JPS61195903A - Manufacture of amorphous molded body - Google Patents

Manufacture of amorphous molded body

Info

Publication number
JPS61195903A
JPS61195903A JP3726185A JP3726185A JPS61195903A JP S61195903 A JPS61195903 A JP S61195903A JP 3726185 A JP3726185 A JP 3726185A JP 3726185 A JP3726185 A JP 3726185A JP S61195903 A JPS61195903 A JP S61195903A
Authority
JP
Japan
Prior art keywords
pressure
amorphous
temperature
crystallization temperature
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3726185A
Other languages
Japanese (ja)
Inventor
Yukihisa Takeuchi
幸久 竹内
Makoto Takagi
誠 高木
Toru Imura
井村 徹
Masafumi Senoo
妹尾 允史
Norihito Kawamura
能人 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3726185A priority Critical patent/JPS61195903A/en
Priority to EP86102349A priority patent/EP0196448A1/en
Publication of JPS61195903A publication Critical patent/JPS61195903A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a massive amorphous molded body having extremely high density and amorphism when powder of an amorphous substance is pressurized and heated to form a molded body, by specifying the temp. under an extremely high pressure. CONSTITUTION:The crystallization temp. Tx of an amorphous substance rises in dependence on pressure. Powder of the amorphous substance is pressurized to an extremely high pressure (p) and heated to a temp. between >90% of the temp. Tx under ordinary pressure and a temp. below the temp. Tx(p) under the pressure (p) to obtain a massive molded body. The preferred extremely high pressure (p) is >=0.2GPa.

Description

【発明の詳細な説明】 (産業上の利用分野)  ” 本発明は、塊状(バルク状)の非晶質成形体の製造方法
に関するもので、この成形体は、非晶質特有の利点−保
磁力が小さく最大透磁率が大きく、また比抵抗が大きい
等の利点を持っているため磁性材料として用いて有効で
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a bulk amorphous molded product, which has advantages unique to amorphous material: It has advantages such as low magnetic force, high maximum permeability, and high specific resistance, so it is effective when used as a magnetic material.

(従来の技術) 金属または合金、半導体、誘電体等の非晶質物質は、従
来の長距離秩序(Long Range 0rder)
を持らた結晶質とは根本的に異なる無秩序状態の原子構
造を持っているので、結晶質物質では得ることが出来な
い種々の特有な性質、例えば高硬度と高強度、高透磁率
性、高耐食性等の性質を有しており、その性質を利用し
て種々の分野で応用研究がなされている。
(Prior art) Amorphous materials such as metals, alloys, semiconductors, dielectrics, etc. have conventional long range order.
Because it has a disordered atomic structure that is fundamentally different from crystalline materials, it has various unique properties that cannot be obtained with crystalline materials, such as high hardness and strength, high magnetic permeability, It has properties such as high corrosion resistance, and applied research is being conducted in various fields using this property.

一般に非晶質物質は、溶解した金属、合金等を急速に冷
却させて製造する方法−液体急冷法によって製造されて
いる。この液体急冷法の代表的なものを挙げると、(1
)薄帯を製造する単ロール法、又ロール法、遠心急冷法
、伐)細線を製造するテーラ−法、流動液中紡糸法等、
(3)粉末を製造するスプレー法、キャビチーシラン法
等、がある。
Generally, amorphous materials are manufactured by a liquid quenching method, which is a method in which molten metals, alloys, etc. are rapidly cooled. Typical examples of this liquid quenching method are (1
) Single roll method for producing thin strips, roll method, centrifugal quenching method, cutting) Taylor method for producing thin wire, fluidized liquid spinning method, etc.
(3) There are spray methods, cavity silane methods, etc. for producing powder.

(発明が解決しようとする問題点) ところが、これらの方法によって製造される非晶質物質
は、せいぜい数十もしくは数百μm程度の厚さの薄帯(
リボン)、数十もしくは数百μm程度の粒径の粉末、細
線であるため極めて限られた小型の用途にのみしか利用
されていない。
(Problems to be Solved by the Invention) However, the amorphous materials produced by these methods are thin ribbons (at most several tens or hundreds of μm thick).
Because they are powders and thin wires with a particle size of several tens or hundreds of micrometers, they are used only in extremely limited small-scale applications.

そこで近年、広範な用途に応用するために非晶質物質を
塊状に成形する方法が研究されているものの、非晶質物
質は硬度が高い或いは加熱すると結晶状態に移行すると
いう欠点を持つため、塊状の非晶質成形体を製造するの
は非常に困難性をともなうものである。
Therefore, in recent years, research has been conducted into methods of forming amorphous materials into blocks for a wide range of applications. It is extremely difficult to produce bulk amorphous molded bodies.

例えば、筒状金属容器に非晶質物質の粉末を充填し、そ
の容器の周囲から爆薬の爆発によって圧接して非晶質成
形体を得る方法(特開昭59−7433号)が考案され
ている。しかし、その粉末の硬度が結晶質と比較して高
いために、高エネルギーの衝撃圧力を均一に付加しない
と、均一で一体の成形体が得られず、又圧力が高すぎる
と非晶質が結晶化する、クランク、切裂、巣が発生する
等の多くの問題点を有している。更に上記方法によって
工業的に生産する場合はコスト的にも高いものになって
しまう。
For example, a method has been devised (Japanese Unexamined Patent Publication No. 7433/1983) to obtain an amorphous compact by filling a cylindrical metal container with powder of an amorphous material and pressing the container with explosives from around the container. There is. However, because the hardness of the powder is higher than that of crystalline powder, it is difficult to obtain a uniform and integral molded product unless high-energy impact pressure is applied uniformly, and if the pressure is too high, the amorphous powder It has many problems such as crystallization, cracking, cracking, and formation of cavities. Furthermore, when produced industrially by the above method, the cost becomes high.

また、薄帯の非晶質物質を接触させるとともに、特定の
圧力(少なくとも0.006Gpa)と結晶化温度(T
x)以下(結晶化温度の約70〜90%の温度)で圧縮
するーいわゆるホットプレス成形によって非晶質の塊状
成形体を得る方法(特開昭59−28501.特開昭5
9−28502)、或いは非晶質物質の薄帯が互いに接
触する関係に置き、特定の圧力とガラス転移温度(Tg
)よりも25℃近い温度からガラス転移温度(Tg)よ
りも約15℃高い温度までの範囲の温度でホットプレス
して一体化する方法(米国特許第4.298,382号
)が考案されている。即ち非晶質物質においても結晶質
物質と同様に、加圧加熱による拡散接合−ホットプレス
成形が有効であると考えられている。しかし、非晶質物
質が結晶化温度(Tx)以上もしくはその付近の温度(
結晶化温度(Tx℃)の90%程度以上)まで加熱され
−と、ホットプレス成形中にその非晶質の一部もしくは
全部が結晶化してしまうという重大な問題点があるので
、従来は上述の様に結晶化温度(Tx)未満の温度まで
加熱して成形体を得るように試みがなされている。この
ため、上述の様な製造方法によって得られる成形体は、
理論密度の90%以下の密度即ち成形体中に10%以上
の空孔が存在している。従って、非晶質物質の薄帯と比
較して磁気特性が劣化する、もしくは従来から用いられ
ている磁性材料のパーマロイ等と比較しても非晶質特有
の高透磁率性が発揮されないという問題を有している。
Also, while bringing the ribbon of amorphous material into contact, a specific pressure (at least 0.006 Gpa) and crystallization temperature (T
x) Compressing at a temperature below (approximately 70 to 90% of the crystallization temperature) - a method of obtaining an amorphous block-shaped body by so-called hot press molding (JP-A-59-28501; JP-A-5
9-28502), or by placing ribbons of amorphous material in contact with each other at a specific pressure and glass transition temperature (Tg).
A method (U.S. Pat. No. 4,298,382) has been devised in which hot pressing is carried out at temperatures ranging from 25° C. above the glass transition temperature (Tg) to about 15° C. above the glass transition temperature (Tg). There is. That is, diffusion bonding and hot press molding using pressure and heating are considered to be effective for amorphous materials as well as for crystalline materials. However, the temperature (
Conventionally, there is a serious problem in that some or all of the amorphous material crystallizes during hot press molding when heated to about 90% or more of the crystallization temperature (Tx℃). Attempts have been made to obtain a molded body by heating to a temperature below the crystallization temperature (Tx). Therefore, the molded product obtained by the above-mentioned manufacturing method is
The density is 90% or less of the theoretical density, that is, 10% or more of pores are present in the molded body. Therefore, the problem is that the magnetic properties deteriorate compared to thin ribbons of amorphous materials, or that the high magnetic permeability characteristic of amorphous materials is not exhibited even when compared to conventionally used magnetic materials such as permalloy. have.

そこで本発明者らは、上記の様な加圧加熱による拡散接
合を利用し、粉末の非晶質物質を塊状成形体に成形する
ことを試みたところ、その加熱温度が結晶化温度(Tx
)付近では非晶質の一部もしくは全部が結晶化してしま
い良好な非晶質の成形体が得られず、又逆にその温度が
結晶化温度CTx)より十分低い場合は粉末が強固にか
つ−体に接合されず成形体が脆く簡単にこわれてしまう
ものであった。
Therefore, the present inventors attempted to mold a powdery amorphous material into a block-shaped compact by using diffusion bonding using pressure heating as described above, and found that the heating temperature was higher than the crystallization temperature (Tx
), part or all of the amorphous material crystallizes, making it impossible to obtain a good amorphous compact; conversely, if the temperature is sufficiently lower than the crystallization temperature CTx), the powder becomes solid and - The molded product was not bonded to the body and was brittle and easily broken.

その後、本発明者らは種々の理論的検討及び実験を繰り
返したところ、超高圧力下(数Q p B mlQ’P
a程度)においては非晶質物質の結晶化温度(Tx)が
上昇するという現象に着目し、その現象を塊状成形体の
製造方法に利用することによって良好の塊状の非晶質成
形体が得られるであろうという考えに至ったのである。
After that, the inventors repeated various theoretical studies and experiments, and found that under ultra-high pressure (several Q p B mlQ'P
In case a), by focusing on the phenomenon that the crystallization temperature (Tx) of the amorphous substance increases and utilizing this phenomenon in the method for producing a block-shaped compact, a good block-shaped amorphous compact can be obtained. I came to the idea that it would be possible.

ところが、上記現象について、非晶質物質の結晶化温度
(Tx)が約1Gpaあたり約10℃上昇するというわ
ずかな報告はある(日本金属学会会報、第21巻、第9
号、19B2:W、に、Wang、H,Iwasaki
  and  K、Fukamlchi:J、Mata
r、Set、、15  (1980)、2701)もの
の、それらの報告においては非晶質物質の薄帯にのみ言
及されているだけで粉体について研究はなされていない
し、また塊状の非晶質成形体を製造する場合の接合強度
及びその密度については解明されていなかった。
However, regarding the above phenomenon, there is a small report that the crystallization temperature (Tx) of an amorphous material increases by about 10°C per about 1 Gpa (Bulletin of the Japan Institute of Metals, Vol. 21, No. 9).
No., 19B2: W, ni, Wang, H, Iwasaki.
and K, Fukamlchi: J, Mata.
r, Set, 15 (1980), 2701), but those reports only mention thin strips of amorphous materials and do not study powders, and they also do not investigate bulk amorphous moldings. The bonding strength and density when manufacturing the body had not been elucidated.

そこで本発明者らは、非晶質物質の粉体を超高圧力(数
Gpa程度)の条件下で、常圧の結晶化温度(Tx)よ
りも高い温度にまで加熱して成形したところ、従来では
非晶質が全部もしくは一部結晶化してしまった結晶化温
度(Tx)以上もしくはその90%以上の温度において
も、非晶質の状態を維持したまま緻密に(少なくとも密
度90%)かつ一体に成形された塊状の非晶質成形体を
得ることができることを発見し本発明に到達したもので
ある。
Therefore, the present inventors formed the powder of an amorphous substance by heating it to a temperature higher than the crystallization temperature (Tx) at normal pressure under conditions of ultra-high pressure (about several Gpa). Conventionally, even at temperatures above the crystallization temperature (Tx) or above 90% of the crystallization temperature (Tx) at which all or part of the amorphous material crystallizes, it remains dense (at least 90% density) and remains amorphous. The present invention was achieved by discovering that it is possible to obtain a lump-like amorphous molded body that is integrally molded.

(問題点を解決するための手段) 本発明は、上記の点に鑑みてなされるものであって成形
後の密度が極めて高く、かつ非晶質の特性を持つ塊状の
非晶質成形体を製造する製造方法を提供す為ことを目的
とする。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned points, and the present invention has been made in view of the above-mentioned points. The purpose is to provide a manufacturing method for manufacturing.

即ち本発明は、圧力に依存して非晶質物質の結晶化温度
(Tx)が上昇することを利用して、非晶質物質の粉体
から塊状成形体を得るものであ、うて、超高圧力(p)
下において、常圧における非晶質物質の結晶化温度(T
X)の90%を越える温度で、かつその圧力(p)にお
ける非晶質物質の結晶化温度(Tx (p))未満で、
非晶質物質の粉体を加圧加熱して塊状の非晶質成形体を
製造することを特徴とする。
That is, the present invention utilizes the fact that the crystallization temperature (Tx) of an amorphous material increases depending on pressure to obtain a lump-shaped compact from a powder of an amorphous material. Ultra high pressure (p)
Below, the crystallization temperature (T
X) and below the crystallization temperature (Tx (p)) of the amorphous material at its pressure (p),
It is characterized by producing a lumpy amorphous molded body by pressurizing and heating powder of an amorphous substance.

ここで非晶質物質の粉体とは、金属または合金、半導体
、誘電体等の非晶質物質を小さく粉砕したものを言い、
粉体はスプレー法、キャビチーシラン法、回転環水中噴
出法等によって製造されたもの、又はロール法等によっ
て製造される非晶質物質の薄帯を小さく粉砕したものを
利用する。またいかなる組成の非晶質物質も本発明方法
により塊状の成形体を製造することができるが、成形体
に強磁性が望まれる場合の組成は、Fe系及びC。
Here, amorphous substance powder refers to amorphous substances such as metals, alloys, semiconductors, dielectrics, etc. that have been pulverized into small pieces.
The powder used is one produced by a spray method, a cavity silane method, a rotating ring water injection method, or the like, or a thin ribbon of an amorphous material produced by a roll method or the like is pulverized into small pieces. Further, although amorphous materials of any composition can be used to produce bulk molded bodies by the method of the present invention, when ferromagnetic properties are desired in the molded bodies, the compositions are Fe-based and C.

系から適当なものを選べば良い。Just choose the appropriate one from the system.

本発明製造方法において、加熱温度を、常圧における非
晶質物質の結晶化温度(Tx)の90%を越える温度で
、かつ超高圧力(p)下における非晶質物質の結晶化温
度(Tx(p、))未満と限定した理由は、常圧の結晶
化温度(Tx)の90%以下の温度では製造された成形
体の接合体が悪くもろくぐずれてしまうという問題があ
る。また、超高圧力における非晶質物質の結晶化温度(
Tx(p))以上の温度では製造された成形体が結晶化
してしまうためである。
In the production method of the present invention, the heating temperature is set to a temperature exceeding 90% of the crystallization temperature (Tx) of the amorphous material under normal pressure, and the crystallization temperature (Tx) of the amorphous material under ultra-high pressure (p). The reason why it is limited to less than Tx (p, )) is that there is a problem that at a temperature of 90% or less of the crystallization temperature (Tx) at normal pressure, the bonded body of the manufactured molded body becomes brittle and crumbles. In addition, the crystallization temperature of amorphous materials at ultra-high pressure (
This is because the manufactured molded body will crystallize at a temperature higher than Tx(p)).

また超高圧力の条件は0.2 G p a以上が好まし
い、これは圧力が0.2 G p a未満では、その成
形体は空孔が多く接合性が悪いので外部応力を加えると
脆くくずれてしまうためである。
In addition, the ultra-high pressure condition is preferably 0.2 Gpa or higher, because if the pressure is less than 0.2 Gpa, the molded product will have many pores and poor bonding properties, so it will become brittle and collapse when external stress is applied. This is because the

また、密度95%以上に良好に接合した成形体を得るに
は、圧力は少なくとも1Gpaで、かつ常圧の結晶化温
度(Tx)と同等もしくはそれ以上で、各圧力下の結晶
化温度(Tx)未満が好ましい。
In addition, in order to obtain a well-bonded molded body with a density of 95% or more, the pressure must be at least 1 Gpa, and the crystallization temperature (Tx) under each pressure must be equal to or higher than the crystallization temperature (Tx) at normal pressure. ) is preferred.

また、一層密度が高く、接合性の良い成形体を得るには
、その圧力(p)は高い方が良い、これは圧力(p)が
高い程、その圧力(p)下における結晶化温度(Tx 
(p))が上昇するため、より高温に加熱することが可
能とあるからである。
In addition, in order to obtain a molded product with higher density and better bondability, the higher the pressure (p), the better the crystallization temperature (p) under that pressure (p). Tx
(p)) increases, making it possible to heat the material to a higher temperature.

しかし、実際上10Gpa以上の圧力を発生する装置は
大型になるので、10Gpa未満圧力が好ましいであろ
う、さらにその形体の密度が95%以上のものを得る場
合でかつ工業的に生産する場合は、圧力が低い方が良い
ので、その圧力は数Gpa、即ち1Gpa以上3Gpa
未満ノ圧力が好ましいと考えられる。
However, in practice, a device that generates a pressure of 10 Gpa or more would be large, so a pressure of less than 10 Gpa would be preferable. Furthermore, if the density of the shape is 95% or more and it is to be produced industrially, , the lower the pressure, the better, so the pressure should be several Gpa, that is, 1 Gpa or more and 3 Gpa.
It is believed that pressures of less than or equal to

(実施例) 以下本発明の製造方法の実施例を説明する前に、■、超
高圧力(p)下における結晶化温度(Tx (p) ) (al結晶化温度(Tx)、(b)高温高圧発生装置、
(C)測定用圧力セル、(d)測定結果、について説明
する。
(Example) Before explaining the examples of the manufacturing method of the present invention, (1) crystallization temperature (Tx (p)) (al crystallization temperature (Tx) under ultra-high pressure (p), (b) High temperature and high pressure generator,
(C) Measurement pressure cell and (d) Measurement results will be explained.

■、超高圧力(p>下における結晶化温度(Tx(p)
) (a)結晶化温度(Tx) 非晶質物質に関して、結晶化温度(Tx)は一般に結晶
化の開始が起こる温度と定義され、差動走査熱量計によ
り、熱容量対温度曲wA(示差熱分析曲線)の様相の変
化が認められる点として測定・されるが、明細書中Iに
おいて記載する結晶化温度(Tx)は、非晶質物質が結
晶化を開始するときに電気抵抗の急激に低下する現象を
利用して測定したもので、電気抵抗対温度曲線にてその
電気抵抗値が低下開始する温度を結晶化部It(Tx)
とする。
■, crystallization temperature (Tx(p) under ultra-high pressure (p>
) (a) Crystallization Temperature (Tx) For amorphous materials, the crystallization temperature (Tx) is generally defined as the temperature at which the onset of crystallization occurs and is measured by differential scanning calorimetry using the heat capacity versus temperature curve wA (differential thermal The crystallization temperature (Tx) described in I in the specification is the point at which the electrical resistance suddenly changes when an amorphous substance starts crystallizing. The temperature at which the electrical resistance value starts to decrease in the electrical resistance vs. temperature curve is the temperature at which the crystallized part It(Tx)
shall be.

偽)高温高圧力発生装置 高圧力発生装置は、15X15X15mm3の圧力室9
をもつ立方型加圧装置(CIA−15)であり、第1図
にその構造を示す、立方体を作る6個のアンビル1は、
−辺15mmの正方形頂面をもち、高さ60 rn m
 s底面直径60mmのタングステンカーバイド(イゲ
タロイD−1)からなり、これを外径IQ2mmのII
 (SNCM−11)のリングで保持しである。高速度
II (SKI−3)の耐圧板が当てられている。6個
のアンビルlのうち上面及び下面の2個は、それぞれ図
中の5及び6のガイドブロックに固定され、こ−のガイ
ドブロック5.6の四方の側面には傾角45度の摺動面
が設けられている。また残り4個の側面アンビル1もそ
れぞれ傾角45度の摺動斜面をもつ側面アンビル支持台
2に固定されている。この摺動斜面を利用した「くさび
」効果で、上下方向の一軸荷重を分力しながら、側面4
個および上下面2個の合計6個のアンビルlはすべて同
期して圧力室9中心へ向かって進む。
False) High temperature and high pressure generator The high pressure generator has a pressure chamber 9 of 15 x 15 x 15 mm3.
It is a cubic type pressurizing device (CIA-15), the structure of which is shown in Figure 1. The six anvils 1 forming a cube are:
- Square top surface with sides of 15 mm and height of 60 rn m
s Made of tungsten carbide (Igetalloy D-1) with a bottom diameter of 60 mm, which is made of II with an outer diameter of IQ 2 mm.
It is held by a ring of (SNCM-11). A high speed II (SKI-3) pressure plate is applied. The upper and lower surfaces of the six anvils L are fixed to guide blocks 5 and 6 in the figure, respectively, and the four sides of the guide blocks 5 and 6 are provided with sliding surfaces with an inclination angle of 45 degrees. is provided. The remaining four side anvils 1 are also fixed to side anvil supports 2 each having a sliding slope with an inclination angle of 45 degrees. The "wedge" effect using this sliding slope allows the uniaxial load in the vertical direction to be applied to the side surface 4.
A total of six anvils L, two on the upper and lower surfaces, all move synchronously toward the center of the pressure chamber 9.

側面アンビル支持台2とガイドブロック5.6の摺動部
分は二硫化モリブデンとテフロンシートで潤滑が保たれ
ている。上下のガイドブロック5゜°6は直径65mm
の4本のガイドピン7で中心位置が合せられている。こ
の加圧装置を最大荷重12MNの定荷重装置つき耐圧試
験機で駆動する。
The sliding parts of the side anvil support 2 and the guide block 5.6 are kept lubricated by molybdenum disulfide and Teflon sheets. Upper and lower guide blocks 5°°6 have a diameter of 65mm
The center positions are aligned using four guide pins 7. This pressurizing device is driven by a pressure tester equipped with a constant load device with a maximum load of 12 MN.

試料の加熱方法は、ホール素子とサイリスタを使った最
大出力3KWの定電力制御方式で、後述する圧力セル1
0内に組込んだ円筒状のカーボンヒータによる抵抗発熱
である。加熱電流は第1図の電流端子板3から上下のア
ンビル1を経て通電される。加熱中におけるアンビル温
度の上昇を避けるために、上下ガイドブロック5,6の
通水路4を通して冷却水を循環させ、上下のアンビル1
の底部を冷却する。
The sample heating method uses a constant power control method with a maximum output of 3KW using a Hall element and a thyristor.
This is resistance heat generated by a cylindrical carbon heater built into the 0. The heating current is applied from the current terminal plate 3 shown in FIG. 1 through the upper and lower anvils 1. In order to avoid an increase in the anvil temperature during heating, cooling water is circulated through the passageways 4 of the upper and lower guide blocks 5 and 6, and the upper and lower anvils 1
Cool the bottom of the.

(C)測定用圧力セル(10) 前述(a)高温高圧力発生装置の圧力室9に収納されて
非晶質物質を加熱加圧する圧力セル(10)について第
2図に基づいて説明する。
(C) Measurement Pressure Cell (10) The pressure cell (10), which is housed in the pressure chamber 9 of the high-temperature, high-pressure generator (a) and heats and pressurizes an amorphous substance, will be described with reference to FIG.

圧力媒体11には、1辺20mmの立方体のパイロフィ
ライトを用い、パイロフィライトは500℃で1時間焼
成したものである。この圧力媒体11内部に、円筒状カ
ーボンヒータ12(外径8mm、内径?mm、長さ10
mm)と、これに上下アンビル1から電流を流すための
上下銅リング13(外径7mm、内径5mm、長さ4.
7mm)及び円盤杖ステンレス鋼板14(直径8mm、
jj:さ0.3mm)がはめ込まれている。カーボンヒ
ータ12内部には、円筒状窒化硼素15(BN)(外径
7mm、内径5mm、長さ10mm)と上中下3個の円
柱状窒化硼素16.17.18 (外径5 m m s
各々の長さ5.0 、2.5 、2.5 m m )が
はめ合されている。この円柱状窒化硼素(BN)16及
び17の間に試料19が挿入されて加圧される。ここで
使用されるカーボンヒータ12、窒化硼素15.16.
17.18は、予め真空炉中で1000℃、5時間焼成
してその内部の不純物・ガスを除去したものを用いる。
For the pressure medium 11, a cubic pyrophyllite with a side of 20 mm was used, and the pyrophyllite was fired at 500° C. for 1 hour. Inside this pressure medium 11, a cylindrical carbon heater 12 (outer diameter 8 mm, inner diameter ? mm, length 10
mm), and upper and lower copper rings 13 (outer diameter 7 mm, inner diameter 5 mm, length 4.
7mm) and disc cane stainless steel plate 14 (diameter 8mm,
jj: 0.3 mm) is fitted. Inside the carbon heater 12, there are cylindrical boron nitride 15 (BN) (outer diameter 7 mm, inner diameter 5 mm, length 10 mm) and three cylindrical boron nitride 16, 17, and 18 (outer diameter 5 mm s) at the top, middle, and bottom.
Each length 5.0 mm, 2.5 mm, 2.5 mm) are fitted. A sample 19 is inserted between the cylindrical boron nitride (BN) 16 and 17 and pressurized. Carbon heater 12, boron nitride 15, 16, used here.
Items 17 and 18 were previously fired at 1000° C. for 5 hours in a vacuum furnace to remove impurities and gases therein.

これは、加熱加圧過程でその内部の不純物・ガスが浸み
出すことによって、電気絶縁が低下することを防止する
ためである。
This is to prevent electrical insulation from deteriorating due to leakage of impurities and gases inside during the heating and pressurizing process.

4本のリード&1I2Gは、純AI、%I (Jone
 refining、日本真空製、直径0.35mm)
を使用し、試料19の電気抵抗測定が可能な用に4端子
形に配線する。これらのリード線20は電圧及び電流リ
ード線として第1図に示した側面の4個のアンビル1に
接続する。熱電対21は、窒化硼素17及び18の間に
挿入したPR熱電対(pt−pt13%Rh)を用いる
。尚、リード線20、熱電対21は、カーボンヒータ1
2との1IIA&tのため、上述の同様に焼成した窒化
硼素の細管21を通して導出される。また上述の実験は
再現性を高めるため、圧力セルの各構成要素の工作精度
は上0.02mmを保った。また、圧力セル10とアン
ビル1との摩擦を大きくするとともに、圧力発生効率と
再現性を向上させるために、圧力セル10の表面にベン
ガラ(ヘマタイト)を薄く塗布した。
4 leads & 1I2G are pure AI, %I (Jone
refining, made by Japan Vacuum, diameter 0.35mm)
The sample 19 is wired in a four-terminal configuration so that the electrical resistance of the sample 19 can be measured. These leads 20 are connected as voltage and current leads to the four side anvils 1 shown in FIG. As the thermocouple 21, a PR thermocouple (pt-pt13%Rh) inserted between boron nitride 17 and 18 is used. Note that the lead wire 20 and thermocouple 21 are connected to the carbon heater 1.
2 and 1IIA&t, it is led out through the similarly calcined boron nitride capillary 21 described above. Furthermore, in order to improve reproducibility in the above experiment, the machining accuracy of each component of the pressure cell was maintained at 0.02 mm. Further, in order to increase the friction between the pressure cell 10 and the anvil 1 and to improve pressure generation efficiency and reproducibility, a thin layer of red iron (hematite) was applied to the surface of the pressure cell 10.

ld)測定結果 上述(al高温高圧発生装置の圧力室9に上述(′b)
の圧力セル10を入れて電気抵抗対温度(上昇温割合2
℃/m1n)を測定し、圧力(p)における結晶化温度
(Tx (p))を測定した結果を、Q印として第3図
に示す、第3図は試料19として、Fe?sB+ts 
l+*の非晶質金属の薄体(厚さ20μm、長さ5 m
 m 、巾3mm)を用いた。尚、熱電対の高圧力下に
おける測定誤差範囲も併記する。
ld) Measurement results as described above (al) In the pressure chamber 9 of the high temperature and high pressure generator ('b)
Electrical resistance vs. temperature (temperature rise rate 2
℃/m1n) and the crystallization temperature (Tx (p)) at pressure (p) are shown in FIG. 3 as Q marks. sB+ts
l+* amorphous metal thin body (thickness 20 μm, length 5 m
m, width 3 mm) was used. The measurement error range of the thermocouple under high pressure is also listed.

第3図からも分かる様に、非晶質金属の結晶化温度(T
x)は圧力(p)に依存して上昇し、その割合ΔTx/
Δp”110℃/Gpa程度である。
As can be seen from Figure 3, the crystallization temperature (T
x) increases depending on the pressure (p), and the rate ΔTx/
Δp” is approximately 110° C./Gpa.

即ち、常圧下での結晶化温度(TX)は第3図より約5
07℃であるが、例えば2Gpaの圧力下では約530
℃、5.4 G p aの圧力下ぞは約560℃となる
。従って、超高圧力(p)下において非晶質物質は、常
圧下の結晶化温度(Tx)以上の温度でも結晶化せずに
、非晶質状態を保つことになる。この現象を利用すると
、高圧力(p)下においては、常圧下の結晶化温度(T
x)付近(結晶化温度(Tx)の90%の温度)あるい
は結晶化温度(Tx)以上でも、非晶質物質を結晶化さ
せることなく接合することが可能となる。
That is, the crystallization temperature (TX) under normal pressure is approximately 5
For example, under a pressure of 2 Gpa, it is about 530°C.
℃, the pressure under the pressure of 5.4 Gpa is about 560℃. Therefore, an amorphous substance under ultra-high pressure (p) does not crystallize and maintains an amorphous state even at a temperature higher than the crystallization temperature (Tx) under normal pressure. Using this phenomenon, under high pressure (p), the crystallization temperature (T
It becomes possible to bond an amorphous material without crystallizing it even at a temperature near x) (90% of the crystallization temperature (Tx)) or above the crystallization temperature (Tx).

■、非晶質成形体の製造方法 (a)製造用圧力セル30 非晶質成形体を成形製造するために用いた圧力セル30
を第4図に基づいて説明する。圧力セル30は第2図に
示した圧力セル10と基本的に同様の構成である。
■Method for manufacturing an amorphous molded body (a) Production pressure cell 30 Pressure cell 30 used to mold and manufacture an amorphous molded body
will be explained based on FIG. Pressure cell 30 has basically the same construction as pressure cell 10 shown in FIG.

圧力媒体11 (1辺29mmの立方体)内には、カー
ボンヒータ12(外径9mm、肉厚0.5mm。
A carbon heater 12 (outer diameter 9 mm, wall thickness 0.5 mm) is placed inside the pressure medium 11 (cube with a side of 29 mm).

長さ10mm)と、これに加熱電流を流すための上下の
銅リング13(外径8mm、肉厚0.5mm、長さ4.
5mm)及び銅板14(直径9mm、厚さ0.5mm)
、断熱材としてのパイロフィライト円柱11° (外径
7mm、長さ4.5 m m)が嵌め合せである。カー
ボンヒータ12の内部には、円筒状窒化硼素15(外径
3mm、肉厚1mm、長さ10mm)があり、この円筒
状窒化硼素15内に3つの円柱状窒化硼素31.32.
33 (外径6mm、各々の長さ2.5mm51.5m
m、2.5mm)が挿入される。そして、窒化硼素31
及び32の間の空間に、第1表〜第3表に示される組成
の粉末34(厚さ3.5mm)が充填される。また窒化
硼素32及び33の間には、!2図に示したものと同一
の熱電対21が設けられる。尚、上述の各構成要素は、
既に説明した圧力セル10と同一の材料、工作精度及び
熱処理等を行ったものである。
10 mm in length) and upper and lower copper rings 13 (outer diameter 8 mm, wall thickness 0.5 mm, length 4.
5mm) and copper plate 14 (diameter 9mm, thickness 0.5mm)
, a pyrophyllite cylinder 11° (outer diameter 7 mm, length 4.5 mm) as a heat insulating material is fitted. Inside the carbon heater 12, there is a cylindrical boron nitride 15 (outer diameter 3 mm, wall thickness 1 mm, length 10 mm), and within this cylindrical boron nitride 15, three cylindrical boron nitrides 31, 32.
33 (outer diameter 6mm, each length 2.5mm 51.5m
m, 2.5 mm) is inserted. And boron nitride 31
The space between and 32 is filled with powder 34 (thickness: 3.5 mm) having the composition shown in Tables 1 to 3. Moreover, between boron nitride 32 and 33,! A thermocouple 21 identical to that shown in FIG. 2 is provided. In addition, each of the above-mentioned components is
It is made of the same material, work precision, heat treatment, etc. as the pressure cell 10 already described.

上述の粉体34には、単ロール法によって作成された非
晶質物質の薄帯を小さく粉砕したフレーク状(密度7.
18、厚さ10〜50μ、長さ50〜200μ、巾IO
〜50μ)のもの、回転液中噴出法によって作成された
粒状(粒径5〜200μ)のものを用いた。
The above-mentioned powder 34 is in the form of flakes (density 7.
18, Thickness 10~50μ, Length 50~200μ, Width IO
-50μ) and granular particles (particle size 5 to 200μ) prepared by a rotating liquid injection method were used.

伽)製造方法 第1表〜第3表に示す組成及び形状め粉体を圧カセル3
0内に均一に充填する。ここでは外部から適当な振動を
加えて充填した。その後圧力セル30を前記高温高圧発
生装置の圧力室9に挿入し、所定の圧力まで加圧した状
態で、所定の温度の100℃下の温度まで20℃/ m
 i nの割合で加熱し、その後所定の温度まで瞬時に
(数秒で)加熱した。この所定の温度に達してから加圧
時間を成形時間とした。成形後、加熱電流を切ることに
よって急冷(平均冷却温度は約140℃/5ec)した
、急冷後、圧力を下げて成形体を取り出し、XvA回析
、電子線回折、高分解能78M観察を行って非晶質性を
確認し、いずれの検査によっても非晶質の存在が認めら
れたかったものを、非晶質であると判定して○印として
表に付記した。また密度はアルキメデス法に基づいて測
定し、その粉体と同一組成の非晶質物の薄帯の密度を比
較し、その割合を示した。硬度は、成形体の表面を数ケ
所測定したビッカース硬度の平均値である。接合性は、
上述の測定実験を行った際に成形体の表面を研摩した時
に、くずれたかどうか確°認するとともに光学顕微鏡に
よるm織観察を行って判定した。
佽)Manufacturing method Powder with the composition and shape shown in Tables 1 to 3 was placed in a press cassette 3.
Fill it evenly within 0. Here, filling was performed by applying appropriate vibrations from the outside. Thereafter, the pressure cell 30 is inserted into the pressure chamber 9 of the high temperature and high pressure generator, and while pressurized to a predetermined pressure, the pressure cell 30 is heated at 20 °C/m to a temperature 100 °C below the predetermined temperature.
It was heated at a rate of i n, and then heated instantaneously (in a few seconds) to a predetermined temperature. The pressurizing time after reaching this predetermined temperature was defined as the molding time. After molding, the molded product was rapidly cooled by turning off the heating current (average cooling temperature was approximately 140°C/5ec). After the rapid cooling, the pressure was lowered and the molded product was taken out and subjected to XvA diffraction, electron beam diffraction, and high-resolution 78M observation. Amorphousness was confirmed, and those for which the presence of amorphous was recognized by any test were determined to be amorphous and marked with an ○ mark in the table. In addition, the density was measured based on the Archimedes method, and the density of the powder was compared with that of an amorphous ribbon having the same composition, and the ratio was shown. The hardness is the average value of Vickers hardness measured at several locations on the surface of the molded body. The zygosity is
When the above-mentioned measurement experiment was carried out, it was determined whether the surface of the molded body was crushed when it was polished, and the m-weave was observed using an optical microscope.

尚、成形体の表面研摩はエメリー紙によって行った。Incidentally, the surface of the molded body was polished using emery paper.

(C)非晶質成形体 非晶質物質を加熱すると、特定の温度から結晶化が開始
すゐが、この結晶化過程は極めて複雑であり、結晶化温
度(Tx)は、温度とその保持時間に関係する。一般に
は、非晶質物質の結晶化温度(Tx)は、MS−1層(
非晶質物質中に均一核発生した微小(約30〜50人直
径程度)の結晶層が析出した準安定相)が現れる温度で
あり、その温度(TX)は保持時間によって変化し保持
時間が長くなるに従って結晶化温度(Tx)は低下し、
時間一温度一変態図(以下TTT図という)において、
結晶化温度(Tx)は右下がりの様子を示すことが知ら
れている。
(C) Amorphous molded object When an amorphous material is heated, crystallization begins at a specific temperature, but this crystallization process is extremely complex, and the crystallization temperature (Tx) depends on the temperature and its maintenance. related to time. Generally, the crystallization temperature (Tx) of an amorphous material is determined by the MS-1 layer (
This is the temperature at which a metastable phase (a metastable phase in which a minute crystal layer (approximately 30 to 50 people in diameter) with uniform nuclei generated in an amorphous material precipitates) appears, and the temperature (TX) changes depending on the holding time. As the length increases, the crystallization temperature (Tx) decreases,
In the time-temperature-transformation diagram (hereinafter referred to as TTT diagram),
It is known that the crystallization temperature (Tx) shows a downward slope.

一方、1.超高圧力(p)下における結晶化温度(Tx
 (p))  において既に説明した様に、超高圧力(
p)においては高圧(p)にともなって結晶化温度(T
x)が上昇することが確認された。また、これに基づい
て、■、非晶質成形体の製造方法 によって既に説明し
た方法によって非晶質成形体を製造したところ、第1表
〜第3表に示す結果が得られた。この結果を第7図〜第
9図にプロットし、非晶質性の有無の判定により、各圧
力(p)における結晶化温度(Tx)を決定すると、5
.4〜6Gpa程度の超高厚下において結晶化温度(T
x)が55〜60℃、1Gpaの超高圧下において結晶
化温度(Tx)が約lθ℃上昇している。即ち結晶化温
度(TX)は、保持時間に依存するものの、所定の保持
・成形時間においては10℃/Gpaの割合で上昇して
いることが確認される。
On the other hand, 1. Crystallization temperature (Tx) under ultra-high pressure (p)
As already explained in (p)), ultra-high pressure (
At p), the crystallization temperature (T
It was confirmed that x) increased. In addition, based on this, an amorphous molded body was manufactured by the method already explained in Section (1), Manufacturing method of an amorphous molded body, and the results shown in Tables 1 to 3 were obtained. The results are plotted in Figures 7 to 9, and the crystallization temperature (Tx) at each pressure (p) is determined by determining the presence or absence of amorphous property.
.. The crystallization temperature (T
x) is 55 to 60°C, and the crystallization temperature (Tx) is increased by about lθ°C under an ultra-high pressure of 1 Gpa. That is, although the crystallization temperature (TX) depends on the holding time, it is confirmed that the crystallization temperature (TX) increases at a rate of 10° C./Gpa at a predetermined holding/molding time.

第1表から明らかな様に本発明の製造方法に基づいて成
形された成形体は−1〜10は、何れも密度が90%以
上で、高分解能78M観察で格子像は観察されず、かつ
X線回折・電子回折では各々非晶質特有のハローパター
ン、ハローリングのみが観察された良好な非晶質であっ
て、その接合性も良好で硬度はビッカース硬度で830
〜91Oの高硬度であった。
As is clear from Table 1, the molded bodies molded according to the manufacturing method of the present invention -1 to 10 all have a density of 90% or more, no lattice image is observed in high-resolution 78M observation, and In X-ray diffraction and electron diffraction, only halo patterns and halo rings characteristic of amorphous materials were observed.It is a good amorphous material, and its bondability is also good, with a hardness of 830 on the Vickers scale.
It had a high hardness of ~91O.

即ち、この組成は常圧で結晶化温度(TX)が510℃
程度(保持時間は数分)であるのに、それ以上の温度5
50℃、圧力5.4 G p a、成形時間1分(実施
例11th3. 5)の条件で成形したもの、または結
晶化温度(Tx)の90%以上の温度460℃、圧力0
.2、成形時間1分(実施側部10)の条件で成形した
ものは、何れも結晶化することなく非晶質の状態のまま
で、密度95%以上に接合され、ビッカース硬度も結晶
質と比較して高いものであった。また、常圧、保持時間
10分の結晶化温度(Tx)は465℃であるのに、そ
れ以上の温度500℃、圧力5.4Gpa、成形時間1
0分(実施例−2)、の条件で成形したもの、または温
度(Tx)と同等の温度460℃、圧力1゜0Gpa、
成形時間10分(実施例隘8)の条件で成形したものも
、何れも非晶質で密度93%以上の良好なものが得られ
た。また、常圧、保持時間120分での結晶化温度(T
X)は407℃であるのに、それ以上の温度450℃、
圧力5.40pa、成形時間126分(実施例−1,4
)、の条件で成形したもの、または結晶化温度(Tx)
と同温度の407℃、圧力I Gp a、成形時間12
0分(実施例嵐7)の条件で成形したもの、結晶化温度
(Tx)の90%の温度367℃、圧力0、20 p 
a 、成形時間120分(実施例11h9)の条件で成
形したものも、いずれも良好な非晶質で何れも密度90
%以上のものが得られた。
That is, this composition has a crystallization temperature (TX) of 510°C at normal pressure.
(holding time is several minutes), but the temperature is higher than 5.
Molded at 50°C, pressure 5.4 Gpa, and molding time 1 minute (Example 11th3.5), or at 460°C and pressure 0 at a temperature of 90% or more of the crystallization temperature (Tx).
.. 2. The molded products under the conditions of 1 minute molding time (execution side part 10) remained amorphous without crystallization, were bonded with a density of 95% or more, and had a Vickers hardness similar to that of crystalline. It was relatively high. In addition, the crystallization temperature (Tx) at normal pressure and holding time of 10 minutes is 465°C, but at a higher temperature of 500°C, pressure of 5.4 Gpa, and molding time of 1
0 minutes (Example-2), or the same temperature (Tx) as 460°C, pressure 1°0 Gpa,
Even when molded under the conditions of molding time of 10 minutes (Example No. 8), good products were obtained which were amorphous and had a density of 93% or more. In addition, the crystallization temperature (T
X) is 407℃, but the higher temperature is 450℃,
Pressure 5.40pa, molding time 126 minutes (Example-1, 4
), or crystallization temperature (Tx)
Same temperature as 407℃, pressure I Gp a, molding time 12
Molded under the conditions of 0 minutes (Example Arashi 7), 90% of the crystallization temperature (Tx) at 367°C, pressure 0, 20 p
a, and those molded under the conditions of molding time 120 minutes (Example 11h9) were all good amorphous and had a density of 90.
% or more was obtained.

以上のことより、圧力が0.2 G p a以上の各圧
力において結晶化温度(Tx (p))は10℃/Gp
a程度の割合で上昇しており、上記の組成の常圧の結晶
化温度(Tx)以上であっても、各圧力pの結晶化温度
(Tx (p))未満であれば成形体は結晶化すること
なく非晶質の状態であることが判る。また常圧の結晶化
温度(Tx (p))の90%温度より高い温度であれ
ば、密度90%以上で良好に接合した成形体が得られる
From the above, the crystallization temperature (Tx (p)) is 10℃/Gp at each pressure of 0.2 Gpa or higher.
Even if the temperature is higher than the crystallization temperature (Tx) at normal pressure for the above composition, if it is lower than the crystallization temperature (Tx (p)) at each pressure p, the molded body will be crystallized. It can be seen that it is in an amorphous state without becoming oxidized. Further, if the temperature is higher than 90% of the normal pressure crystallization temperature (Tx (p)), a well-joined molded body with a density of 90% or more can be obtained.

尚、密度95%以上に良好に接合した成形体を得るには
、圧力は少なくとも1Gpaで、かつ常圧の結晶化温度
(Tx)と同等もしくはそれ以上で各圧力の結晶化温度
(Tx (p))未満の温度が好ましいことが判る。
In addition, in order to obtain a well-joined molded body with a density of 95% or more, the pressure must be at least 1 Gpa, and the crystallization temperature (Tx (p It turns out that temperatures below )) are preferred.

さらに、成形に必要な時間は、その作業時間、作業性、
コスト面に応じて適宜変更することが可能であるが、高
圧発生装置圧力セル等を所定温度まで昇温する際に熱膨
張による保全を考えると、その時間は数十秒〜1分程度
は少な(とも必要であるとともに、工業的生産性を考え
るとioo。
Furthermore, the time required for molding depends on its working time, workability,
It is possible to change the time as appropriate depending on the cost, but considering the preservation due to thermal expansion when raising the temperature of the high pressure generator pressure cell etc. to the specified temperature, the time required is about several tens of seconds to one minute. (Both are necessary and considering industrial productivity, ioo.

分未満が好ましいであろう、尚、より生産性を考えるな
ら、成形時間は2時間以内の方がコスト的にも有利にな
るであろう、また第7図〜第9図からもわかる様に、短
時間で成形する場合は、長時間で成形する場合に比較し
て高い温度で成形する必要があることは言うまでもない
It would be preferable to set the molding time to less than 2 hours.However, if we consider productivity, it would be more advantageous in terms of cost if the molding time is within 2 hours.As can be seen from Figures 7 to 9, Needless to say, when molding for a short time, it is necessary to mold at a higher temperature than when molding for a long time.

これに対して製造方法における温度、圧力が本発明の範
囲より外れている比較例では、非晶質が結晶化している
かまたは接合性が悪(もろくくずれてしまって実用上問
題があることが判る。
On the other hand, in comparative examples in which the temperature and pressure in the manufacturing method are outside the range of the present invention, it can be seen that the amorphous is crystallized or the bonding is poor (it becomes brittle and collapses, causing practical problems). .

即ち、この組成の各圧力、各時間の結晶化温度(Tx 
(p))より高い温度(実施例&11〜I’&L16)
の条件で成形したものは、密度90%以上ではあるが何
れも非晶質でなく、全部もしくはこの部分が結晶化して
いた。また、常圧の結晶化温度の90%以下の温度、も
くしは0.2 G p aよりも低い圧力(実施例隠1
7〜20)で生成したものは、何れも粉体が全く接合さ
れていない、または接合性が悪くもろくくずれるもので
あった。
That is, the crystallization temperature (Tx
(p)) Higher temperature (Example &11 to I'&L16)
Although the molded products under the above conditions had a density of 90% or more, none of them were amorphous, and all or a portion thereof was crystallized. In addition, the temperature is 90% or less of the crystallization temperature at normal pressure, and the pressure is lower than 0.2 Gpa (Example 1).
In all of the powders produced in 7 to 20), the powder was not bonded at all, or the bonding properties were poor and the particles were brittle and crumbled.

尚、第5図は実施例11kL1によって成形された良好
な成形体の顕微鏡写真、第6図は比較例嵐18によって
成形されたもので、接合性の悪い成形体の写真である。
Incidentally, FIG. 5 is a photomicrograph of a good molded product molded by Example 11kL1, and FIG. 6 is a photo of a molded product molded by Comparative Example Arashi 18 with poor bondability.

同様に、Go −B−S tSN i −B−5iにつ
いても行ったところ第2表、第3表、第4表、第5表の
結果が得られた。
Similarly, when Go -B-S tSN i -B-5i was also tested, the results shown in Tables 2, 3, 4, and 5 were obtained.

従って、上記実験ではFe  B  5i−Co−B−
3i、 N 1−B−3i系の組成についてのみ行った
が、当業者であれば本発明の製造方法に基づいて2,3
の実験を行って製造することによって他の組成のものに
ついても、緻密でかつ非晶質である成形体が得られるこ
とは容易であろう。
Therefore, in the above experiment, Fe B 5i-Co-B-
3i and N 1-B-3i system compositions, but those skilled in the art will be able to calculate the
It would be easy to obtain dense and amorphous molded bodies of other compositions by conducting experiments and producing them.

第1−1表  Fe系非晶質合金(FetsB+zS 
f 16)第1−2表  Fe系非晶質合金(pew’
B193 i 、、)第2表  CO系非晶質合金(C
OysStsB+。)第3表   Ni系非晶質合金(
N’raS i +78s )(0発明の効果) 本発明は超高圧(p)下において非晶質物質の結晶化温
度(Tx)が上昇することを利用し、特定の圧力、温度
、成形時間で成形することによって、極めて高密度でか
つ接合性の良好な非晶質成形体を得ることを可能にした
。このような非晶質成形体は、非晶質の薄帯、粉末等に
比べて、大きな体積の成形体であるため、より幅広い用
途が期待されるだけにその工業的価債は大きなものであ
る。特に本発明製造方法に基づいて成形される非晶質成
形体は極めて高密度であるが故に磁性材料として種々の
用途に使用可能である。
Table 1-1 Fe-based amorphous alloy (FetsB+zS
f 16) Table 1-2 Fe-based amorphous alloy (pew'
B193 i,,) Table 2 CO-based amorphous alloy (C
OysStsB+. ) Table 3 Ni-based amorphous alloys (
N'raS i +78s) (0 Effect of the invention) The present invention utilizes the fact that the crystallization temperature (Tx) of an amorphous material increases under ultra-high pressure (p), and at a specific pressure, temperature, and molding time. By molding, it was possible to obtain an amorphous molded body with extremely high density and good bondability. Such amorphous compacts have a large volume compared to amorphous ribbons, powders, etc., so their industrial value is high as they are expected to have a wider range of uses. be. In particular, since the amorphous molded body molded according to the manufacturing method of the present invention has extremely high density, it can be used as a magnetic material for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温高圧発生装置の上面及び側面からの概鵬図
、第2図は結晶化温度(Tx)測定用圧力セルの構成要
素を示す模式斜視図、第3図は圧力(p)と結晶化温度
(Tx (p))の関係を示す図、第4図は実施例にて
用いた成形用圧力セルの構成要素を示す模式斜視図、第
5図は第1表の実施例部1で成形した成形体の顕微鏡写
真、第6図は第1表の比較例隘18で成形した成形体の
顕微鏡写真である。第7図は、第1表の結果を示しf、
ニー T T T図、第8図は第2表の結果を示したT
TT図、第9図は第3表の結果をグラフに示したTTT
図である。 代理人弁理士  岡 部   隆 1i1  図 第4FIII パ′、゛、 )、415、  f、1 ″ <、y、、W′″゛逼′ ′ く1yへ 、・パ・ ’+−’t  ′。 〜 fH7図 時間(介) 晴  剖 P −・険 P
Figure 1 is a schematic view of the high-temperature and high-pressure generator from the top and side views, Figure 2 is a schematic perspective view showing the components of a pressure cell for measuring crystallization temperature (Tx), and Figure 3 is a diagram showing pressure (p) and A diagram showing the relationship between crystallization temperature (Tx (p)), FIG. 4 is a schematic perspective view showing the components of the molding pressure cell used in the examples, and FIG. 5 is the example part 1 of Table 1. FIG. 6 is a microscopic photograph of the molded product molded in Comparative Example No. 18 of Table 1. FIG. 7 shows the results of Table 1, f,
Knee T T T Figure 8 shows the results in Table 2.
TT diagram, Figure 9 is a TTT graph showing the results of Table 3.
It is a diagram. Representative Patent Attorney Takashi Okabe 1i1 Figure 4FIII Pa', ゛, ), 415, f, 1''<, y,, W'''゛〼'ku1y,・Pa・'+-'t'. ~ fH7 figure time (intermediate) Haru autopsy P -・Ren P

Claims (7)

【特許請求の範囲】[Claims] (1)非晶質物質の粉体を加圧加熱して非晶質成形体を
製造する方法において、超高圧力(p)下で、常圧にお
ける非晶質物質の結晶化温度(Tx)の少なくとも90
%を越える温度で、かつその圧力(p)における非晶質
物質の結晶化温度(Tx(p)未満の温度で、非晶質物
質の粉末が接合するに十分な時間加圧加熱することを特
徴とする非晶質成形体の製造方法。
(1) In a method of manufacturing an amorphous molded body by pressurizing and heating powder of an amorphous substance, the crystallization temperature (Tx) of the amorphous substance at normal pressure under ultra-high pressure (p) at least 90 of
% and below the crystallization temperature of the amorphous material (T A method for producing a characterized amorphous molded body.
(2)前記超高圧力(p)は、少なくとも0.2Gpa
の圧力である特許請求の範囲第1項記載の非晶質成形体
の製造方法。
(2) The ultra-high pressure (p) is at least 0.2 Gpa
The method for producing an amorphous molded body according to claim 1, wherein the pressure is .
(3)前記超高圧力(p)は、1Gpa以上10Gpa
未満の圧力である特許請求の範囲第1項記載の非晶質成
形体の製造方法。
(3) The ultra-high pressure (p) is 1 Gpa or more and 10 Gpa
The method for producing an amorphous molded body according to claim 1, wherein the pressure is less than or equal to
(4)前記高圧力(p)は、1Gpa以上3Gpa未満
の圧力である特許請求の範囲第1項記載の非晶質成形体
の製造方法。
(4) The method for producing an amorphous molded body according to claim 1, wherein the high pressure (p) is a pressure of 1 Gpa or more and less than 3 Gpa.
(5)前記圧力(p)における結晶化温度(Tx(p)
)は、常圧の結晶化温度(Tx)に、圧力(p)に応じ
て所定の割合で上昇した温度を加えた温度である特許請
求の範囲第1項、第2項、第3項又は第4項記載の非晶
質成形体の製造方法。
(5) Crystallization temperature (Tx(p)) at the pressure (p)
) is the temperature obtained by adding a temperature increased at a predetermined rate according to the pressure (p) to the crystallization temperature (Tx) at normal pressure. Claims 1, 2, 3, or 4. The method for producing an amorphous molded body according to item 4.
(6)前記所定の割合は、圧力1Gpa当り温度が10
℃上昇する割合である特許請求の範囲第5項記載の非晶
質成形体の製造方法。
(6) The predetermined ratio is such that the temperature is 10 Gpa per pressure.
6. The method for producing an amorphous molded article according to claim 5, wherein the rate of increase in temperature is .degree.
(7)前記温度は、常圧の結晶化温度(Tx)以上であ
る特許請求の範囲第3項又は第4項記載の非晶質成形体
の製造方法。
(7) The method for producing an amorphous molded body according to claim 3 or 4, wherein the temperature is equal to or higher than the crystallization temperature (Tx) at normal pressure.
JP3726185A 1985-02-25 1985-02-25 Manufacture of amorphous molded body Pending JPS61195903A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3726185A JPS61195903A (en) 1985-02-25 1985-02-25 Manufacture of amorphous molded body
EP86102349A EP0196448A1 (en) 1985-02-25 1986-02-24 Method for producing amorphous compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3726185A JPS61195903A (en) 1985-02-25 1985-02-25 Manufacture of amorphous molded body

Publications (1)

Publication Number Publication Date
JPS61195903A true JPS61195903A (en) 1986-08-30

Family

ID=12492715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3726185A Pending JPS61195903A (en) 1985-02-25 1985-02-25 Manufacture of amorphous molded body

Country Status (2)

Country Link
EP (1) EP0196448A1 (en)
JP (1) JPS61195903A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331286A3 (en) * 1988-03-03 1989-11-02 General Motors Corporation Rapid compaction of rare earth-transition metal alloys in a fluid-filled die
DE4230867C2 (en) * 1992-09-16 2003-06-12 Bode & Co Geb Sliding door for vehicles, in particular vehicles for public transport

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298382A (en) * 1979-07-06 1981-11-03 Corning Glass Works Method for producing large metallic glass bodies
US4381197A (en) * 1980-07-24 1983-04-26 General Electric Company Warm consolidation of glassy metallic alloy filaments

Also Published As

Publication number Publication date
EP0196448A1 (en) 1986-10-08

Similar Documents

Publication Publication Date Title
US4595663A (en) Sintered ceramic shaped article wholly or predominantly of eutectic microstructure constituents
Angers et al. Hot-pressing of boron carbide
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
KR100894122B1 (en) Method for manufacturing polycrystalline diamond using amorphous bond
JPS61195903A (en) Manufacture of amorphous molded body
US4381197A (en) Warm consolidation of glassy metallic alloy filaments
KR20160077628A (en) Method for manufacturing a thermoelectric material having a uniform thermal conductive properties
RU2470414C1 (en) METHOD OF PRODUCING p-TYPE THERMOELECTRIC MATERIAL BASED ON SOLID SOLUTIONS OF Bi2Te3-Sb2Te3
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JPS63179052A (en) Manufacture of magnetic polycrystalline substance
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
El-Eskandarany et al. Hot pressing and characterizations of mechanically alloyed Zr 52 Al 6 Ni 8 Cu 14 W 20 glassy powders.
JPH09172205A (en) Manufacture of thermoelectric material
KR20020010768A (en) Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
JP3839632B2 (en) Method for producing Ni-Al intermetallic compound
JP3288571B2 (en) Method for producing bulk compact of amorphous alloy powder
Nesterenko Potential of shock-wave methods for preparing and compacting rapidly quenched materials
US4612161A (en) Fabrication of metallic glass structures
JPH075379B2 (en) Method for manufacturing refractory for molten steel
WO1992016471A1 (en) Method of making oxide superconductor
US3597512A (en) Grain size control in refractory carbides using hot plastic straining and recrystallization annealing
KR20220031478A (en) Silicon nitride sintered body substrate and manufacturing method thereof
JPS62151534A (en) Molybdenum sintered compact and its production
JPH02172867A (en) Production of silicon nitride sintered body