JPS61190011A - Adjustment of mn in molten iron - Google Patents

Adjustment of mn in molten iron

Info

Publication number
JPS61190011A
JPS61190011A JP3179585A JP3179585A JPS61190011A JP S61190011 A JPS61190011 A JP S61190011A JP 3179585 A JP3179585 A JP 3179585A JP 3179585 A JP3179585 A JP 3179585A JP S61190011 A JPS61190011 A JP S61190011A
Authority
JP
Japan
Prior art keywords
value
molten iron
oxide
blowing
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3179585A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakajima
啓之 中島
Satoru Yamaguchi
悟 山口
Koichi Nakamura
中村 皓一
Sadao Nishi
西 貞雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3179585A priority Critical patent/JPS61190011A/en
Publication of JPS61190011A publication Critical patent/JPS61190011A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Abstract

PURPOSE:To obtain a product of which the Mn value in molten iron is adjusted to a target value by blowing pulverous Mn oxide powder having a specific grain size into the molten iron at such a rate at which the Mn value therein attains nearly the target value then decreasing the residual slag to a specific amt. and executing blowing. CONSTITUTION:The Mn value in the molten iron is so adjusted as to attain a -0.50-+0.25% value with respect to the value of the Mn content of the target product by blowing the pulverous Mn oxide having <=2mm grain size into the molten iron by an injection method. The slag amt. is then decreased to <=30kg/T molten iron and thereafter the blowing is executed and, if neces sary, the Mn oxide or Mn alloy iron is added to the molten steel to adjust the Mn value to the target value. The product Mn value is thus obtd. Calcium chloride is preferably compounded with the molten iron in a >=25% range with respect to the content of the Mn oxide if the Mn oxide to be blown to the molten iron is >=5kg/T molten iron.

Description

【発明の詳細な説明】 (従来の技術) 従来溶鉄中Mn の調整法としては転炉での吹錬中に酸
化Mn=i添加し、さらに出鋼後あるいは出鋼中にMn
系合金鉄を添加するものがある。
[Detailed Description of the Invention] (Prior Art) The conventional method for adjusting Mn in molten iron is to add Mn oxide = i during blowing in a converter, and then add Mn after or during tapping.
There are some that add ferroalloy.

なお、他の目的で例えば特公昭57−14733号公報
に示されているように溶融鉄合金の脱燐、脱硫を目的と
して酸化Mnや塩化カルシウムを添加する方法は公知で
あるが、この場合の酸化Mnや塩化カルシウムの効用は
脱燐と脱硫を同時に可能として工程の短縮或いは脱燐作
業の負荷を大巾に緩和し、スラグ発生量を削減するもの
であって成品Mnの値を調整するためのものではない。
Note that for other purposes, for example, as shown in Japanese Patent Publication No. 14733/1980, there is a known method of adding Mn oxide or calcium chloride for the purpose of dephosphorization and desulfurization of a molten iron alloy, but in this case, The effectiveness of Mn oxide and calcium chloride is to enable dephosphorization and desulfurization at the same time, shorten the process or greatly reduce the burden of dephosphorization work, reduce the amount of slag generated, and adjust the value of Mn in the product. It doesn't belong to.

そこで前者のMn調整の技術としての従来の方法では副
材(生石灰軽焼ドロマイト等)の使用量が多いためスラ
グ量が多くなり、(1)式で表わされるMn歩留は第1
図に示す関係からも明らかなように低くなり、その結果
酸化Mnを多く投入するだけの効果が十分得られなかっ
た。
Therefore, in the former Mn adjustment technique, the conventional method uses a large amount of auxiliary materials (quicklime, lightly calcined dolomite, etc.), resulting in a large amount of slag, and the Mn yield expressed by equation (1) is
As is clear from the relationship shown in the figure, it became low, and as a result, the effect of adding a large amount of Mn oxide could not be obtained sufficiently.

吹錬終了後溶鉄中Mn Mn歩留=□・・・・・・・(1)式 %式% この解決法としてあらかじめ脱P1脱Sを行なつた溶P
f使用することにより、少量のスラグ吹錬全実施して高
いMn歩留を得るという方法がある。しかしながら一般
にこの方法は脱P、脱Sの際に溶銑の温度が低下するた
め転炉で投入できる酸化Mnは制限されるという問題が
あり、また溶銑比の限られた場合にはさらに添加できる
酸化Mn1lが少なくなるなどの問題点があった0 (発明の目的) 本発明は、これらの問題点を解決することを目的として
、尚かつ高価なMn系合金鉄の使用を最少限に押えるも
のである。
Mn in the molten iron after blowing Mn yield = □・・・・・・(1) Formula % Formula % As a solution to this, the molten P that has been subjected to P1 removal and S removal in advance
There is a method of obtaining a high Mn yield by performing a small amount of slag blowing by using f. However, in general, this method has the problem that the temperature of the hot metal decreases during deP and S removal, which limits the amount of Mn oxide that can be added to the converter. There were problems such as a decrease in Mn1l (Objective of the Invention) The present invention aims to solve these problems and to minimize the use of expensive Mn-based ferroalloys. be.

(発明の構成) 本発明の要旨とするところは、溶銑中のMn値が目標の
成品MnItの値に対応して一〇、50〜+0.25%
の値となるように、溶銑内に2w以下の酸化Mn微粉を
吹き込んだのち該溶銑を用いて3 o (kg/T鰺)
以下の少量スラグ下における吹錬を行ない必要に応じて
目標のMn値に調整するだめの酸化Mn或いはMn合金
鉄全添加して成品Mn値金得ることにある。またさらに
溶銑に吹込む酸化Mnが5kp/’r溶銑以上の場合塩
化カルシウムを25チ以下の比率で酸化りに対し配合す
ることは有効である。
(Structure of the Invention) The gist of the present invention is that the Mn value in hot metal is 10.50 to +0.25% corresponding to the target product MnIt value.
After blowing Mn oxide fine powder of 2w or less into the hot metal so that the value is 3 o (kg/T mackerel) using the hot metal
The following blowing is carried out under a small amount of slag, and if necessary, Mn oxide or Mn alloy iron is completely added to adjust the target Mn value to obtain a finished product with an Mn value. Furthermore, when the Mn oxide blown into the hot metal is 5kp/'r or more, it is effective to add calcium chloride at a ratio of 25g or less to prevent oxidation.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず、溶銑内に吹込むべき酸化血の量の決定に際しては
次の問題について把握しておくことが必要である。即ち
、 (a)  酸化血吹込量と吹込後溶銑中血の関係(′b
)装入扁と吹止血の関係 である。またこの他酸化Mnヲ吹込時血還元とと同時に
進行する脱Pについても酸化Mの量との関係を把握して
おく必要がある。
First, when determining the amount of oxidized blood to be injected into hot metal, it is necessary to understand the following issues. That is, (a) The relationship between the amount of oxidized blood blown and the blood in hot metal after blowing ('b
) This is the relationship between the charging plate and the bleeding stop. In addition, it is also necessary to understand the relationship between the amount of oxidized Mn and the dephosphorization that proceeds simultaneously with blood reduction when oxidized Mn is injected.

これらの関係については、例えば酸化Mn源として鉄血
鉱石を使用した場合に得られた結果を第2図および第3
図の如く示すことができる。
Regarding these relationships, the results obtained when iron ore is used as the Mn oxide source are shown in Figures 2 and 3.
It can be shown as shown in the figure.

本発明において溶銑での酸化り吹込量を決定する際最も
好ましい方法は吹止血=成品血になるような装入動値X
/ t、第3図から求め、次に溶銑での血値がX′より
やや低くなるように第2図から酸化Mn量を決めること
が最も好ましい。
In the present invention, the most preferable method for determining the amount of oxidation injection in hot metal is the charging movement value
/t, is determined from FIG. 3, and then it is most preferable to determine the amount of Mn oxide from FIG. 2 so that the blood value in hot metal is slightly lower than X'.

この場合装入Mnに対する吹上胤値が7〜8割程度とな
るので溶銑での血狙い値は成品血に対して1〜3割程度
上になることになる。この理由は、X′よ)溶銑Mn値
が高くなった場合少量スラグ吹錬全実施すると吹止血が
成品Mnt−上回ってしまうため、副材等を投入してス
ラグ量を増加させざるをえずコスト的に不利となること
、溶銑血値がX′よシ低いと吹錬中に酸化Mnを多量に
投入するかもしくは、Mn系合金鉄を多量に投入しなけ
ればならなくなり前者は脱P銑であるために溶銑温度が
低く投入できる酸化Mn量が限られるという理由で、後
者はコストが犬となる理由で得策とはいえないこと、な
どによる。
In this case, since the blow-up seed value for the charged Mn is about 70 to 80%, the blood target value for hot metal is about 1 to 30% higher than the finished blood. The reason for this is X') When the hot metal Mn value becomes high, if a small amount of slag blowing is carried out, the blowing stop will exceed the finished product Mnt, so it is necessary to increase the slag amount by adding auxiliary materials etc. There is a cost disadvantage, and if the molten metal blood value is lower than This is because the hot metal temperature is low and the amount of Mn oxide that can be input is limited, and the latter is not a good idea because the cost is high.

またX/よシやや低めを狙う理由は、バラツキを考慮し
たためと吹錬時の調整の余地を残しておくためである。
Also, the reason for aiming for a slightly lower X/Y is to take into account variations and to leave room for adjustment during blowing.

ただ成品Mnの高い鋼種の場合は、第2図に示すように
、酸化Mn量に対する溶銑中Mn増加量が酸化Mn1l
の多い領域では飽和気味となることと、この領域での脱
Pも少量スラグ吹錬を行なう上で十分であるため、溶銑
中Mnが飽和気味となる1、00〜1.05チとなるよ
うな酸化Mn量が適肖な値といえ、これ以上酸化Mr1
を増やすことは温度的にもコスト的にも不利となる。し
たがって成品血が1.5096のように特に高い鋼種に
対しては、溶銑での血値は0.45〜0.50 %程度
低めを狙うということになり、また成品Mn 0.80
 %程度の鋼種に対しては0.20〜0.25 %程度
高めを狙うことになる。したがって本発明による溶銑で
の血値は目標の成品Mn量の値に対して一〇、50チ〜
+0.25壬となる。
However, in the case of steel types with high finished product Mn, as shown in Figure 2, the increase in Mn in the hot metal relative to the amount of Mn oxide is
In the region where there is a lot of Mn, it becomes saturated, and since deP in this region is sufficient for a small amount of slag blowing, the Mn in the hot metal should be 1,00 to 1.05, where it is a little saturated. An appropriate value is the amount of Mn oxidized.
Increasing the temperature is disadvantageous both in terms of temperature and cost. Therefore, for steel types with a particularly high product blood value such as 1.5096, the blood value in hot metal should be aimed at a low value of about 0.45 to 0.50%, and the product Mn 0.80
%, the aim is to increase it by about 0.20 to 0.25%. Therefore, the blood value in the hot metal according to the present invention is 10,50 points to the target product Mn content value.
+0.25 壬.

尚、規定の酸化Mn量で脱Pが十分でない時は酸化鉄を
同時に配合することにより脱Pi行なわなければならな
い。
Incidentally, if the predetermined amount of Mn oxide is not sufficient to remove the phosphor, it is necessary to simultaneously add iron oxide to remove the phosphor.

次に、吹込む酸化Mnの形態については、次の如く特定
する。即ち、溶銑中に吹込む酸化Mnの粒度は吹込む際
のランス詰りを考慮すると細かい程好ましい。しかしな
がら粒度をあまり細かくするとコスト的に不利となるた
め、ランス詰り発生、防止に十分な粒度である2間以下
が望ましい。
Next, the form of Mn oxide to be injected is specified as follows. That is, the particle size of the Mn oxide injected into the hot metal is preferably as fine as possible in consideration of clogging of the lance during injection. However, if the particle size is too fine, it will be disadvantageous in terms of cost, so it is desirable that the particle size is 2 or less, which is sufficient to prevent lance clogging.

また、吹錬時におけるスラグボリュームに関しては、第
1図よりスラグボリュームが増加するにつれてMn歩留
は減少することがわかる。したがってMnロスを少なく
するために、スラグボリュームは廂歩留7割以上を確保
できる30に9/T 以下が良い。
Regarding the slag volume during blowing, it can be seen from FIG. 1 that as the slag volume increases, the Mn yield decreases. Therefore, in order to reduce the Mn loss, the slag volume is preferably 30 to 9/T or less to ensure a yield of 70% or more.

その他酸化Mnの必要吹込量が過大の場合には次の如き
補助的手段が有効である。即ち、溶銑に酸化Mn f吹
込む際塩化カルシウムを添加するとMnの酸化ロスを防
ぐ働きがあるため、hの酸化ロスが多くなりはじめる酸
化Mn 5 kg/′T、P以上の場合、同時に塩化カ
ルシウムを配合することが望ましい。
In addition, when the required amount of Mn oxide to be blown is excessive, the following auxiliary measures are effective. In other words, adding calcium chloride when injecting Mn oxide into hot metal works to prevent the oxidation loss of Mn, so when the oxidation loss of h starts to increase and the amount of Mn oxide exceeds 5 kg/'T, P, calcium chloride is added at the same time. It is desirable to blend.

またその配合率は塩化カルシウムのコストが高いことか
ら酸化Mnに対して25%以下が望ましい。
Further, since the cost of calcium chloride is high, the blending ratio is preferably 25% or less based on Mn oxide.

(作用) 本発明は溶銑に対して前述の如くあらかじめ決定した酸
化Muの吹込#を、2B以下の微粉状にしてインジェク
ション法により、吹込み、調整する。
(Function) In the present invention, Mu oxide is blown into hot metal at a predetermined injection number as described above in the form of a fine powder of 2B or less by an injection method.

次いで転炉内の残スラグについては炉壁保護用等の必要
量以外は排出し、吹錬後に30 kp&溶鉄を超えない
ようにする。
Next, the remaining slag in the converter is discharged except for the amount necessary for protecting the furnace wall, so that the slag does not exceed 30 kp & molten iron after blowing.

吹錬中或いは吹錬後、必要に応じて目標のMn値とする
ように酸化血或いは血合金鉄を添加調整して成品Mn値
を得る。
During or after blowing, oxidized blood or blood alloy iron is added and adjusted as necessary to obtain a target Mn value, thereby obtaining a finished product Mn value.

(実施例) 本発明の実施例を第1表に示す。(Example) Examples of the present invention are shown in Table 1.

実施例1は塩化カルシウム不使用の例で、実施例2は塩
化カルシュラムを使用した場合の例である。いずれの場
合も溶銑吹込による少量のMn源によって成品目標血に
達しており、吹錬後に追加するMn源は大幅に削減可能
となった。
Example 1 is an example in which calcium chloride is not used, and Example 2 is an example in which calcium chloride is used. In all cases, the target level of finished product was achieved with a small amount of Mn source by hot metal injection, and it became possible to significantly reduce the Mn source added after blowing.

実施例 第  1  表Example Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラグボリュームと血歩留との関係を示す図、
第2図は鉄血鉱石原単位と鉄Mn鉱石吹込後のPおよび
Mnの量の関係を示、す図、第3図は装入Mnと吹止M
nとの関係を示す図である。 第1図 スつグ本゛すニーム(にV丁)
Figure 1 is a diagram showing the relationship between slag volume and blood yield;
Figure 2 shows the relationship between iron-blood ore basic unit and the amount of P and Mn after injection of iron-Mn ore, and Figure 3 shows the relationship between charged Mn and blow-off Mn.
It is a figure showing the relationship with n. Fig. 1 Sugumoto Nimes (Ni V-cho)

Claims (1)

【特許請求の範囲】 1 溶銑中のMn値が目標の成品Mn量の値に対して−
0.50〜+0.25%の値となるように溶銑内に粒径
2mm以下の酸化Mn微粉を吹込んだのち該溶銑を用い
て30kg/T溶鉄以下の少量スラグ下における吹錬を
行ない、必要に応じて目標のMn値に調整するため酸化
Mn或いはMn合金鉄を添加して放屁Mn値を得ること
を特徴とする溶鉄中のMn調整方法。 2 溶銑に吹込む酸化Mnが5kg/T溶鉄以上の場合
、塩化カルシウムを前記酸化Mnの吹込み量に対して2
5%以下の範囲で配合する特許請求の範囲第1項記載の
溶鉄中のMn調整方法。
[Claims] 1. The Mn value in hot metal is - with respect to the target Mn amount in the product.
After blowing Mn oxide fine powder with a particle size of 2 mm or less into the hot metal so as to have a value of 0.50 to +0.25%, the hot metal is used to perform blowing under a small amount of slag of 30 kg / T molten iron or less, A method for adjusting Mn in molten iron, which comprises adding Mn oxide or Mn alloy iron to obtain a flattened Mn value in order to adjust it to a target Mn value as necessary. 2 When the Mn oxide injected into the hot metal is 5 kg/T molten iron or more, add calcium chloride at a rate of 2 to the amount of Mn oxide injected into the hot metal.
A method for adjusting Mn in molten iron according to claim 1, wherein Mn is blended in a range of 5% or less.
JP3179585A 1985-02-20 1985-02-20 Adjustment of mn in molten iron Pending JPS61190011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3179585A JPS61190011A (en) 1985-02-20 1985-02-20 Adjustment of mn in molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3179585A JPS61190011A (en) 1985-02-20 1985-02-20 Adjustment of mn in molten iron

Publications (1)

Publication Number Publication Date
JPS61190011A true JPS61190011A (en) 1986-08-23

Family

ID=12341000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3179585A Pending JPS61190011A (en) 1985-02-20 1985-02-20 Adjustment of mn in molten iron

Country Status (1)

Country Link
JP (1) JPS61190011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523331B2 (en) 2005-12-27 2013-09-03 Nederlandse Organisatie voor togegepast-natuurwetenschappelijk Onderzoek TNO Material jet system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884913A (en) * 1981-11-13 1983-05-21 Sumitomo Metal Ind Ltd Refining agent for treatment of molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884913A (en) * 1981-11-13 1983-05-21 Sumitomo Metal Ind Ltd Refining agent for treatment of molten iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523331B2 (en) 2005-12-27 2013-09-03 Nederlandse Organisatie voor togegepast-natuurwetenschappelijk Onderzoek TNO Material jet system

Similar Documents

Publication Publication Date Title
JPH02236235A (en) Smelt reduction method of ni ore and smelting furnace thereof
JPS61190011A (en) Adjustment of mn in molten iron
JP2000109924A (en) Method for melting extra-low sulfur steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JP2808045B2 (en) Unfired manganese ore pellets for steel refining
JP6844267B2 (en) Hot metal refining method
JP4181893B2 (en) Hot metal refining method
RU2067998C1 (en) Method of blast furnace washing
JP6691324B2 (en) Manufacturing method of low nitrogen steel
RU2087538C1 (en) Method of conduction of blast-furnace smelting
JPH01247527A (en) Method for adjusting carbon content
JP2587286B2 (en) Steelmaking method
JP2944820B2 (en) Operation method of ferronickel firing furnace
JP3577365B2 (en) Hot metal pretreatment method
JP2007119813A (en) Method for refining molten iron
JP2002332516A (en) Method for dispersing a large amount of fine oxide in molten steel
JP2626771B2 (en) Converter blowing method using pretreated hot metal
SE447580B (en) INJECTION METAL SURGICAL PROCEDURE FOR MANUFACTURING OF ALUMINUM-TAKEN STEEL WITH LOW CARBON AND SILICONE CONTENT
JP2899993B2 (en) Converter refining method
SU1401053A1 (en) Method of producing metallurgical flux
RU2134299C1 (en) Method of melting ferromanganese in blast furnace
JP4751010B2 (en) Blast furnace operation method
JP3611664B2 (en) Hot metal pretreatment method
JPH0247215A (en) Manufacture of extremely low carbon steel
JPH0726140B2 (en) Converter steelmaking