JPS6119573B2 - - Google Patents

Info

Publication number
JPS6119573B2
JPS6119573B2 JP5952477A JP5952477A JPS6119573B2 JP S6119573 B2 JPS6119573 B2 JP S6119573B2 JP 5952477 A JP5952477 A JP 5952477A JP 5952477 A JP5952477 A JP 5952477A JP S6119573 B2 JPS6119573 B2 JP S6119573B2
Authority
JP
Japan
Prior art keywords
quartz glass
gas
silicon compound
pipe
gaseous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5952477A
Other languages
Japanese (ja)
Other versions
JPS53144920A (en
Inventor
Kunihiko Sakikubo
Kenichi Masukawa
Fumio Goro
Takayuki Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5952477A priority Critical patent/JPS53144920A/en
Publication of JPS53144920A publication Critical patent/JPS53144920A/en
Publication of JPS6119573B2 publication Critical patent/JPS6119573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明はOH基を含まない光フアイバー用石英
ガラスの製造方法の改良に関するものでる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing quartz glass for optical fibers that does not contain OH groups.

一般に、この種の石英ガラスは光伝送損失の低
い光フアイバーを得る目的から、不純物イオン
(たとえば金属イオン、OHイオン)及び気泡の
混入のないものが要求される。
Generally, this type of silica glass is required to be free of impurity ions (eg, metal ions, OH ions) and bubbles in order to obtain an optical fiber with low optical transmission loss.

ところで、従来の石英ガラスの製造方法として
は珪素化合物(たとえば四塩化珪素ガス)と酸素
ガスとを石英ガラス管内に供給し、管外側から局
部加熱して上記混合ガスを酸化分解させ、管内壁
にガラスを沈積せしめた後、このガラス沈積層を
機械的に剥離、粉砕し再溶融して石英ガラスとす
る方法が採用されている。
By the way, as a conventional method for producing quartz glass, a silicon compound (for example, silicon tetrachloride gas) and oxygen gas are supplied into a quartz glass tube, and local heating is performed from the outside of the tube to oxidize and decompose the mixed gas, so that it forms on the inner wall of the tube. After glass is deposited, the glass deposited layer is mechanically peeled off, crushed, and remelted to produce quartz glass.

しかしながら、上記方法にあつては一旦粉砕し
た微細なSiO2粒子が互いに付着しあい比較的大
きな粒子を形成し、溶融時に泡の原因となるた
め、得られた石英ガラスは光伝送損失の低い光フ
アイバーの原料として不適当となる欠点があつ
た。また、石英ガラスを造るにはガラスの沈積、
ガラス沈積層の粉砕及び粉砕粒子の溶融、の3工
程を経なければならないため、操作が煩雑となる
ばかりか生産性が著しく低いという欠点がある。
However, in the above method, the fine SiO 2 particles once crushed adhere to each other and form relatively large particles, which causes bubbles when melted. There were drawbacks that made it unsuitable as a raw material for. In addition, to make quartz glass, glass deposition,
Since it is necessary to go through three steps: pulverizing the glass sediment layer and melting the pulverized particles, there are drawbacks that not only the operation is complicated but also the productivity is extremely low.

このようなことから、本発明者は上記欠点を解
消するために種々研究し、石英ガラスパイプに珪
素化合物ガスと酸素ガスとを供給して該混合ガス
を酸化分解せしめるに際し、上記石英ガラスパイ
プの流出端から酸化分解開始部にかけて1150℃以
上で1250℃未満に加熱したところ、酸化分解によ
り生成した無水アモルフアスシリカがパイプ内壁
に付着、沈積することなく、パイプの流出端から
ガス状態で流出できることを究明した。
For these reasons, the present inventor conducted various studies to eliminate the above-mentioned drawbacks, and found that when supplying silicon compound gas and oxygen gas to a quartz glass pipe to oxidize and decompose the mixed gas, When heated from the outlet end to the oxidative decomposition start point at 1150°C or higher but below 1250°C, the anhydrous amorphous silica produced by oxidative decomposition can flow out in a gaseous state from the pipe's outlet end without adhering to or depositing on the inner wall of the pipe. was investigated.

しかして、上記究明結果に基づきさらに鋭意研
究を重ねた結果、石英ガラスパイプから流出した
無水アモルフアスシリカを含むガス状物質を頂部
が溶融状態の石英ガラス製支持体に吹付けること
により、該溶融状態の頂部でガス状物質中の無水
アモルフアスシリカ及び未反応混合ガスが酸化分
解されて沈積し、煩雑な工程を経ずに1工程で不
純物イオン、泡の混入が極めて少ない透明な石英
ガラスを簡単かつ迅速に得られる方法を見い出し
た。
As a result of further intensive research based on the above investigation results, it was found that by spraying a gaseous substance containing anhydrous amorphous silica flowing out from a quartz glass pipe onto a quartz glass support whose top part is in a molten state, the molten At the top of the state, the anhydrous amorphous silica and unreacted mixed gas in the gaseous substance are oxidized and decomposed and deposited, producing transparent quartz glass with extremely low levels of impurity ions and bubbles in one step without going through complicated steps. I found a way to get it easily and quickly.

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

まず、外側にヒータ1を配設した蒸発タンク2
内の珪素化合物溶液3を蒸発させて珪素化合物ガ
スに変換させると同時に、ガストライヤー4及び
フイルター5で水分と不純物を除去し流量計6で
一定流量に保持した酸素ガスを上記蒸発タンク2
内に導管7を介して導入する。なお、上記蒸発タ
ンク2内には常時メインタンク8から珪素化合物
溶液がポンプ9により供給され、該蒸発タンク2
内の珪素化合物溶液の量が多くなると、該タンタ
2の出口10から上記メインタンク9にオーバー
フローされて蒸発タンク2内の珪素化合物溶液量
が常に一定に保持されるようになつている。次い
で、蒸発タンク2内の珪素化合物ガスと酸素ガス
とを導管7′を経て電気抵抗加熱炉11により
1150℃以上で1250℃未満に加熱されたL字形の石
英ガラスパイプ12に導入し、該加熱炉11に挿
置されたパイプ12部分で上記混合ガスが酸化分
解された後、無水アモルフアスシリカを含むガス
状物質を電気抵抗加熱炉11′に挿入された頂部
が溶融状態の石英ガラス製支持体13上に吹付
け、該頂部に沈積せしめて石英ガラスを造る。こ
の場合、支持体13の頂部の石英ガラス沈積層が
厚くなるに従つて、該支持体13は下方に移動し
常に石英ガラスパイプ12の流出端と支持体13
の頂部との間の距離が一定に保持されるように調
整される。
First, an evaporation tank 2 with a heater 1 installed on the outside.
At the same time, the silicon compound solution 3 in the evaporation tank 2 is evaporated and converted into a silicon compound gas, and at the same time moisture and impurities are removed using a gas trier 4 and a filter 5.
is introduced into the interior via conduit 7. The silicon compound solution is constantly supplied into the evaporation tank 2 from the main tank 8 by a pump 9.
When the amount of silicon compound solution in the evaporation tank 2 increases, it overflows from the outlet 10 of the evaporation tank 2 into the main tank 9, so that the amount of silicon compound solution in the evaporation tank 2 is always kept constant. Next, the silicon compound gas and oxygen gas in the evaporation tank 2 are passed through the conduit 7' and passed through the electric resistance heating furnace 11.
The mixed gas is introduced into an L-shaped quartz glass pipe 12 heated to 1150°C or higher and lower than 1250°C, and after the mixed gas is oxidized and decomposed in the pipe 12 section inserted in the heating furnace 11, the anhydrous amorphous silica is The gaseous substance contained therein is sprayed onto the fused quartz glass support 13 inserted into the electric resistance heating furnace 11' and deposited on the top to produce quartz glass. In this case, as the silica glass deposited layer on the top of the support 13 becomes thicker, the support 13 moves downward and constantly connects the outflow end of the quartz glass pipe 12 with the support 13.
is adjusted so that the distance between the top and the top is kept constant.

本発明に使用する珪素化合物としては、たとえ
ば四塩化珪素のハロゲン化珪素或いはシラン等を
挙げることができる。
Examples of the silicon compound used in the present invention include silicon halide such as silicon tetrachloride, silane, and the like.

本発明における珪素化合物ガスと酸素ガスとの
混合比は、各ガスの理論混合比より若干酸素比を
高くするように設定される。
The mixing ratio of silicon compound gas and oxygen gas in the present invention is set so that the oxygen ratio is slightly higher than the theoretical mixing ratio of each gas.

本発明において石英ガラスパイプの加熱温度の
下限を規制した理由は加熱温度を1150℃未満にす
ると、酸化分解されたガス状の無水アモルフアス
シリカが石英ガラスパイプに付着、沈積して効率
よく石英ガラスを得ることが困難になり、1250℃
以上にすると電気抵抗加熱炉11′(下の炉)の
温度で、石英ガラスパイプ12の出口の温度が約
1500℃以上となり、この出口部分にSiO2粉が付
着し、出口が目詰りし易くなる。それに従つてガ
スの流れが不安定となり石英ガラス沈積層に泡等
が入り易くなり良好な透明度が得られない。
The reason why the lower limit of the heating temperature of the quartz glass pipe is regulated in the present invention is that when the heating temperature is lower than 1150°C, the oxidized and decomposed gaseous anhydrous amorphous silica adheres and deposits on the quartz glass pipe, effectively reducing the quartz glass pipe. It becomes difficult to obtain 1250℃
If the temperature is above, the temperature at the outlet of the quartz glass pipe 12 will be approximately at the temperature of the electric resistance heating furnace 11' (lower furnace).
When the temperature exceeds 1500°C, SiO 2 powder adheres to this outlet and the outlet becomes easily clogged. Accordingly, the gas flow becomes unstable and bubbles are likely to enter the silica glass deposited layer, making it impossible to obtain good transparency.

次に、本発明の実施例を前述した図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the above-mentioned drawings.

実施例 まず、蒸発タンク2内の四塩化珪素溶液3を蒸
発させて四塩化珪素ガスに変換させると同時に、
該タンク2内にガスドライヤー4及びフイター5
を経て流量計6で流量調整された酸素ガスを供給
し、これら混合ガス(SiCl4:O2モル比1:10)
を、5/minの条件下で流出端付近を電気抵抗
加熱炉11で1200℃に加熱された石英ガラスパイ
プに導入し、該パイプの流出端から無水アモルフ
アスシリカ含有ガス状物質を頂部が溶融状態の石
英ガラス製支持体13に吹付、沈積せしめて石英
ガラスのインゴツトを造つた。
Example First, the silicon tetrachloride solution 3 in the evaporation tank 2 is evaporated and converted into silicon tetrachloride gas, and at the same time,
A gas dryer 4 and a filter 5 are installed in the tank 2.
Oxygen gas whose flow rate is adjusted by the flow meter 6 is supplied through the gas flow meter 6, and these mixed gases (SiCl 4 :O 2 molar ratio 1:10) are supplied.
was introduced into a quartz glass pipe whose outflow end was heated to 1200°C in an electric resistance heating furnace 11 under conditions of 5/min, and the gaseous substance containing anhydrous amorphous silica was melted at the top from the outflow end of the pipe. A quartz glass ingot was produced by spraying and depositing on the quartz glass support 13 in the same state.

得られた石英ガラスは生成収率が85%と極めて
生成効率が高いことが確認された。また、本発明
の石英ガラスは透明度が高く、不純物イオン、気
泡の混入がほとんど認められず、この石英ガラス
から製造された光フアイバーは光伝送損失が極め
て低く、十分な実用性を有することがわかつた。
It was confirmed that the obtained quartz glass had an extremely high production efficiency with a production yield of 85%. In addition, the quartz glass of the present invention has high transparency and almost no impurity ions or bubbles are observed, and optical fibers manufactured from this silica glass have extremely low optical transmission loss and are found to have sufficient practicality. Ta.

以上詳述した如く、本発明によれば煩雑な工程
を経ずに1工程で不純イオン、泡の混入が極めて
少ない高品質の光フアイバーを得るのに適した石
英ガラスを大量かつ効率よく製造できる等顕著な
効果を有するものである。
As detailed above, according to the present invention, it is possible to efficiently produce large quantities of silica glass suitable for obtaining high-quality optical fibers with very little contamination of impurity ions and bubbles in one step without going through complicated steps. It has remarkable effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法に使用する製造装置の一形態を
示す概略断面図である。 2……蒸発タンク、11,11′……電気抵抗
加熱炉、12……石英ガラスパイプ、13……石
英ガラス製支持体。
The figure is a schematic sectional view showing one form of manufacturing apparatus used in the method of the present invention. 2... Evaporation tank, 11, 11'... Electric resistance heating furnace, 12... Quartz glass pipe, 13... Quartz glass support.

Claims (1)

【特許請求の範囲】[Claims] 1 珪素化合物ガスと酸素ガスとを1150℃以上で
1250℃未満に加熱された石英ガラスパイプに導入
して無水アモルフアスシリカを含有するガス状物
質とした後、このガス状物質を頂部が溶融状態の
石英ガラス製支持体上に吹付け、沈積せしめるこ
とを特徴とする光フアイバー用石英ガラスの製造
方法。
1 Silicon compound gas and oxygen gas at 1150℃ or higher
A gaseous substance containing anhydrous amorphous silica is introduced into a quartz glass pipe heated to less than 1250°C, and then this gaseous substance is sprayed onto a quartz glass support whose top is in a molten state and deposited. A method for producing quartz glass for optical fiber, characterized by:
JP5952477A 1977-05-23 1977-05-23 Production of quartz glass for photoconductive fiber Granted JPS53144920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5952477A JPS53144920A (en) 1977-05-23 1977-05-23 Production of quartz glass for photoconductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5952477A JPS53144920A (en) 1977-05-23 1977-05-23 Production of quartz glass for photoconductive fiber

Publications (2)

Publication Number Publication Date
JPS53144920A JPS53144920A (en) 1978-12-16
JPS6119573B2 true JPS6119573B2 (en) 1986-05-17

Family

ID=13115731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5952477A Granted JPS53144920A (en) 1977-05-23 1977-05-23 Production of quartz glass for photoconductive fiber

Country Status (1)

Country Link
JP (1) JPS53144920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420480U (en) * 1987-07-28 1989-02-01
JPS6432393U (en) * 1987-08-19 1989-02-28
JPH0211093U (en) * 1988-07-04 1990-01-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031777B2 (en) * 1982-11-19 1985-07-24 住友電気工業株式会社 Raw material gas supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420480U (en) * 1987-07-28 1989-02-01
JPS6432393U (en) * 1987-08-19 1989-02-28
JPH0211093U (en) * 1988-07-04 1990-01-24

Also Published As

Publication number Publication date
JPS53144920A (en) 1978-12-16

Similar Documents

Publication Publication Date Title
US4084024A (en) Process for the production of silicon of high purity
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
US3117838A (en) Manufacture of silica
US4432781A (en) Method for manufacturing fused quartz glass
US4294811A (en) Process for manufacturing Si useful for semiconductor components from quartz sand
JPS6119573B2 (en)
JPS61247626A (en) Manufacture of sodium-containing glass or ceramic product
US4272488A (en) Apparatus for producing and casting liquid silicon
US4176166A (en) Process for producing liquid silicon
EP0156370B1 (en) Method for producing glass preform for optical fiber
DE3518620A1 (en) Process for the preparation of an optical waveguide base material based on quartz glass
JPH0643277B2 (en) Quartz crucible manufacturing method
JP2785430B2 (en) Quartz glass for optical transmission
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JP3026099B2 (en) Method and apparatus for producing amorphous spherical silica fine powder
JPS6143290B2 (en)
EP0045600B1 (en) Improved method for producing semiconductor grade silicon
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JP2002068727A (en) Method for manufacturing high purity silica
KR860001248B1 (en) Fabrication methods of doped silica glass and optical fibre preform byusing the doped silica glass
JPS60239338A (en) Preparation of parent material for optical fiber
JPS6126504B2 (en)
JPH0339978B2 (en)
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPH0218295B2 (en)