JPS61189426A - Layer thickness temperature monitor - Google Patents

Layer thickness temperature monitor

Info

Publication number
JPS61189426A
JPS61189426A JP60029406A JP2940685A JPS61189426A JP S61189426 A JPS61189426 A JP S61189426A JP 60029406 A JP60029406 A JP 60029406A JP 2940685 A JP2940685 A JP 2940685A JP S61189426 A JPS61189426 A JP S61189426A
Authority
JP
Japan
Prior art keywords
temperature
layer thickness
optical fiber
memory alloy
temperature monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60029406A
Other languages
Japanese (ja)
Inventor
Yasuaki Kido
貴堂 靖昭
Minoru Asada
浅田 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Original Assignee
TOYAMA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA KOGYO KOUTOU SENMON GATSUKOUCHIYOU filed Critical TOYAMA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Priority to JP60029406A priority Critical patent/JPS61189426A/en
Publication of JPS61189426A publication Critical patent/JPS61189426A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/483Measuring temperature based on the expansion or contraction of a material the material being a solid using materials with a configuration memory, e.g. Ni-Ti alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/50Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction
    • G01K5/52Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction with electrical conversion means for final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To attain simple observation of temperature change over a long distance by making use of a defect of an optical fiber and combining the optical fiber with a shape memory alloy to constitute a temperature sensor. CONSTITUTION:Since a transmission loss proportional to the radius of curvature of an arc shape formed by an optical fiber 15 is generated as the defect of the optical transmission characteristics of the optical fiber, the attenuation of carrying light which is proportional to a peripheral temperature coinciding with the length of spiral shape memory alloy 12 is generated. In the optical fiber 15 forming a large circle at the maximum temperature in a measuring range by using said characteristics effectively, the radius of curvature removing the transmission loss is set up. When the optical fiber cable is drown and moved, the alloy 12 is contracted, a shape holding material 14 is pulled by a abutting plate 13, and the arc shape formed by the fiber 15 is turned to a small circuit having a small radius of curvature, the loss of transmission light is increased. Consequently, the layer thickness temperature can be continuously measured.

Description

【発明の詳細な説明】 (技術分野) 本発明は、大気、海水、湖水等の高さ乃至深さ、すなわ
ち、物質層の層厚によって変化する層厚温度を元ファイ
バを利用して測定し観測する層厚温度モニタに関し、特
に、元ファイバの欠点を利用して連続的に層厚温度を測
定し、観測し得るようにしたものである。
[Detailed Description of the Invention] (Technical Field) The present invention uses an original fiber to measure the layer thickness temperature, which changes depending on the height or depth of the atmosphere, seawater, lake water, etc., that is, the layer thickness of the material layer. Regarding the layer thickness temperature monitor for observation, in particular, the layer thickness temperature can be continuously measured and observed by taking advantage of the defects of the original fiber.

(従来技術) 従来、元ファイバを利用したこの種層厚温度モニタにつ
いては、元ファイバの透過光量あるいは反射光量を用い
た温度センサのみならず、各種のセンサの開発が検討さ
れている。しかしながら、従来の元ファイバを用いた温
度センサにおいては、元ファイバの利点のみを利用して
いたので、利用範囲が限定されていた。
(Prior Art) Conventionally, regarding this type of layer thickness temperature monitor using an original fiber, development of various sensors as well as a temperature sensor using the amount of transmitted light or reflected light of the original fiber has been considered. However, in the conventional temperature sensor using the original fiber, only the advantages of the original fiber were utilized, so the range of use was limited.

一方、従来の温度測定装置には、その用途に応じて種々
の装置が開発されているが、その大部分1個所から他の
個所に到る間の連続的な温度の変化を測定するのは困難
であった。
On the other hand, various types of conventional temperature measurement devices have been developed depending on their uses, but most of them are not capable of measuring continuous temperature changes from one location to another. It was difficult.

さらに、従来の層厚温度モニタζこおいては、例えば、
地上と海底間における海水層厚温度分布を観測する場合
など、各測定地点間の距離が充分長い場合には、サンプ
リング法により各地点の製置測定を反復して行なうこと
になるので、測定に著しく手間が掛り、従来から、長距
離間の温度変化観測を簡便に行ない得る自動遠隔温度測
定装置としての層厚温度モニタの開発が要望されていた
Furthermore, in the conventional layer thickness temperature monitor ζ, for example,
When the distance between each measurement point is long enough, such as when observing the seawater layer thickness and temperature distribution between the ground and the ocean floor, the sampling method is used to repeatedly perform measurements at each point. This is extremely time consuming, and there has been a demand for the development of a layer thickness temperature monitor as an automatic remote temperature measurement device that can easily observe temperature changes over long distances.

(発明の目的) 本発明の目的は、上述した従来の欠点を除去するととも
に従来の要望に応え、元ファイバの欠点とするところを
利用するとともに、元ファイバと形状記憶合金とを組合
わせて温度センサを構成し、長距離間の温度変化を連続
的に測定可能にして自動遠隔温度測定システムに適用し
得るようlこした層厚温度モニタを提供することにある
(Objective of the Invention) The object of the present invention is to eliminate the above-mentioned conventional drawbacks, meet the conventional demands, utilize the disadvantages of the original fiber, and combine the original fiber with a shape memory alloy to It is an object of the present invention to provide a layer thickness temperature monitor in which a sensor is configured to be able to continuously measure temperature changes over a long distance and to be applicable to an automatic remote temperature measurement system.

(発明の構成) すなわち、本発明層厚温度モニタは、少なくとも円弧部
を有する形状(こ保持した元ファイバに所定形状の形状
記憶合金を係合させ、当該形状記憶合金の周囲温度の変
化にほぼ比例した前記所定形状の変化に応じて前記元フ
ァイバにおける前記円弧部の曲率を変化させるように構
成した温度センサと、前記元ファイバに所定光量の光を
入射させる光源装置と、前記元ファイバを通過した元の
光itを検出する受光装置とを備え、前記元ファイバを
通過する元の前記円弧部の曲率に応じた減衰量に基づい
て前記形状記憶合金の周囲温度を測定することにより、
前記温度センサを移動させて物質層中の層厚に応じた温
度変化を連続して観測し得るようにしたことを特徴とす
るものである。
(Structure of the Invention) That is, the layer thickness temperature monitor of the present invention has a shape having at least an arcuate portion (a shape memory alloy having a predetermined shape is engaged with the original fiber held in this shape), and the shape memory alloy has a shape having at least a circular arc portion. a temperature sensor configured to change the curvature of the arc portion of the original fiber in accordance with a proportional change in the predetermined shape; a light source device that makes a predetermined amount of light enter the original fiber; and a light receiving device that detects the original light it, and measures the ambient temperature of the shape memory alloy based on the amount of attenuation according to the curvature of the original circular arc portion passing through the original fiber,
The present invention is characterized in that by moving the temperature sensor, temperature changes in accordance with the layer thickness in the material layer can be continuously observed.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明層厚温度モニタの全体構成の例を第1図に
示す。図示の構成例においては、レーザ発元素子などの
光源を備えた送信機1の射出光を、モータ8により駆動
して送信機1から繰り出し巻き取るようにしたガラス夷
もしくはプラスチック裏の元ファイバケーブル2を介し
て変換器3に搬送する。変換器3は後lこ詳述するよう
に元ファイバと形状記憶合金とを組合わせて周囲温度の
変化を元ファイバ透過光量の変化に変換するようにした
ものであり、元ファイバケーブル2からこの変換器3に
入射して元量が周囲温度に応じ増減した後に射出される
搬送元は、同様の元ファイバケーブル4を介し、光電変
換素子を備えた受信機5に入射して、変換器3の周囲温
度に対応じた値のアナログ電気信号に変換される。その
アナログ電気信号をアナログ・ディジタル変換器6に導
いてディジタル信号に変換したうえで、いわゆるパーソ
ナルコンピュータと同様に小型に構成した演算処理装置
7に供給し、所要の演算処理を施す。その演算処理の結
果に基づき、モータ8の正逆転および回転速度を制御し
て元ファイバケーブル2および4の長さを変化させ、例
えば海水中等に懸架した変換器3の海水層中における位
fを適切に移動させて層厚温度測定点を連続的に変更す
るとともに、その測定点の位置を計測し、同時に、測定
結果の層厚温度情報を解析して表示器9にディジタル表
示するとともに、層厚温度の分布状態を表示器10tC
グラフィック表示する。
First, an example of the overall configuration of the layer thickness temperature monitor of the present invention is shown in FIG. In the illustrated configuration example, the emitted light from a transmitter 1 equipped with a light source such as a laser emitting element is fed out from the transmitter 1 by a motor 8 and is wound up into a glass or plastic-backed original fiber cable. 2 to the converter 3. The converter 3 is a combination of an original fiber and a shape memory alloy, as will be described in detail later, and converts changes in ambient temperature into changes in the amount of light transmitted through the original fiber. The carrier source, which is injected into the converter 3 and is ejected after the amount increases or decreases depending on the ambient temperature, enters the receiver 5 equipped with a photoelectric conversion element via the same source fiber cable 4, and is transferred to the converter 3. is converted into an analog electrical signal with a value corresponding to the ambient temperature. The analog electrical signal is led to an analog-to-digital converter 6 to be converted into a digital signal, and then supplied to an arithmetic processing unit 7, which has a compact structure similar to a so-called personal computer, and performs necessary arithmetic processing. Based on the results of the arithmetic processing, the forward/reverse rotation and rotational speed of the motor 8 are controlled to change the lengths of the original fiber cables 2 and 4, and for example, the position f in the seawater layer of the transducer 3 suspended in seawater is adjusted. The layer thickness temperature measurement point is continuously changed by appropriately moving it, the position of the measurement point is measured, and at the same time, the layer thickness temperature information from the measurement results is analyzed and digitally displayed on the display 9. Display of thickness temperature distribution state 10tC
Display graphics.

なお、上述の構成による本発明層厚温度モニタにおいて
は、温度測定の対象とする例えば海水層等の層厚範囲、
したがって、測定元搬送用元ファイバケーブル2,4の
長さに応じた測定光の減衰量や各穐パラメータの影響を
考慮して、送信機1に用いる光源素子および受信機5に
用いる光電変換素子の種類を選定する。すなわち、測定
対象層厚が比較的小さく、測定距離範囲が短い場合には
、伝送損失数百dB/kmのプラスチック元ファイバを
使用するとともζこ、光源には発光ダイオード(LED
)を用い、受光素子にはPINフォトダイオード(PD
)を用いる。また、測定対象層厚が比較的大きく、測定
距離範囲が長い場合(こは、伝送損失数dB/kmのガ
ラス元ファイバを使用するとともに、光源にはレーザ発
元素子を用い、受光素子にはアバランシェフォトダイオ
ード(APD)を用いる。
In addition, in the layer thickness temperature monitor of the present invention having the above-described configuration, the layer thickness range of the seawater layer, etc. that is the object of temperature measurement,
Therefore, the light source element used in the transmitter 1 and the photoelectric conversion element used in the receiver 5 are determined by considering the amount of attenuation of the measurement light depending on the length of the measurement source transport fiber cables 2 and 4 and the influence of each parameter. Select the type. In other words, when the layer thickness to be measured is relatively small and the measurement distance range is short, a plastic fiber with a transmission loss of several hundred dB/km may be used, and a light emitting diode (LED) may be used as the light source.
), and a PIN photodiode (PD
) is used. In addition, when the layer thickness to be measured is relatively large and the measurement distance range is long (in this case, a glass fiber with a transmission loss of several dB/km is used, a laser emitting element is used as the light source, and the light receiving element is An avalanche photodiode (APD) is used.

つぎに、本発明層厚装置モニタの要部をなす変換器3の
具体的構成の例を第2図(a) 、 (b)乃至第4図
(al 、 (t))を参照して説明する。
Next, an example of a specific configuration of the converter 3 which forms the main part of the layer thickness device monitor of the present invention will be explained with reference to FIGS. 2(a), (b) to FIG. 4(al, (t)). do.

第2図(a)に高温時の状態を示し、同図(b)に低温
時の状態を示すとともに、白い矢印によって低温時から
高温時への形状変化の方向を示し、黒い矢印によって逆
の形状変化の方向を示す変換器3の構成例においては、
温度の変化に対応した形状の連続的な変化を記憶して再
現する素材を螺旋状に形成した形状記憶合金12と、弾
性を有する通常の素材よりなる形状保持材14に例えば
貼り合わせるなどして常時円弧形状を保持するようにし
た元ファイバ15との一端を固定の当て板11と16と
によりそれぞれ固定するとともに、他端を可動の当て板
13を介して互いに当接させ、間接的に組合わせ、螺旋
状の形状記憶合金12が温度変化に応じて伸縮すると、
当て板13が移動し、その当て板13と固定の当て板1
6とに挾まれての伸縮、丁なわち、周囲温度の変化にほ
ぼ比例して変化するように構成しである。
Figure 2 (a) shows the state at high temperatures, and Figure 2 (b) shows the state at low temperatures, with white arrows indicating the direction of shape change from low temperature to high temperature, and black arrows indicating the direction of shape change from low temperature to high temperature. In the configuration example of the transducer 3 that indicates the direction of shape change,
A shape memory alloy 12 made of a spirally formed material that memorizes and reproduces continuous changes in shape in response to changes in temperature is bonded to a shape retaining material 14 made of an ordinary elastic material. One end of the original fiber 15 is fixed to the fixed backing plates 11 and 16, and the other ends are brought into contact with each other via the movable backing plate 13, so that the assembly is indirectly performed. In addition, when the spiral shape memory alloy 12 expands and contracts in response to temperature changes,
The caul plate 13 moves, and the caul plate 13 and the fixed caul plate 1
It is constructed so that it can expand and contract between 6 and 6, that is, it changes approximately in proportion to changes in ambient temperature.

しかして、元ファイバは、その光伝送特性の欠点として
、彎曲部においてはその彎曲の曲率半径lこ比例した盆
の高次モード成分光が漏洩して伝送損失を生する。した
がって、第5図に例示するように、元ファイバ15がな
す円弧形状の曲率半径にほぼ比例した伝送損失が生じ、
したがって、螺旋状形状記憶合金12の長さ、したがっ
て、周囲&度に比例した搬送itの減衰が生ずることに
なる。本発明層厚温度モニタにおいては、形状記憶合金
に組合わせた元ファイバのかかる特性を巧みに利用し、
測定範囲の最高温度で第2図(alに示したような大円
形をなす元ファイバ15においては伝送損失のない曲率
半径Rを、例えば海水層では最−高装置となる表面層中
で設定し、モータ8を、駆動して元ファイバケーブル2
,4を繰り出して変換器8を海水層の深部に移動させる
と、形状記憶合金12が第2図(b)に示したようζこ
縮み、形状保持材14が当て叛13に引張られるので、
元ファイバ15がなす円弧形状は、曲率半径Rの小さい
小円となり、伝送元量の損失が増大し、その結果、層厚
温度を連続的に計測することができる。
However, as a drawback of the optical transmission characteristics of the original fiber, at the curved portion, high-order mode component light of the tray proportional to the radius of curvature l of the curve leaks, resulting in transmission loss. Therefore, as illustrated in FIG. 5, a transmission loss occurs that is approximately proportional to the radius of curvature of the circular arc formed by the original fiber 15.
Therefore, there will be a damping of the conveyance it proportional to the length of the helical shape memory alloy 12 and thus to the circumference & degree. In the layer thickness temperature monitor of the present invention, such characteristics of the original fiber combined with the shape memory alloy are skillfully utilized.
At the highest temperature in the measurement range, the radius of curvature R with no transmission loss is set in the surface layer, which is the highest device in the seawater layer, for the original fiber 15, which has a large circular shape as shown in Figure 2 (al). , drive the motor 8 to connect the original fiber cable 2
, 4 to move the transducer 8 deep into the seawater layer, the shape memory alloy 12 shrinks as shown in FIG.
The arc shape formed by the original fiber 15 is a small circle with a small radius of curvature R, and the loss of the transmission source increases, and as a result, the layer thickness temperature can be measured continuously.

つぎに、第3図(a) 、 (b)に示す変換器3の構
成例は、上述の構成例とは反対に、測定範囲の最低温度
で螺旋状形状記憶合金の長さが最小ζこ縮んだときに、
元ファイバがなす円弧形状の曲率半径Rが最大となり、
伝送元量の損失が零となるようにしたものである。すな
わち、螺旋状形状記憶合金20の一端を固定の当て板1
9により固定するとともに、他端を移動可能の当て板2
1に当接し、その移動可能の当て板21と固定の当て板
24との間に、螺旋状形状記憶合金20が最短となる最
低温度時に真円となって最大の曲率半径を呈する円弧形
状になした形状保持材22に貼り付けるなどして同一形
状に保持した元ファイバ23を挾持する0したがって、
元ファイバ23のなす円弧形状は、最低温度時には第8
図(blに示すように真円となって最大の曲率半径を呈
し、高温時には、第3図(a)に示すように、螺旋状形
状記憶合金20の伸長に伴う当て板21の移動により押
し潰されて直線部分の両端に半円ずつに2分された円弧
形状を接続した偏平形状となり、その各半円弧形状の曲
率半径Rが最高温時lこ最小となる。
Next, in the configuration example of the transducer 3 shown in FIGS. 3(a) and 3(b), contrary to the configuration example described above, the length of the helical shape memory alloy is the minimum ζ at the lowest temperature in the measurement range. When it shrinks,
The radius of curvature R of the circular arc shape formed by the original fiber becomes maximum,
This is so that the loss of the transmission source amount is zero. That is, one end of the spiral shape memory alloy 20 is fixed to the backing plate 1.
9, and the other end is movable.
1, and between the movable backing plate 21 and the fixed backing plate 24, the spiral shape memory alloy 20 is formed into an arc shape that becomes a perfect circle and exhibits the maximum radius of curvature at the lowest temperature when it is shortest. The original fiber 23 held in the same shape by pasting it on the shaped shape-retaining material 22 is held between the ends.
The arc shape formed by the original fiber 23 is the 8th arc shape at the lowest temperature.
As shown in Figure (bl), it becomes a perfect circle and exhibits the maximum radius of curvature, and at high temperatures, as shown in Figure 3 (a), it is pushed by the movement of the backing plate 21 as the spiral shape memory alloy 20 expands. It becomes a flat shape in which a circular arc shape divided into two semicircles is connected to both ends of a straight line portion, and the radius of curvature R of each semicircular arc shape is the minimum at the highest temperature.

つぎに、第4図((転)、(bHこ示す変換部8の構成
例は、円弧形状に巻回した形状記憶合金と元ファイバと
を直接に組合わせたものである。すなわち、最高温度時
に第4図(mlに示すように最大曲率半径Rをもって円
弧形状に単−回巻回した形状記憶合金27に沿い、元フ
ァイバ28を貼り合わせるなどして直接に組合わせてあ
り、低温になるに伴い、巻回した形状記憶合金の円弧形
状が縮小し、温度に比例して光ファイバz8の円弧形状
が呈する曲率半径が小さくなる。
Next, the configuration example of the converting section 8 shown in FIGS. Sometimes, as shown in Fig. 4 (ml), the original fiber 28 is directly combined by bonding it along the shape memory alloy 27 wound single turn in an arc shape with the maximum radius of curvature R, and the temperature becomes low. Accordingly, the arc shape of the wound shape memory alloy is reduced, and the radius of curvature of the arc shape of the optical fiber z8 becomes smaller in proportion to the temperature.

なお、以上のように構成して層厚温度変化の観測に用い
る本発明層厚温度モニタの実用に当っては、第1図示の
構成におけるアナログ・ディジタル変換器6は、電源ノ
イズなどの雑音を誘導しないように絶縁して使用し、変
換器3の移動時には新たな測定点における測定データ信
号が安定状態に達した後に測定を行なうようにする。ま
た、測定対象の温度幅は、測定環境を考慮すると、通例
、−4θ℃〜+40℃の範囲に亘るが、実際には、その
測定対象温度範囲を例えば高温域と低温域とに2分し、
温度測定範囲を局限した専用の形状記憶合金を使い分け
ることによって、温度測定精度を格段に向上させるのが
好適である。
In addition, in putting into practice the layer thickness temperature monitor of the present invention configured as described above and used for observing changes in layer thickness temperature, the analog-to-digital converter 6 in the configuration shown in FIG. It is used insulated to prevent induction, and when the transducer 3 is moved, measurement is performed after the measurement data signal at a new measurement point reaches a stable state. Furthermore, considering the measurement environment, the temperature range of the measurement target usually ranges from -4θ℃ to +40℃, but in reality, the temperature range of the measurement target is divided into, for example, a high temperature range and a low temperature range. ,
It is preferable to dramatically improve temperature measurement accuracy by selectively using a dedicated shape memory alloy with a limited temperature measurement range.

また、第1図示の全体構成例における演算処理装置7の
演算処理過程を表わしたフローチャートを第5図に示す
。図示のフローチャートにおいては、ステップAでアナ
ログ・ディジタル変換器6からの温度センサ出力を検出
し、その検出したデータ信号をステップBで基準信号と
比較し、その比較結果について、センサ出力が減少する
減衰時であるか増大する増幅時であるかをステップCで
判別し、減衰時にはステップDに移行し、増幅時にはス
テップEに移行する0ステツプDでは、元ファイバの透
過光量が零となる極限の最小曲率半径に対応したスレッ
ショルド電圧と比較し、有意の透過光量が侍られる測定
可能範囲内のセンサ出力であればステップGに移行し、
測定可能の極限閾値を下端るセンサ出力であればステッ
プFに移行する。また、ステップEでは、透過光量の減
衰が零であってセンサ出力が測定可能範囲を超えて飽和
しているか否かを判定し、測定、可能範囲内にあればス
テップGに移行し、測定可能範囲を超えて飽和しておれ
ばステップFに移行する。ステップFでは、変換器3に
よる測定個所を移動させるためのモータ8の回転方向を
反転させる逆転命令を出力して計測過程を完了とする。
Further, FIG. 5 shows a flowchart showing the arithmetic processing process of the arithmetic processing unit 7 in the overall configuration example shown in the first figure. In the illustrated flowchart, the temperature sensor output from the analog-to-digital converter 6 is detected in step A, the detected data signal is compared with a reference signal in step B, and the comparison result is attenuated to reduce the sensor output. In step C, it is determined whether the amount of light transmitted through the original fiber is zero or the amount of light transmitted through the original fiber is zero. Compare with the threshold voltage corresponding to the radius of curvature, and if the sensor output is within a measurable range where a significant amount of transmitted light can be met, proceed to step G,
If the sensor output is below the measurable limit threshold, the process moves to step F. In addition, in step E, it is determined whether the attenuation of the amount of transmitted light is zero and the sensor output is saturated beyond the measurable range, and if it is within the measurable range, the process moves to step G and the measurement is possible. If it is saturated beyond the range, the process moves to step F. In step F, a reversal command is output to reverse the rotational direction of the motor 8 for moving the measurement point by the converter 3, and the measurement process is completed.

また、ステップGでは、第2図乃至第4図に示したよう
な元ファイバと形状記憶合金との間の構成の相違に基づ
く変換係数の選択および測定環境に基づく補正演算を加
味して数値解析を行ない、その解析結果をステップエで
表示器9にディジタル表示するとともに、層厚温度分布
データにしてステップ■で表示器lOにグラフィック表
示する。
In addition, in Step G, numerical analysis is performed taking into account the selection of conversion coefficients based on the difference in structure between the original fiber and the shape memory alloy as shown in FIGS. 2 to 4, and correction calculations based on the measurement environment. The analysis results are digitally displayed on the display 9 in step 5, and are converted into layer thickness temperature distribution data and graphically displayed on the display 10 in step 2.

(効果) 以上の説明から明らかなように、本発明によれば真水層
などの物質層の層厚温度を計測するにあたり、つぎのよ
うな顕著な効果が得られる。
(Effects) As is clear from the above description, according to the present invention, the following remarkable effects can be obtained in measuring the layer thickness temperature of a material layer such as a fresh water layer.

(a)  空気層の高さに対応した層厚温度の連続的な
分布状態を測定することができる。
(a) Continuous distribution of layer thickness temperature corresponding to the height of the air layer can be measured.

(b)  雨雲や雪雲の分布やその動きの経過を推定す
ることができる。
(b) It is possible to estimate the distribution of rain clouds and snow clouds and the course of their movement.

(C)  海水中や湖水中の深さに対応した層厚温度の
連続的な分布状態を測定することができる。
(C) Continuous distribution of layer thickness temperature corresponding to depth in seawater or lake water can be measured.

(d)トンネル内あるいは管内の開口部からの長さに対
応した温度変化を層厚温度として連続的に測定すること
ができる。
(d) Temperature changes corresponding to the length from the opening in the tunnel or pipe can be continuously measured as the layer thickness temperature.

伸) 単一モード光7アイパに印加する圧力の変化に応
じた透過光の偏波面位相の回転速度が時間的に変化する
現象を利用して加味すれば、上述したところとは別種の
層厚温度計測システムに本発明層厚温度モニタを適用す
ることも可能となる。
(Extension) If we take into consideration the phenomenon that the rotation speed of the polarization plane phase of transmitted light changes over time in response to changes in the pressure applied to the single mode light 7 eyeper, we can obtain a different type of layer thickness than the one described above. It is also possible to apply the layer thickness temperature monitor of the present invention to a temperature measurement system.

なお、本発明層厚温度モニタは、水深温度モニタ、高度
温度モニタ、管内温度モニタ、トンネル内温度モニタ等
として実用するに好適である。
The layer thickness temperature monitor of the present invention is suitable for practical use as a water depth temperature monitor, an altitude temperature monitor, a pipe temperature monitor, a tunnel temperature monitor, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明層厚温度モニタの構成例を示すブロック
線図、 第2図(a) e (b)乃至第4図(a)、■)は同
じくその構成例における変換器の構成例をそれぞれ示す
i図、第5図は同じくその変換器における円弧形状光フ
ァイバの曲率牛後と透過光減衰量との関係の例を示す特
性曲線図、 第5図は本発明層厚温度モニタにおける測定結果演算処
理過程の例を示すフローチャートである。 1・・・送信器 2.4・・・光7アイパケーブル 8・・・変換器      5・・・受信機6・・・ア
ナログ・ディジタル変換器 7・・・演算処理装置   8・・・モータ9.10・
・・表示器 11 、18 、16 、19 、21 、24・・・
当て板1z 、 20 、2フ・・・形状記憶合金14
 、22・・・形状保持材 λ5 、28 、28・・・光7アイパ17 、25 
、29・・・光フアイバ入力端18 、28 、30・
・・光フアイバ出力端第1図 第3図 (a) (b) 第4図 (a)        (b) 第5図 怪 (惰m)
Fig. 1 is a block diagram showing an example of the structure of the layer thickness temperature monitor of the present invention, and Figs. Figure 5 is a characteristic curve diagram showing an example of the relationship between the curvature of the arc-shaped optical fiber and the amount of transmitted light attenuation in the converter. It is a flowchart which shows an example of a measurement result calculation processing process. 1... Transmitter 2.4... Optical 7 Eyepa cable 8... Converter 5... Receiver 6... Analog-digital converter 7... Arithmetic processing unit 8... Motor 9 .10・
...Indicators 11, 18, 16, 19, 21, 24...
Backing plate 1z, 20, 2...shape memory alloy 14
, 22... Shape retaining material λ5, 28, 28... Hikari 7 Aiper 17, 25
, 29... optical fiber input ends 18, 28, 30...
...Optical fiber output end Fig. 1 Fig. 3 (a) (b) Fig. 4 (a) (b) Fig. 5 (inertia)

Claims (1)

【特許請求の範囲】 1、少なくとも円弧部を有する形状に保持した元ファイ
バに所定形状の形状記憶合金を係合させ、当該形状記憶
合金の周囲温度の変化にほぼ比例した前記所定形状の変
化に応じて前記光ファイバにおける前記円弧部の曲率を
変化させるように構成した温度センサと、前記光ファイ
バに所定光量の光を入射させる光源装置と、前記光ファ
イバを通過した光の光量を検出する受光装置とを備え、
前記光ファイバを通過する光の前記円弧部の曲率に応じ
た減衰量に基づいて前記形状記憶合金の周囲温度を測定
することにより、前記温度センサを移動させて物質層中
の層厚に応じた温度変化を連続して観測し得るようにし
たことを特徴とする層厚温度モニタ。 2、特許請求の範囲第1項記載の層厚温度モニタにおい
て、螺旋形状をなす前記形状記憶合金および円形をなす
とともに両端部を延在させた前記光ファイバの一端をそ
れぞれ固定するとともに他端を互いに当接させて前記温
度センサを構成したことを特徴とする層厚温度モニタ。 3、特許請求の範囲第1項記載の層厚温度モニタにおい
て、螺旋形状をなす前記形状記憶合金の一端を固定する
とともに他端に直角に当て板を当接させ、その当て板に
平行の固定板と当該当て板との間に円形をなす前記光フ
ァイバを挾持して前記温度センサを構成したことを特徴
とする層厚温度モニタ。 4、特許請求の範囲第1項記載の層厚温度モニタにおい
て、ほぼ円形に巻回した前記形状記憶合金に沿い前記光
ファイバを係合させて前記温度センサを構成したことを
特徴とする層厚温度モニタ。 5、特許請求の範囲前記各項のいずれかに記載の層厚温
度モニタにおいて、前記光源装置および前記受光装置と
前記温度センサとの間に接続用光ファイバをそれぞれ介
在させ、それらの接続用光ファイバの長さに基づいて前
記物質層の層厚を計測するようにしたことを特徴とする
層厚温度モニタ。 6、特許請求の範囲第5項記載の層厚温度モニタにおい
て、前記受光装置により検出した光量のデータを演算処
理して前記物質層の層厚に応じた温度の変化をグラフ表
示するようにしたことを特徴とする層厚温度モニタ。
[Claims] 1. A shape memory alloy having a predetermined shape is engaged with an original fiber held in a shape having at least an arcuate portion, and the predetermined shape changes approximately in proportion to a change in the ambient temperature of the shape memory alloy. a temperature sensor configured to change the curvature of the arc portion of the optical fiber accordingly; a light source device that inputs a predetermined amount of light into the optical fiber; and a light receiver that detects the amount of light that has passed through the optical fiber. equipped with a device,
By measuring the ambient temperature of the shape memory alloy based on the amount of attenuation of light passing through the optical fiber depending on the curvature of the circular arc portion, the temperature sensor is moved to adjust the temperature according to the layer thickness in the material layer. A layer thickness temperature monitor characterized by being able to continuously observe temperature changes. 2. In the layer thickness temperature monitor according to claim 1, one end of the spiral shape memory alloy and the circular optical fiber with both ends extended are fixed, and the other end is fixed. A layer thickness temperature monitor characterized in that the temperature sensors are configured in contact with each other. 3. In the layer thickness temperature monitor according to claim 1, one end of the shape memory alloy forming a spiral shape is fixed, and a caul plate is brought into contact with the other end at right angles, and the fixation is parallel to the caul plate. A layer thickness temperature monitor characterized in that the temperature sensor is constructed by sandwiching the circular optical fiber between a plate and the backing plate. 4. In the layer thickness temperature monitor according to claim 1, the temperature sensor is constructed by engaging the optical fiber along the shape memory alloy wound approximately in a circular manner. Temperature monitor. 5. Scope of Claims In the layer thickness temperature monitor according to any of the above items, connecting optical fibers are interposed between the light source device, the light receiving device, and the temperature sensor, and the connecting optical fibers are interposed between the light source device, the light receiving device, and the temperature sensor. A layer thickness temperature monitor characterized in that the layer thickness of the material layer is measured based on the length of a fiber. 6. In the layer thickness temperature monitor as set forth in claim 5, data on the amount of light detected by the light receiving device is processed and a change in temperature according to the thickness of the material layer is displayed graphically. A layer thickness temperature monitor characterized by:
JP60029406A 1985-02-19 1985-02-19 Layer thickness temperature monitor Pending JPS61189426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60029406A JPS61189426A (en) 1985-02-19 1985-02-19 Layer thickness temperature monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029406A JPS61189426A (en) 1985-02-19 1985-02-19 Layer thickness temperature monitor

Publications (1)

Publication Number Publication Date
JPS61189426A true JPS61189426A (en) 1986-08-23

Family

ID=12275251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029406A Pending JPS61189426A (en) 1985-02-19 1985-02-19 Layer thickness temperature monitor

Country Status (1)

Country Link
JP (1) JPS61189426A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048708A1 (en) * 2001-12-05 2003-06-12 Shahinpoor, Mohsen Shape memory alloy temperature sensor
US20100132457A1 (en) * 2007-06-06 2010-06-03 Endress +Hauser Wetzer Gmbh + Co. Kg Apparatus for determing and/or monitoring a measured variable
CN104359586A (en) * 2014-10-11 2015-02-18 扬州市润特光电科技有限公司 Optical fiber temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203930A (en) * 1983-05-06 1984-11-19 Sumitomo Electric Ind Ltd Method for measuring temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203930A (en) * 1983-05-06 1984-11-19 Sumitomo Electric Ind Ltd Method for measuring temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048708A1 (en) * 2001-12-05 2003-06-12 Shahinpoor, Mohsen Shape memory alloy temperature sensor
US6612739B2 (en) * 2001-12-05 2003-09-02 Mohsen Shahinpoor Shape memory alloy temperature sensor
US20100132457A1 (en) * 2007-06-06 2010-06-03 Endress +Hauser Wetzer Gmbh + Co. Kg Apparatus for determing and/or monitoring a measured variable
US8534912B2 (en) * 2007-06-06 2013-09-17 Endress + Hauser Wetzer Gmbh + Co. Kg Apparatus for determining and/or monitoring a measured variable
CN104359586A (en) * 2014-10-11 2015-02-18 扬州市润特光电科技有限公司 Optical fiber temperature sensor

Similar Documents

Publication Publication Date Title
US5183338A (en) Temperature measurement with combined photo-luminescent and black body sensing techniques
US5112137A (en) Temperature measurement with combined photo-luminescent and black body sensing techniques
JPS61270632A (en) Optical fiber type measuring instrument for temperature distribution
CN110307920B (en) Optical fiber temperature and stress sensing system based on noise modulation and measuring method
JPS61189426A (en) Layer thickness temperature monitor
EP0263016B1 (en) Displacement and proximity detector with three optical fibres
JP4862594B2 (en) Optical fiber sensor
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPH05264370A (en) System for measuring temperature distribution in optical fiber
JP2927061B2 (en) Measurement method of physical quantity distribution using optical fiber
JPH04332835A (en) Corrective processing method of distributed temperature data
JP2556921Y2 (en) Return loss measuring device using optical time domain reflectometer
JPS61231422A (en) Radiation thermometer
US4077723A (en) Method of measuring thickness
JPS586431A (en) Temperature measuring method using optical fiber
JPH0550710B2 (en)
JPS63121722A (en) Temperature distribution detector
JPH0518832A (en) Optical fiber device, position-detection method using the same, information transmission method, and method for measuring amount of deflection
JPH06221930A (en) Distribution type temperature sensor
JPH01193628A (en) Measurement of average humidity
JPH0769222B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
JPS61217744A (en) Optical fiber moisture sensor and moisture measuring apparatus
JPH03231116A (en) Optical fiber sensor
JP2606638B2 (en) Detection method of physical quantity distribution along optical fiber
JPS63311307A (en) Optical fiber type temperature sensor