JPS61190059A - Thermal spraying method - Google Patents

Thermal spraying method

Info

Publication number
JPS61190059A
JPS61190059A JP60029120A JP2912085A JPS61190059A JP S61190059 A JPS61190059 A JP S61190059A JP 60029120 A JP60029120 A JP 60029120A JP 2912085 A JP2912085 A JP 2912085A JP S61190059 A JPS61190059 A JP S61190059A
Authority
JP
Japan
Prior art keywords
powder
fine powder
pulverous
gas
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60029120A
Other languages
Japanese (ja)
Other versions
JPH0365430B2 (en
Inventor
Tsukasa Sakurada
司 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSHU CERAMIC KK
Original Assignee
SHINSHU CERAMIC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSHU CERAMIC KK filed Critical SHINSHU CERAMIC KK
Priority to JP60029120A priority Critical patent/JPS61190059A/en
Priority to AU45447/85A priority patent/AU4544785A/en
Priority to PCT/JP1985/000376 priority patent/WO1986000648A1/en
Publication of JPS61190059A publication Critical patent/JPS61190059A/en
Publication of JPH0365430B2 publication Critical patent/JPH0365430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Abstract

PURPOSE:To form a thermally sprayed dense film while improving the fluidity of pulverous powder and eliminating bridging by incorporating pulverous powder having the diameter smaller than the diameter of said pulverous powder at a proper ratio into the pulverous powder and supplying the power mixture to a thermal spraying torch. CONSTITUTION:The amorphous pulverous powder 12 having the grain size smaller than the grain size of the pulverous powder 10 for gas spraying is incorporated into said pulverous powder. Amorphous silica, amorphous alumina, etc., having approximately a spherical shape are used for the powder 12. The powder 12 interposes in the space of the powder 10 to lessen the bite of the acute angles of the powder 10 against each other. The powder 12 rolls when the powder 10 is supplied into the gas spraying torch. The bite of the acute angles of the powder 10 against each other is minimized by such bearing effect, by which the bridging is thoroughly eliminated. Uniform film having no variance in the thickness is thus formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶射方法に関し、一層詳細には、熱源としてガ
スを使用した場合においてもプラズマジェット溶射・ア
ーク溶射と同等の品質の高精度溶射を行うことができ、
しかもセラミック微粉末をも十分に溶射することのでき
る溶射方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a thermal spraying method, and more particularly, it is capable of achieving high-precision thermal spraying with the same quality as plasma jet thermal spraying and arc thermal spraying even when gas is used as a heat source. can be done,
Moreover, the present invention relates to a thermal spraying method that can sufficiently spray even fine ceramic powder.

(従来の技術) 金属、セラミック、サーメット等の微粉末状溶射材料を
溶射トーチによって溶融して素材上に被膜を形成する、
いわゆる溶射技術が普及してきている。
(Prior art) A method of melting fine powder thermal spray materials such as metals, ceramics, and cermets with a thermal spray torch to form a coating on the material.
So-called thermal spraying technology is becoming popular.

この溶射方法によるときは素材の温度を200”C以下
に保って行なえ、素材の熱変形を生じさせないなど多く
の利点がある。
This thermal spraying method has many advantages, such as keeping the temperature of the material below 200''C and preventing thermal deformation of the material.

(発明が解決しようとする問題点) 従来は、主として溶射に使用されているのは重装備の大
型装置によるプラズマジェット溶射、アーク溶射であり
、熱源としてガスを使用するガス溶射は使用範囲が制限
されている。このガス溶射方法によるときは粉状体から
成る溶射材料を溶かすエネルギーが十分でないため溶射
後熔融粒子の。
(Problems to be solved by the invention) Conventionally, the main methods used for thermal spraying are plasma jet thermal spraying and arc thermal spraying using large, heavily equipped equipment, and gas thermal spraying, which uses gas as a heat source, has a limited range of use. has been done. When this gas spraying method is used, there is not enough energy to melt the sprayed material made of powder, so molten particles remain after spraying.

積層によって素材表面に形成されるガス溶射被膜の状態
が不良となり、ガス溶射被膜内に気孔や結合不良の部分
が存在し溶射被膜が不均一になりやすいという欠点が特
に大きくあられれる。このため、ガス溶射においては精
度が全く問題とされない金属肉盛り等が主となり、金属
以上に高温を要求するセラミック溶剤材料を使用する場
合においては、ガス溶射では十分に溶射材が熔融しない
ために生ずる各種欠点が一層大きくなり不都合が多く、
精度の良い溶射は行い難いためやむを得ずプラズマジェ
ット溶射、アーク溶射が採用されている。
The main drawback is that the gas sprayed coating formed on the surface of the material becomes poor due to lamination, and the gas sprayed coating tends to have pores and poor bonding, making the sprayed coating non-uniform. For this reason, gas spraying is mainly used for metal overlays where accuracy is not an issue, and when using ceramic solvent materials that require higher temperatures than metals, gas spraying does not melt the sprayed material sufficiently. The various defects that arise become even bigger and there are many inconveniences,
Because accurate thermal spraying is difficult to perform, plasma jet thermal spraying and arc thermal spraying are unavoidably used.

しかしながらガス溶射方法は設備費が少なくて済むなど
の利点をも有することから、本発明者は、ガス溶射にお
ける火力、温度を上げることによってではなく、溶射材
料の状態に注目して、上記の問題を解決することができ
ることを見出したものである。
However, since the gas spraying method has advantages such as low equipment costs, the inventors of the present invention solved the above problem by focusing on the condition of the sprayed material, rather than by increasing the thermal power and temperature in gas spraying. It was discovered that it is possible to solve the problem.

ガス溶射によって素材の変質なしに気孔や結合不良のな
い均一な被膜を得るためには、熱源の弱い状態で溶融す
る、できる限り細かい微粉末の溶射材料を用いればよい
In order to obtain a uniform coating without pores or poor bonding without deteriorating the material by gas spraying, it is best to use a thermal spray material that is as fine a powder as possible and melts under a weak heat source.

しかしながら、これら溶射材料は、例えば結晶質アルミ
ナを破砕機によって破砕して微粉体に形成するため、微
粉体表面には鋭角部が生じている。
However, since these thermal spray materials are formed into fine powder by crushing, for example, crystalline alumina with a crusher, acute angles are formed on the surface of the fine powder.

このためガス溶射トーチに微粉体を供給する場合に、微
粉体同士が鋭角部によってカミツキ結合して大粒子とな
る、いわゆるブリッジ現象が生じる。
For this reason, when fine powder is supplied to a gas spray torch, a so-called bridging phenomenon occurs in which the fine powders are joined together by sharp edges to form large particles.

このブリッジ現象は微粉体が細かい程顕著に生じる。こ
のためせっかく微粉体を使用しても、上記のブリッジ現
象によって大粒子化し、微粉末を用いる効果が生じない
ばかりか、ブリッジ現象が生じた大粒子とブリッジ現象
が生じない粒子とが混在す、るため、ガス溶射トーチに
よって噴射する際、噴射に波打ち現象が生じ、得られた
被IIf!厚さにバラツキが生じるという弊害がある。
This bridging phenomenon occurs more noticeably as the finer the powder becomes. For this reason, even if a fine powder is used, it becomes large particles due to the bridging phenomenon described above, and not only is the effect of using the fine powder not produced, but also large particles with a bridging phenomenon and particles without a bridging phenomenon coexist. Therefore, when spraying with a gas spray torch, a waving phenomenon occurs in the spray, and the resulting IIf! This has the disadvantage of causing variations in thickness.

このため従来におけるガス溶射法においては、溶射材料
は粒径が5μmのものが限界であり、これよりも粒径の
小さいものは不可能とされていた。
Therefore, in the conventional gas spraying method, the particle size of the thermal spray material is limited to 5 μm, and it has been considered impossible to use particles smaller than this.

発明者は、上記のように5μm以下の溶射材料を用いる
ことができないのは、溶射技術そのものに欠陥があるわ
けではなく、ガス溶射トーチに供給する前段階である輸
送段階での溶射材料のブリッジ現象に問題があることに
鑑み、ブリッジ現象が生じない微粉体を使用するガス溶
射方法について検討を重ねた結果、本発明を完成するに
至ったものである。
The inventor believes that the reason why it is not possible to use thermal spray material with a diameter of 5 μm or less as described above is not due to a defect in the thermal spraying technology itself, but rather due to the bridge of the thermal spray material in the transportation stage before supplying it to the gas spray torch. In view of the problem with this phenomenon, the present invention was completed as a result of repeated studies on a gas spraying method using fine powder that does not cause the bridging phenomenon.

なお本発明方法は、ガス溶射法のみでなく、プラズマジ
ェットおよびその他の熱源を利用した溶射法によっても
、溶射できるのはもちろんである。
It goes without saying that the method of the present invention can be applied not only to gas spraying methods but also to thermal spraying methods that utilize plasma jets and other heat sources.

(問題点を解決するための手段) すなわち本発明の目的とするところは、例えば破砕によ
って形成された微粉体など、たとえ表面に鋭角部がある
微粉体であっても、微粉体同士の鋭角部のカミフキによ
るブリッジ現象を生じさせることなく輸送することので
きる微粉体とし、しかも、ガス熱源によって十分に溶融
する粒度に制限してなる低融点の微粉体によって、セラ
ミックであっても十分に高精度で溶射することのできる
ガス溶射方法を提供するにあり、その特徴とするところ
は、微粉状の溶射材を溶射トーチに供給する溶射方法に
おいて、微粉体として該微粉体よりも小径の微粉末を適
宜量混入して成る微粉体を使用することにある。
(Means for Solving the Problems) In other words, the object of the present invention is to eliminate the sharp corners between fine powders, even if the fine powders have acute angles on their surfaces, such as fine powders formed by crushing. The fine powder can be transported without causing the bridging phenomenon caused by flaking, and the low melting point fine powder is limited to a particle size that can be sufficiently melted by a gas heat source, making it possible to achieve sufficiently high precision even with ceramics. The purpose of the present invention is to provide a gas thermal spraying method that can perform thermal spraying with The purpose is to use fine powder mixed in an appropriate amount.

(作用) 本発明においては、ガス溶射用の微粉体として、通常は
粘土状で流動性をグミっている程度の微粉体の流動性を
も良好とし、ガス溶射トーチにブリッジ現象をおこすこ
となく安定した状態で供給することが最も重要となる。
(Function) In the present invention, as a fine powder for gas thermal spraying, the fluidity of the fine powder, which is normally clay-like and gummy, can be improved without causing a bridging phenomenon in the gas thermal spraying torch. The most important thing is to supply it in a stable condition.

第1図は微粉体同士のカミツキによるブリッジ現象を示
す。図に示すように微粉体の鋭角部同士のカミツキによ
ってブリッジ現象が生じる。このブリッジ現象は前記し
たように微粉体が5μm以下の小粒で、径が小さくなれ
ばなる程顕著に生じる。なお従来、微粉体を界面活性剤
で処理して、微粉体表面に界面活性剤の被膜を形成し、
微粉体に疏水性を付与して、微粉体の滑りをよくする微
粉体供給方法があることを付記する。しかしながらこの
方法によるも、粒子径が大なるときは有効と言えるが、
粒子径が5μm以下の細かいものであるときは、やはり
カミツキによるブリッジ現象の発生を抑えられない。
FIG. 1 shows the bridging phenomenon caused by the clumps between fine powders. As shown in the figure, a bridging phenomenon occurs due to the sharp edges of the fine powder. As described above, this bridging phenomenon occurs more prominently when the fine powder is a small particle of 5 μm or less, and the smaller the diameter is. Conventionally, fine powder is treated with a surfactant to form a surfactant film on the surface of the fine powder.
It should be noted that there is a method for supplying fine powder that improves the slippage of the fine powder by imparting hydrophobicity to the fine powder. However, although this method can be said to be effective when the particle size is large,
When the particle size is as small as 5 μm or less, the bridging phenomenon due to shavings cannot be suppressed.

本発明において特徴的なことは、第2図に示すように微
粉体10に、微粉体10よりも粒径の小さなX線構造的
に無定形(アモルファス)の微粉末12を混入させると
ころにある。無定形微粉末はアモルファス状シリカ、ア
モルファス状アルミナなどがある。無定形微粉末12は
図に示されるようにほぼ球状をなし1、これが微粉体1
0の間隙内に介在することから、まず微粉体10同士を
遠ざけ、物理的に微粉体10の鋭角同士のカミツキを少
なくする。またさらに微粉体10がガス溶射トーチ内に
供給される際無定形微粉体12が転勤する、いわゆるベ
アリング効果を生ずることから、微粉体10の鋭角部同
士のカミツキを一層抑止するとともに、たとえ一部にカ
ミツキを生じてもこれを引離す作用が生じ、結局微粉体
10の鋭角部同士のカミツキを極小にすることができ、
ブリッジ現象の発生をほぼ完全に抑止することができる
The characteristic feature of the present invention is that, as shown in FIG. 2, a fine powder 12 having a particle size smaller than that of the fine powder 10 and having an amorphous X-ray structure is mixed into the fine powder 10. . Amorphous fine powders include amorphous silica and amorphous alumina. As shown in the figure, the amorphous fine powder 12 has an almost spherical shape 1, and this is the fine powder 1.
Since the fine powders 10 are present in the gap of 0, the fine powders 10 are first kept away from each other to physically reduce the sharpness between the fine powders 10 at acute angles. Furthermore, when the fine powder 10 is supplied into the gas spraying torch, the amorphous fine powder 12 is transferred, creating a so-called bearing effect, which further prevents the sharp edges of the fine powder 10 from being jammed together, and even if some Even if slits occur, an action is created to separate them, and as a result, the slits between the sharp edges of the fine powder 10 can be minimized,
The occurrence of the bridging phenomenon can be almost completely suppressed.

なお無定形微粉体は、界面活性被膜による疏水性処理を
施すことによって滑り効果を生じさせれば一層好適であ
る。さらに同時に微粉体にも界面活性剤によって表面に
トリメチルシロキシル基等の層を形成する流水処理を施
しておけば完璧である。
Further, it is more preferable that the amorphous fine powder is subjected to a hydrophobic treatment using a surface active coating to produce a sliding effect. Furthermore, it is perfect if the fine powder is also subjected to running water treatment using a surfactant to form a layer of trimethylsiloxyl groups on the surface.

無定形微粉末の混入量は特に限定されないが溶射材であ
る微粉体に対して1%以下の少量で十分有効であり0.
1%でも効果を有する。
The amount of amorphous fine powder mixed in is not particularly limited, but a small amount of 1% or less is sufficiently effective for the fine powder that is the thermal spray material.
Even 1% has an effect.

無定形微粉末と微粉体との材質の関係も特に限定されな
い。無定形微粉末と微粉体との物理的作用によって上述
のブリッジ現象が抑止されるからである。
The relationship between the materials of the amorphous fine powder and the fine powder is not particularly limited either. This is because the above-mentioned bridging phenomenon is suppressed by the physical interaction between the amorphous fine powder and the fine powder.

しかしながら微粉体がガス溶射トーチ内に供給されて最
終的に使用される際に、異材質の無定形微粉末が混入し
ていると微粉体の加工物等の特性上支障がある場合には
、無定形微粉末は微粉体と同質の無定形のものを用いる
のが好適である。
However, when the fine powder is supplied into the gas spray torch and finally used, if amorphous fine powder of different materials is mixed in, it may cause problems with the properties of the fine powder processed product. It is preferable to use an amorphous fine powder having the same quality as the fine powder.

前述したガス溶射技術においては、ガス溶射材料が例え
ばアルミナ(AIよ OJ)粉末であれば、無定形微粉
末は無定形のアルミナの微粉末を使用するのが好ましい
In the gas spraying technique described above, if the gas spraying material is, for example, alumina (AI or OJ) powder, it is preferable to use amorphous fine alumina powder as the amorphous fine powder.

しかし本発明方法によれば、ガス溶射トーチからの噴射
の際に微粉体中に混入されて無定形微粉末は飛ばされて
しまい、さらに高熱によって気化されてしまうのでガス
溶射被膜中に無定形微粉末は混入して来す、理想的なガ
ス溶射被膜が得られる。そして微粉体が5μmのもので
あってもブリッジ現象が生じないから、微粉状のまま溶
射され、極めて緻密な溶射被膜を得ることができる。
However, according to the method of the present invention, the amorphous fine powder mixed in with the fine powder during injection from the gas spray torch is blown away, and further vaporized by high heat, so the amorphous fine powder is not included in the gas spray coating. Powder is mixed in and an ideal gas spray coating is obtained. Since the bridging phenomenon does not occur even when the fine powder is 5 μm, it is thermally sprayed as a fine powder, and an extremely dense thermal sprayed coating can be obtained.

したがってガス溶射の場合、微粉体と無定形微粉末とは
同材質系のものを使用するのが好ましいが、必ずしも同
材質系のものでなくともよい。
Therefore, in the case of gas spraying, it is preferable that the fine powder and the amorphous fine powder are made of the same material, but they do not necessarily have to be made of the same material.

以下に微粉体の流動試験結果を示す。The results of a flow test of fine powder are shown below.

流動特性は安息角を測定して判別した。表1は各種材料
(無定形微粉末は混入していない)の流動特性を安息角
を測定して、その再現性を検討した結果を示す。
The flow characteristics were determined by measuring the angle of repose. Table 1 shows the results of measuring the angle of repose of the flow characteristics of various materials (not containing amorphous fine powder) and examining the reproducibility.

表1 流動速度はφ2.4の穴径、サンプル70g使用。Table 1 The flow rate was a hole diameter of φ2.4, and a sample of 70 g was used.

測定くり返し数(n =6 ) 安息角及び流動速度測定値の標準偏差(σ)から再現性
は十分あることが判断される。
Number of repeated measurements (n = 6) It is judged that the reproducibility is sufficient from the standard deviation (σ) of the angle of repose and flow velocity measurements.

流動特性の代表値として安息角のみを用いることを目的
に実際に代表し得るか否か安息角と流動特性の相関分析
を行ってみた。
With the aim of using only the angle of repose as a representative value of the flow characteristics, we conducted a correlation analysis between the angle of repose and the flow characteristics to see if it can actually be representative.

その結果危険率5%で有意であることが判った。As a result, it was found to be significant with a risk rate of 5%.

次は無定形粉末としてアモルファスシリカを添加した場
合の流動試験結果である。
The following are flow test results when amorphous silica was added as amorphous powder.

(1) A 1.0z−TiOz系粉末  53〜15
μmの粒径入荷原料粉        安息角 n=5(<り返し)′2″=49.32  σ=0.3
9アモルファスシリカ添加(添加NO64%)n =5
           x =39.20’ tt =
0.45(2)Aj2,0.粉末      25〜5
μmの粒径入荷原料粉        安息角 n=5(<り返し)     Z =64.25  t
t =2.’50アモルファスシリカ添加(添加量1.
5%)n =5           x =38’、
07’ e =0.49’(3) A 11−07−T
iOa系粉末  25〜5pmの粒径入荷原料粉   
     安息角 n=5(<り返し)     z =56.05  t
y =0.42アモルファスシリカ添加(添加量0.6
%)n −5x =38’、50’ σ=0.43以上
の通りかなり有効であることが確認された。
(1) A 1.0z-TiOz powder 53-15
Incoming raw material powder with particle size of μm Angle of repose n = 5 (<reversal) '2'' = 49.32 σ = 0.3
9 Addition of amorphous silica (Additional NO: 64%) n = 5
x = 39.20' tt =
0.45(2)Aj2,0. Powder 25-5
Incoming raw material powder with particle size of μm Angle of repose n = 5 (<return) Z = 64.25 t
t=2. '50 amorphous silica added (addition amount 1.
5%) n = 5 x = 38',
07' e =0.49' (3) A 11-07-T
iOa powder Incoming raw material powder with particle size of 25-5pm
Angle of repose n = 5 (<reversal) z = 56.05 t
y = 0.42 amorphous silica addition (addition amount 0.6
%) n −5x = 38', 50' σ = 0.43 or more, and it was confirmed to be quite effective.

(4) A I!、 0.−TiO,系粉末     
5μmダウンフリー 入荷原料粉 n =1         90.00アモルファスシ
リカ添加(添加i!6.5%)n −535”、74’
   σ=0.85’(5)さらに5μmダウンフリー
の粉末について処理を行ったが同様に効果の確認が出来
た。
(4) AI! , 0. -TiO, based powder
5 μm down-free incoming raw material powder n = 1 90.00 amorphous silica addition (addition i! 6.5%) n -535", 74'
σ=0.85' (5) Furthermore, the treatment was performed on 5 μm down-free powder, and the same effect could be confirmed.

これにより超微粉の定量供給がほぼ可能になった。This has made it almost possible to supply ultrafine powder in a constant quantity.

このことによりかなり硬度のある緻密なガス溶射被膜が
形成出来るようになった。
This made it possible to form a dense gas sprayed coating with considerable hardness.

上記の流動試験結果から明らかなように無定形微粉末を
混入することによって微粉体の安息角が転勤によるベア
リング効果によって、さらに流動性が向上する。これに
よって微粉体が5μm より小径のものであっても前記
したようなブリッジ現象がほとんど生じない。
As is clear from the above flow test results, by mixing the amorphous fine powder, the fluidity is further improved due to the bearing effect due to the relocation of the angle of repose of the fine powder. As a result, even if the fine powder has a diameter smaller than 5 μm, the bridging phenomenon described above hardly occurs.

このため微粉体のすべてを5μmダウンフリー5μmア
ップカットした場合においても2μm程度あるいはそれ
以下、例えば7μmの真球形超微粉体を混ぜることのみ
によって第3図に示す通常の軽便なガス溶射トーチ14
を使用してセラミックを高精度で溶射することができる
。16はガス溶射材供給孔、18は酸素−燃料ガス供給
孔であり、燃料としては、アセチレン、水素などを使用
することができる。微粉体が金属等の低融点溶射材料で
ある場合においては5μm以上であっても何等不都合を
生じない。
For this reason, even if all of the fine powder is cut down by 5 μm and up cut by 5 μm, only by mixing true spherical ultrafine powder of about 2 μm or less, for example, 7 μm, the ordinary and convenient gas spraying torch 14 shown in FIG.
can be used to thermally spray ceramics with high precision. 16 is a gas spraying material supply hole, 18 is an oxygen-fuel gas supply hole, and acetylene, hydrogen, etc. can be used as the fuel. If the fine powder is a low melting point thermal spray material such as a metal, no problem will occur even if the particle size is 5 μm or more.

(実施例) 実施例1 原料として、Att、o3(60%) 、Ti O,(
40%)の複合粉末にアモルファスシリカ0.6%添加
したものを用いて、下地処理としてサンドブラストした
ABS樹脂母材(装飾用、化粧品用ケース)上にガス溶
射した。溶射条件は表1・に示す。、l、0.、Tt 
Oよの粒度分布は5〜25μmであったが、アモルファ
スシリカを0.6%添加したことにより、安息角が56
°から38°に向上した。
(Example) Example 1 As raw materials, Att, o3 (60%), TiO, (
40%) to which 0.6% amorphous silica was added was gas sprayed onto a sandblasted ABS resin base material (decorative, cosmetic case) as a base treatment. The thermal spraying conditions are shown in Table 1. , l, 0. ,Tt
The particle size distribution of O was 5 to 25 μm, but by adding 0.6% amorphous silica, the angle of repose was 56 μm.
It improved from 38° to 38°.

厚さ0.3 mmの緻密な溶射被膜が得られた。母材の
変形も生じなかった。
A dense sprayed coating with a thickness of 0.3 mm was obtained. No deformation of the base material occurred.

表1 A Rhos 、Ti Oxの粉末として、粒度5μm
以下のものを用いたところ、上記と同様の結果が得られ
た。
Table 1 A Rhos, Ti Ox powder, particle size 5 μm
When the following were used, results similar to those described above were obtained.

(発明の効果) 本発明によるときは、ガス溶射と直接的には関連してい
ない、微粉体関係の技術とガス溶射とを結びつけること
によって、次のような顕著な効果を得ることができる。
(Effects of the Invention) According to the present invention, the following remarkable effects can be obtained by combining fine powder-related technology, which is not directly related to gas spraying, with gas spraying.

すなわち、ガス溶射によってプラズマジェット溶射、ア
ーク溶射に匹敵する品質の、精度の良い溶射被膜を形成
することができ、セラミック溶射被膜を軽便、可搬の設
備費の安価な従来型ガス溶射装置によって容易に得るこ
とができる。又、ランニングコストが低くて済み、作業
性が優れている。このため、必要な場所に持ち込んでの
溶射作業が可能となり、溶射装置がある場所まで被処理
物を運搬する必要が無くなり溶射技術の利用範囲が著し
く拡大している。これは、溶射の品質面での要因が、温
度面のみでなくいかに定常的に溶射材を供給するかに大
きくかかっていることを見出すこと、この面での改良に
よって初めて可能となったものであり、従来からの単な
る予想を越えた技術的効果を産み出すこととなったもの
である。
In other words, it is possible to form a sprayed coating with high precision and quality comparable to plasma jet spraying or arc spraying by gas spraying, and it is easy to form ceramic sprayed coatings using conventional gas spraying equipment that is lightweight, portable, and has low equipment costs. can be obtained. In addition, running costs are low and workability is excellent. For this reason, it is now possible to bring the thermal spraying work to the required location, and there is no need to transport the object to be treated to the location where the thermal spraying equipment is located, significantly expanding the scope of use of thermal spraying technology. This was made possible for the first time by discovering that the quality of thermal spraying depends not only on temperature but also on how consistently the spraying material is supplied, and by making improvements in this area. This resulted in a technological effect that exceeded conventional expectations.

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に限定されるものではなく、発明
の精神を逸脱しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微粉体のブリッジ現象を示す説明図、第2図は
無定形微粉末の介在状態を示す説明図、第3図はガス溶
射トーチの断面図である。 10・・・微粉体、12・・・微粉末、14・・・ガス
溶射トーチ、16・・・ガス溶射材供給孔、18・・・
酸素−燃料ガス供給孔。
FIG. 1 is an explanatory diagram showing the bridging phenomenon of fine powder, FIG. 2 is an explanatory diagram showing the intervening state of amorphous fine powder, and FIG. 3 is a cross-sectional view of a gas spray torch. 10... Fine powder, 12... Fine powder, 14... Gas spraying torch, 16... Gas spraying material supply hole, 18...
Oxygen-fuel gas supply hole.

Claims (1)

【特許請求の範囲】[Claims] 1、微粉状の溶射材を溶射トーチに供給する溶射方法に
おいて、微粉体として該微粉体よりも小径の微粉末を適
宜量混入して成る微粉体を使用することを特徴とする溶
射方法。
1. A thermal spraying method in which a thermal spraying material in the form of fine powder is supplied to a thermal spraying torch, and the thermal spraying method is characterized in that a fine powder obtained by mixing an appropriate amount of fine powder with a smaller diameter than the fine powder is used as the fine powder.
JP60029120A 1984-07-06 1985-02-15 Thermal spraying method Granted JPS61190059A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60029120A JPS61190059A (en) 1985-02-15 1985-02-15 Thermal spraying method
AU45447/85A AU4544785A (en) 1984-07-06 1985-07-04 Fluidized method of processing fine powder and a metal spraying method
PCT/JP1985/000376 WO1986000648A1 (en) 1984-07-06 1985-07-04 Fluidized method of processing fine powder and a metal spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029120A JPS61190059A (en) 1985-02-15 1985-02-15 Thermal spraying method

Publications (2)

Publication Number Publication Date
JPS61190059A true JPS61190059A (en) 1986-08-23
JPH0365430B2 JPH0365430B2 (en) 1991-10-11

Family

ID=12267446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029120A Granted JPS61190059A (en) 1984-07-06 1985-02-15 Thermal spraying method

Country Status (1)

Country Link
JP (1) JPS61190059A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161150A (en) * 1986-12-24 1988-07-04 Toyota Motor Corp Formation of heat insulating thermally sprayed layer
US6004667A (en) * 1994-06-30 1999-12-21 Shinshu Ceramics Company, Ltd. Low temperature melt injected anti-microbial films, articles containing such films and methods of manufacture and use thereof
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
WO2020044864A1 (en) * 2018-08-27 2020-03-05 トーカロ株式会社 Method for forming thermal spray coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161150A (en) * 1986-12-24 1988-07-04 Toyota Motor Corp Formation of heat insulating thermally sprayed layer
US6004667A (en) * 1994-06-30 1999-12-21 Shinshu Ceramics Company, Ltd. Low temperature melt injected anti-microbial films, articles containing such films and methods of manufacture and use thereof
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP4601497B2 (en) * 2005-06-28 2010-12-22 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
WO2020044864A1 (en) * 2018-08-27 2020-03-05 トーカロ株式会社 Method for forming thermal spray coating

Also Published As

Publication number Publication date
JPH0365430B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
JP4463472B2 (en) Pre-alloyed stabilized zirconia powder and improved thermal barrier coating
Nouri et al. Powder morphology in thermal spraying
CN105209178B (en) Ternary ceramics hot spray powder and painting method
JP2016511796A5 (en)
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JPS61190059A (en) Thermal spraying method
JP2006200005A (en) Powder for thermal spraying
Ashizawa et al. Plasma‐resistance evaluation of yttrium oxyfluoride coating prepared by aerosol deposition method
JP2018188629A (en) Manufacturing method of thermoplastic molding material powder
JPS6119771A (en) Transportation of fine powder
JP2006176818A (en) Powder for thermal spraying
WO2012008413A1 (en) Refractory metal powder for thermal spraying, and refractory metal thermally-sprayed film and thermally-sprayed components using same
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
Hazra et al. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting
JPS61190063A (en) Thermal spraying method to body weak in high temperature
JPS61190062A (en) Thermally sprayed material
RU2298527C2 (en) Thermally sprayed powder and the method of its production
CN104213000A (en) Laser-cladding-used nickel base alloy powder for producing high-temperature oxidation resistant coating layer
JP4981294B2 (en) Thermal spray coating
CN110681856B (en) Water atomization soft magnetic alloy powder spheroidizing method
JP2012188677A (en) Powder for thermal spraying
Arcondéguy et al. Flame-sprayed glaze coatings: effects of operating parameters and feedstock characteristics onto coating structures
JP4585832B2 (en) Thermal spray powder, thermal spraying method and thermal spray coating
KR20200018290A (en) Cooling structure, float glass production device and float glass production method
JPS58113369A (en) Powder material for melt-spraying and its production