JPS61193118A - Laser module with optical isolator - Google Patents

Laser module with optical isolator

Info

Publication number
JPS61193118A
JPS61193118A JP3386785A JP3386785A JPS61193118A JP S61193118 A JPS61193118 A JP S61193118A JP 3386785 A JP3386785 A JP 3386785A JP 3386785 A JP3386785 A JP 3386785A JP S61193118 A JPS61193118 A JP S61193118A
Authority
JP
Japan
Prior art keywords
lens
faraday rotator
polarizing lens
optical
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3386785A
Other languages
Japanese (ja)
Inventor
Yoshito Onoda
義人 小野田
Terumi Chikama
輝美 近間
Masami Goto
後藤 正見
Tadashi Okiyama
沖山 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3386785A priority Critical patent/JPS61193118A/en
Publication of JPS61193118A publication Critical patent/JPS61193118A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To give desired magnetic flux density to the Faraday rotator and to reduce the size of a laser module with an optical isolator by using a permanent magnet material for lens holders at both sides between which a Faraday rotator is sandwiched. CONSTITUTION:A small spherical incidence polarizing lens 5 made of a refringent crystal body (e.g. rutile), the small-sized Faraday rotator 2 which is made of a magneto-optic crystal body such as YIG and in a rectangular shape of for example, 2mm in thickness and 3mm in height, a projection polarizing lens 6 which has its optical axis slanted by 45 deg. to the incidence polarizing lens 5, and an optical fiber 4 are arranged on the optical axis of a semiconductor laser 1. A lens holder 10 which holds the incidence polarizing lens 5 by inserting the lens into its axial hole and a lens holder 11 which holds the projection polarizing lens 6 by inserting the lens into its axial hole are both made of a permanent magnet material and their outer appearances are rectangular and larger than that of the Faraday rotator 2 as desired. Both end surface parts of a Faraday rotator holder 12 are fitted in the lens holders 10 and 11 to constitute a permanent magnet which has magnetic poles in an inner flange shape on both flanks of the Faraday rotator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光アイソレータ付レーザモジュールの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a laser module with an optical isolator.

光通信の送信部では、半導体レーザと光ファイバ等の伝
送路とを光結合することが必要である。
In an optical communication transmission section, it is necessary to optically couple a semiconductor laser and a transmission path such as an optical fiber.

この場合、光ファイバの入射面、或いは伝送路の後に接
続されている光回路素子からの反射光が、再び半導体レ
ーザに注入されると半導体レーザの発振が不安定となり
、その結果信号に含まれる雑音が増加する。
In this case, when the reflected light from the optical fiber entrance plane or the optical circuit element connected after the transmission line is injected into the semiconductor laser again, the oscillation of the semiconductor laser becomes unstable, and as a result, it is included in the signal. Noise increases.

そのために、半導体レーザの直ぐ後に光アイソレータを
挿入し、モジュールを構成して、半導体レーザの発振の
安定化を計っている。
To this end, an optical isolator is inserted immediately after the semiconductor laser to form a module in order to stabilize the oscillation of the semiconductor laser.

この際、光アイソレータ付レーザモジュールには、小形
のことが要求されている。
At this time, the laser module with an optical isolator is required to be small.

〔従来の技術〕[Conventional technology]

従来の光アイソレータ付レーザモジュールは、第2図の
構成図に示すように、半導体レーザ1は接合面が紙面に
垂直になるように設置され、半導体レーザ1の後方には
、YIG等の磁気光学結晶体よりなり、例えば、厚さが
2111111%高さが3II11の角形で小形のファ
ラデー回転子2が、光軸上に配設されている。
In a conventional laser module with an optical isolator, as shown in the configuration diagram in FIG. A small, rectangular Faraday rotator 2 made of a crystal and having a thickness of 2111111% and a height of 3II11, for example, is disposed on the optical axis.

ファラデー回転子2は、永久磁石3内に保持され、その
磁界方向は半導体レーザlの光軸に平行した矢印H方向
で、偏光面を45度回転するように構成されている。
The Faraday rotator 2 is held within a permanent magnet 3, and its magnetic field direction is in the direction of arrow H parallel to the optical axis of the semiconductor laser I, and is configured to rotate the plane of polarization by 45 degrees.

半導体レーザ1とファラデー回転子2の間には、複屈折
性結晶体(例えばルチル)よりなり、小球(例えば直径
が0.8 mm)の入射偏光レンズ5が、レンズホルダ
5Aに保持されて配設されている。また、ファラデー回
転子2と伝送路となる光ファイバ4との間には、入射偏
光レンズ5と同形状の出射偏光レンズ6が、レンズホル
ダ6Aに保持され配設されている。
Between the semiconductor laser 1 and the Faraday rotator 2, an input polarizing lens 5 made of a birefringent crystal (for example, rutile) and having a small sphere (for example, diameter: 0.8 mm) is held by a lens holder 5A. It is arranged. Further, an output polarizing lens 6 having the same shape as the input polarizing lens 5 is disposed between the Faraday rotator 2 and the optical fiber 4 serving as a transmission path, and is held by a lens holder 6A.

入射偏光レンズ5は光学軸が、半導体レーザ1の接合面
に垂直(したがって紙面に平行)に設置され、出射偏光
レンズ6の光学軸は、入射偏光レンズ5とは45度傾斜
して設置されている。
The optical axis of the input polarizing lens 5 is installed perpendicular to the cemented surface of the semiconductor laser 1 (therefore parallel to the plane of the paper), and the optical axis of the output polarizing lens 6 is installed at an angle of 45 degrees with respect to the input polarizing lens 5. There is.

なお、入射偏光レンズ5の焦点距離の位置に、半導体レ
ーザlの接合面が、出射偏光レンズ6の焦点距離の位置
に、光ファイバ4の端面がそれぞれあり、入射偏光レン
ズ5.出射偏光レンズ6はともにファラデー回転子2に
近接して設置されている。
Note that the cemented surface of the semiconductor laser l is located at the focal length of the input polarizing lens 5, and the end face of the optical fiber 4 is located at the focal length of the output polarizing lens 6. Both output polarizing lenses 6 are installed close to the Faraday rotator 2.

第2図のように構成された光アイソレータ付レーザモジ
ュールの光アイソレータとしての機能を、第3図の(a
l、(b)、及び第4図のfa)、(b) ニ示す光路
図によって説明する。
The function as an optical isolator of the laser module with optical isolator configured as shown in FIG.
This will be explained with reference to the optical path diagrams shown in FIG.

半導体レーザlの出射光、即ち順方向の光が入射偏光レ
ンズ5に入射すると、偏光面が紙面に垂直な偏光波は、
第3図の(a)に示すにように、入射偏光レンズ5で常
光屈折率で屈折し、平行にされファラデー回転子2に入
射する。そして、ファラデー回転子2で偏光面が45度
回転されて、出射偏光レンズ6に入射する。
When the emitted light of the semiconductor laser l, that is, the light in the forward direction, enters the input polarizing lens 5, the polarized wave whose polarization plane is perpendicular to the plane of the paper is
As shown in FIG. 3(a), the light is refracted by the incident polarizing lens 5 with an ordinary refractive index, made parallel, and incident on the Faraday rotator 2. Then, the plane of polarization is rotated by 45 degrees by the Faraday rotator 2, and the light enters the output polarizing lens 6.

出射偏光レンズ6は光学軸が、入射偏光レンズ5に対し
て45度傾斜しているので、この順方向の偏光波は、出
射偏光レンズ6に常光として入□射し、常光屈折率で屈
折して、光ファイバ4の端面で収斂する。よって、光フ
ァイバ4に入射し伝送される。
Since the optical axis of the output polarizing lens 6 is inclined at 45 degrees with respect to the input polarizing lens 5, this forward polarized wave enters the output polarizing lens 6 as ordinary light and is refracted by the ordinary refractive index. and converge at the end face of the optical fiber 4. Therefore, it enters the optical fiber 4 and is transmitted.

尚、入射偏光レンズ5、出射偏光レンズ6はともにルチ
ルでは、 常光屈折率〈異常光屈折率 である。
Incidentally, when both the input polarizing lens 5 and the output polarizing lens 6 are made of rutile, the refractive index of ordinary light is smaller than the refractive index of extraordinary light.

また、偏光面が紙面に平行な偏光波は、第3図の(b)
に示すにように、入射偏光レンズ5に異常光として入射
し、異常光屈折率で屈折して収斂気味にファラデー回転
子2に入射する。そして、ファラデー回転子2で偏光面
が45度回転されて、出射偏光レンズ6に異常光として
入射する。
Also, polarized waves whose plane of polarization is parallel to the plane of the paper are shown in (b) in Figure 3.
As shown in FIG. 2, the light enters the incident polarizing lens 5 as extraordinary light, is refracted by the extraordinary light refractive index, and enters the Faraday rotator 2 in a slightly convergent manner. Then, the plane of polarization is rotated by 45 degrees by the Faraday rotator 2, and the light enters the output polarizing lens 6 as extraordinary light.

よって、出射偏光レンズ6で異常光屈折率で屈折して、
常光の焦点距離、即ち光ファイバ4の端面よりは近い位
置で収斂し、その後拡散して光ファイバ4に向かう。し
たがって、殆ど光ファイバ4に伝送されない。
Therefore, the output polarizing lens 6 refracts the light with the extraordinary refractive index,
It converges at the focal length of ordinary light, that is, at a position closer to the end face of the optical fiber 4, and then diffuses toward the optical fiber 4. Therefore, almost no signal is transmitted to the optical fiber 4.

光ファイバ4より反射されてくる逆方向の光のなかで、
偏光面が出射偏光レンズ6の光学軸に垂直な偏光波成分
は、第4図の(a)に示すように、常光として出射偏光
レンズ6に入射し、常光屈折率で屈折されて、平行にな
りファラデー回転子2に′入射する。そして、偏光面が
順方向の回転方向に45度回転され異常光として入射偏
光レンズ5に入射する。そして、異常光屈折率で屈折し
て、常光の焦点距離より近い位置、即ち半導体レーザ1
の出射面より手前で収斂し、拡散状態で半導体レーザ1
に向かう。
Among the light in the opposite direction reflected from the optical fiber 4,
As shown in FIG. 4(a), the polarized wave component whose polarization plane is perpendicular to the optical axis of the output polarizing lens 6 enters the output polarizing lens 6 as ordinary light, is refracted by the ordinary refractive index, and becomes parallel. and enters the Faraday rotator 2. Then, the plane of polarization is rotated by 45 degrees in the forward rotation direction and enters the incident polarizing lens 5 as extraordinary light. Then, the extraordinary light is refracted at a position closer than the focal length of the ordinary light, that is, the semiconductor laser 1
The semiconductor laser 1 converges in front of the emission surface, and in a diffused state
Head to.

また、半導体レーザ1の発生する光とは、偏光面が90
度異なり半導体レーザlには殆ど影響しない。
Furthermore, the light generated by the semiconductor laser 1 has a polarization plane of 90
The difference in degree has almost no effect on the semiconductor laser l.

さらにまた、逆方向の光のなかで、偏光面が出射偏光レ
ンズ6の光学軸に平行な偏光波成分は、第4図の(bl
に示すように、異常光として出射偏光レンズ6に入射し
、異常光屈折率で屈折し収斂気味にファラデー回転子2
に入射する。そして、偏光面が45度回転されて常光と
して入射偏光レンズ5に入射する。
Furthermore, among the light in the opposite direction, the polarized wave component whose polarization plane is parallel to the optical axis of the output polarizing lens 6 is shown in FIG.
As shown in FIG.
incident on . Then, the plane of polarization is rotated by 45 degrees and the light enters the incident polarizing lens 5 as ordinary light.

よって、常光屈折率で屈折して半導体レーザ1の出射面
より近い位置で収斂し、拡散状態で半導体レーザ1に向
かう。したがって、半導体レーザlには殆ど影響しない
Therefore, the light is refracted by the ordinary refractive index, converged at a position closer to the emission surface of the semiconductor laser 1, and heads toward the semiconductor laser 1 in a diffused state. Therefore, the semiconductor laser l is hardly affected.

上述のように入射偏光レンズ5.ファラデー回転子2.
出射偏光レンズ6より構成されたものは、光アイソレー
タとしての機能を有している。
5. Input polarizing lens as described above. Faraday rotator 2.
The output polarizing lens 6 has a function as an optical isolator.

第2図に示すような光アイソレータ付レーザモジュール
は、広く使用されている他の光アイソレ−タ付レーザモ
ジュール、例えば半導体レーザ、入射レンズ、入射偏光
子、ファラデー回転子、出射偏光子、出射レンズ及び光
ファイバよりなる光アイソレータ付レーザモジュールに
比較して、部品点数が少ないことに起因して、半導体レ
ーザと光ファイバとの距離を縮めることができ、収差や
、ビームの拡がりが抑制されて、光結合効率が向上する
という利点がある。
The laser module with an optical isolator as shown in FIG. Compared to a laser module with an optical isolator made of an optical fiber, the number of parts is smaller, so the distance between the semiconductor laser and the optical fiber can be shortened, and aberrations and beam spread can be suppressed. This has the advantage of improving optical coupling efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の光アイソレータ付レーザモジュ
ールは、入射偏光レンズ、出射偏光レンズに比較して大
形のファラデー回転子の外周部に磁石が装着されている
。したがって、ファラデー回転子によって偏光面を所望
の45度回転させるに必要な磁束密度を得るために、細
幅で高さの大きい大形の磁石が必要である。
However, in the above conventional laser module with an optical isolator, a magnet is attached to the outer periphery of a Faraday rotator, which is larger than the input polarizing lens and the output polarizing lens. Therefore, in order to obtain the magnetic flux density necessary to rotate the plane of polarization by the desired 45 degrees using the Faraday rotator, a large magnet with a narrow width and a large height is required.

即ち、光アイソレータ付レーザモジュールの小形化が阻
害されるという問題点がある。
That is, there is a problem in that miniaturization of the laser module with an optical isolator is hindered.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点は、半導体レーザ、入射偏光レンズ、
ファラデー回転子、該入射偏光レンズに対して光学軸が
45度傾いた出射偏光レンズ及び光ファイバが、光軸上
に順次配設されてなるモジュールにおいて、該入射偏光
レンズ及び該出射偏光レンズのそれぞれのレンズホルダ
が、該ファラデー回転子に直流磁界を付与する磁石より
構成されてなる、本発明の光アイソレータ付レーザモジ
ュールによって解決される。
The above conventional problems are due to the semiconductor laser, the input polarizing lens,
In a module in which a Faraday rotator, an output polarizing lens whose optical axis is inclined at 45 degrees with respect to the input polarizing lens, and an optical fiber are arranged in sequence on the optical axis, each of the input polarizing lens and the output polarizing lens This problem is solved by the laser module with an optical isolator of the present invention, in which the lens holder is composed of a magnet that applies a DC magnetic field to the Faraday rotator.

〔作用〕[Effect]

上記本発明の手段によれば、小径の入射偏光レンズ及び
出射偏光レンズを保持するレンズホルダを永久磁石材料
より構成することにより、第1図に示すように、外形が
小さい筒形で、ファラデー回転子の両側面に内フランジ
形に磁極を有する磁石とすることが可能となり、所望の
磁束密度をファラデー回転子に付与することができる。
According to the above-mentioned means of the present invention, the lens holder that holds the small-diameter incident polarized lens and the output polarized lens is made of a permanent magnetic material, so that the outer diameter is small and cylindrical, and Faraday rotation is achieved. It becomes possible to use a magnet having internal flange-shaped magnetic poles on both sides of the child, and it is possible to impart a desired magnetic flux density to the Faraday rotor.

したがって、光アイソレータ付レーザモジュールの小形
化が推進される。
Therefore, miniaturization of laser modules with optical isolators is promoted.

〔実施例〕〔Example〕

以下図示実施例により、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically explained below with reference to illustrated examples. Note that the same reference numerals indicate the same objects throughout the figures.

第1図は本発明の1実施例の構成図であって、接合面が
紙面に垂直になるように設置された半導体レーザ1の光
軸上に、複屈折性結晶体(例えばルチル)よりなり、小
球(例えば直径が0.8mm)の入射偏光レンズ5が、
入射偏光レンズ5の次にYIG等の磁気光学結晶体より
なり、例えば、厚さが2111111、高さが311I
Imの角形で小形のファラデー回転子2が、次に入射偏
光レンズ5と同形状で、入射偏光レンズ5とは光学軸が
45度傾斜して出射偏光レンズ6が、出射偏光レンズ6
の後には、光ファイバ4が配設されている。
FIG. 1 is a block diagram of one embodiment of the present invention, in which a birefringent crystal (for example, rutile) is placed on the optical axis of a semiconductor laser 1 installed so that the bonding surface is perpendicular to the plane of the paper. , the input polarizing lens 5 is a small sphere (for example, diameter is 0.8 mm),
Next to the input polarizing lens 5, it is made of a magneto-optic crystal such as YIG, and has a thickness of 2111111 mm and a height of 311 mm, for example.
A small, rectangular Faraday rotator 2 of Im has the same shape as the input polarizing lens 5, and an output polarizing lens 6 whose optical axis is tilted by 45 degrees with respect to the input polarizing lens 5.
An optical fiber 4 is disposed after the .

軸孔に入射偏光レンズ5を挿着し保持するレンズホルダ
10、及び軸孔に出射偏光レンズ6を挿着し保持するレ
ンズホルダ11は、ともに永久磁石材料(例えば焼結ア
ルニコ磁石)よりなり、外形がファラデー回転子2の外
形よりも所望に大きい角形である。
The lens holder 10 that inserts and holds the input polarizing lens 5 into the shaft hole and the lens holder 11 that inserts and holds the output polarizing lens 6 into the shaft hole are both made of a permanent magnetic material (for example, a sintered alnico magnet), The outer shape is a rectangular shape that is desirably larger than the outer shape of the Faraday rotator 2.

12はファラデー回転子2を軸角孔に保持する、レンズ
ホルダlO等と同じ永久磁石材料よりなる薄肉筒形のフ
ァラデー回転子ホルダである。
Reference numeral 12 denotes a thin-walled cylindrical Faraday rotator holder made of the same permanent magnetic material as the lens holder 10 and the like, which holds the Faraday rotator 2 in the shaft square hole.

ファラデー回転子ホルダ12の両端面部分をそれぞれレ
ンズホルダ10.11に嵌着することにより、一体化さ
れて外形が小さい筒形となり、ファラデー回転子の両側
面に内フランジ形に磁極を有する永久磁石を構成してい
る。
By fitting both end surfaces of the Faraday rotor holder 12 into the lens holders 10 and 11, they are integrated into a cylindrical shape with a small external shape, and a permanent magnet having magnetic poles in the form of inner flanges on both sides of the Faraday rotor. It consists of

上述のようにレンズホルダ10.レンズホルダ11フア
ラデ一回転子ホルダ12よりなる永久磁石は、長さが十
分に長いので、所望の磁束密度をファラデー回転子に付
与することができる。
As described above, the lens holder 10. The permanent magnet made up of the lens holder 11 and the Faraday rotator holder 12 is sufficiently long, so that it is possible to impart a desired magnetic flux density to the Faraday rotator.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ファラデー回転子を挟む
両側のレンズホルダを永久磁石材料で構成したことによ
り、外形が小さい筒形で、ファラデー回転子の両側面に
内フランジ形に磁極を有する磁石とすることが可能とな
り、所望の磁束密度をファラデー回転子に付与すること
ができ、光アイソレータ付レーザモジュールの小形化が
推進されるという、優れた効果がある。
As explained above, the present invention has the lens holders on both sides of the Faraday rotator made of permanent magnetic material, so that the magnet has a small cylindrical outer shape and has magnetic poles in the form of inner flanges on both sides of the Faraday rotor. This has the excellent effect that a desired magnetic flux density can be imparted to the Faraday rotator, and miniaturization of the laser module with an optical isolator is promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の構成図、 第2図は従来のものの構成図、 第3図の(a)、 (blはそれぞれ順方向の光路図、
第4図の(al、 (b)はそれぞれ逆方向の光路図で
ある。 図において、 1は半導体レーザ、 2はファラデー回転子、 3は磁石、 4は光ファイバ、 5は入射偏光レンズ、 6は出射偏光レンズ、 5八、6A、10.11はレンズホルダ、12はファラ
デー回転子ホルダをそれぞれ示す。 革1図 ′!42因 (ム) s3因
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a block diagram of a conventional one, Figs. 3 (a) and (bl are respectively forward optical path diagrams,
4 (al) and (b) are optical path diagrams in opposite directions, respectively. In the figures, 1 is a semiconductor laser, 2 is a Faraday rotator, 3 is a magnet, 4 is an optical fiber, 5 is an incident polarizing lens, 6 58, 6A, 10.11 are lens holders, and 12 is a Faraday rotator holder, respectively.

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザ、入射偏光レンズ、ファラデー回転子、該
入射偏光レンズに対して光学軸が45度傾いた出射偏光
レンズ及び光ファイバが、光軸上に順次配設されてなる
モジュールにおいて、該入射偏光レンズ及び該出射偏光
レンズのそれぞれのレンズホルダが、該ファラデー回転
子に直流磁界を付与する磁石より構成されてなることを
特徴とする光アイソレータ付レーザモジュール。
A module in which a semiconductor laser, an input polarizing lens, a Faraday rotator, an output polarizing lens whose optical axis is inclined at 45 degrees with respect to the input polarizing lens, and an optical fiber are sequentially arranged on the optical axis, the input polarizing lens and a laser module with an optical isolator, wherein each lens holder of the output polarizing lens is constituted by a magnet that applies a DC magnetic field to the Faraday rotator.
JP3386785A 1985-02-22 1985-02-22 Laser module with optical isolator Pending JPS61193118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3386785A JPS61193118A (en) 1985-02-22 1985-02-22 Laser module with optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3386785A JPS61193118A (en) 1985-02-22 1985-02-22 Laser module with optical isolator

Publications (1)

Publication Number Publication Date
JPS61193118A true JPS61193118A (en) 1986-08-27

Family

ID=12398454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3386785A Pending JPS61193118A (en) 1985-02-22 1985-02-22 Laser module with optical isolator

Country Status (1)

Country Link
JP (1) JPS61193118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275068A2 (en) * 1987-01-14 1988-07-20 Siemens Aktiengesellschaft Optical arrangement for converting divergently emitted polarized radiation of a semiconductor-laser into convergent radiation without feedback
JPH01261616A (en) * 1988-04-13 1989-10-18 Namiki Precision Jewel Co Ltd Optical isolator
JPH0222619A (en) * 1988-07-11 1990-01-25 Nec Corp Optical isolator and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275068A2 (en) * 1987-01-14 1988-07-20 Siemens Aktiengesellschaft Optical arrangement for converting divergently emitted polarized radiation of a semiconductor-laser into convergent radiation without feedback
JPH01261616A (en) * 1988-04-13 1989-10-18 Namiki Precision Jewel Co Ltd Optical isolator
JPH0222619A (en) * 1988-07-11 1990-01-25 Nec Corp Optical isolator and its production

Similar Documents

Publication Publication Date Title
US4375910A (en) Optical isolator
JP2710451B2 (en) Polarization independent optical isolator
JPH10161076A (en) Optical device using magnetooptical effect
US5500915A (en) Optical fiber terminal pitted with optical isolator
JPS61193118A (en) Laser module with optical isolator
JPH06265819A (en) Optical isolator
JPS5828561B2 (en) optical isolator
JPS597312A (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP2004029334A (en) Optical isolator module
JP3973975B2 (en) Optical isolator
JP3075435B2 (en) Optical isolator
JPS6221119A (en) Semiconductor laser module with optical isolator
JP3142655B2 (en) Optical isolator
JP3278999B2 (en) Optical isolator
JP2526604B2 (en) Semiconductor laser module with optical isolator
JP2840711B2 (en) Optical isolator
JPH0741507U (en) Faraday mirror
JPH08184785A (en) Optical fiber type optical system parts
JPH03135512A (en) Faraday rotator
JPS59184584A (en) Semiconductor laser module
JPH0277717A (en) Arrangement structure of magnetooptical crystal and permanent magnet
JP3049551B2 (en) Optical isolator
JPS62218922A (en) Laser diode module
JPS6240423A (en) Laser module provided with light isolator