供給流路から分岐された放水部に、制御
用圧力水の導入・放出によってかんがい用水の供給を断
続するバルブを取り付け、かんがい用水の一部を前記バ
ルブの圧力室内に圧入して圧力室側と取水口側の押圧面
積差によって生じる圧力差でバルブを閉鎖状態とし、且
つ前記圧力室内の圧力水を抜き出すことによってバルブ
を開放状態とすることを特徴とするかんがい用バルブの
開閉制御方法。
A valve that cuts off the supply of irrigation water by introducing and releasing control pressure water is attached to the water discharge part branched from the irrigation water supply channel, and a portion of the irrigation water is pressurized into the pressure chamber of the valve to increase the pressure. A method for controlling the opening and closing of an irrigation valve, characterized in that the valve is closed by a pressure difference caused by a pressure area difference between the chamber side and the water intake side, and the valve is opened by drawing out the pressure water in the pressure chamber. .
JP3499185A 1985-02-23 1985-02-23 Open/close control method of irrigation valve Pending JPS61197862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3499185A JPS61197862A (en) 1985-02-23 1985-02-23 Open/close control method of irrigation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3499185A JPS61197862A (en) 1985-02-23 1985-02-23 Open/close control method of irrigation valve

Publications (1)

Publication Number Publication Date
JPS61197862A true JPS61197862A (en) 1986-09-02

Family

ID=12429607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3499185A Pending JPS61197862A (en) 1985-02-23 1985-02-23 Open/close control method of irrigation valve

Country Status (1)

Country Link
JP (1) JPS61197862A (en)

Similar Documents

Publication Publication Date Title
JPS61197862A (en) Open/close control method of irrigation valve
US4858636A (en) Preset microscopic flow valve apparatus and method
US4673128A (en) Method and system for furrow irrigation
US3166034A (en) Sub-irrigating tool
US4121621A (en) Pilot operated flushing valve
US4577802A (en) Method and system for furrow irrigation
CN115289273A (en) Drip irrigation valve for fine planting
EP0036021A1 (en) Method and apparatus for soil irrigation
JP2000166402A (en) Water control system in hillside paddy field
CN218000802U (en) Irrigation seepage pipe
CN109006397A (en) A kind of intelligent lower embedding type agricultural irrigation pipeline based on infiltration water utilization
Haise et al. Automation of surface irrigation systems
SU1219011A1 (en) Dropper
SU1482613A1 (en) Pulsed water outlet
SU596191A1 (en) Closed watering system
RU2298314C2 (en) Drop irrigation apparatus
CN211378798U (en) Sprinkler capable of assisting in fertilization
CN209768212U (en) Fertigation auxiliary device
CN214593319U (en) Full-automatic irrigation system for side slope breeding
CN208956592U (en) A kind of interval internally-inlaid patch drip irrigation pipe
RU1806555C (en) Watering plant
SU1561909A1 (en) Irrigation pipeline water outlet
CN208047578U (en) The current stabilization multi beam that drop arrow is provided with flow control structure integrates drip irrigation pipe
JPS61250215A (en) Underground irrigating drain pipe line in farming land with tilled ground and combined culvert
SU1045866A1 (en) Self-setting coupling for sprinkling wheeled pipeline