JPS6118842A - Method for descriminating corrosion resistance of zirconium-base alloy - Google Patents

Method for descriminating corrosion resistance of zirconium-base alloy

Info

Publication number
JPS6118842A
JPS6118842A JP14111384A JP14111384A JPS6118842A JP S6118842 A JPS6118842 A JP S6118842A JP 14111384 A JP14111384 A JP 14111384A JP 14111384 A JP14111384 A JP 14111384A JP S6118842 A JPS6118842 A JP S6118842A
Authority
JP
Japan
Prior art keywords
zirconium
corrosion resistance
based alloy
base alloy
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14111384A
Other languages
Japanese (ja)
Inventor
Iwao Takase
高瀬 磐雄
Shinzo Ikeda
池田 伸三
Sumi Yoshida
吉田 寿美
Isao Masaoka
正岡 功
Junjiro Nakajima
中島 潤二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14111384A priority Critical patent/JPS6118842A/en
Publication of JPS6118842A publication Critical patent/JPS6118842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To evaluate corrosion resistance, by electrolyzing a zirconium-base alloy in acidic electrolytic aqueous solution by using the same as an anode and calculating the polarization curve thereof. CONSTITUTION:An aqueous sulfuric acid solution 2 is received in an electrolytic cell 1 as an electrolyte and a specimen 3 comprising a zirconium-base alloy is used as an anode while platinum 4 is used as the opposed electrode and a saturated calomel electrode 6 is used as a collimation electrode through a salt bridge 5 to calculate the polarization curve 7 of the zirconium-base alloy. The change in current density at constant potential is lowered in a uniform gradient with the elapse of time. When current density is not changed even at arbitrary voltage, it is judged that the zirconium-base alloy is a material having high corrosion resistance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ジルコニウム基合金の耐食性判別法に係り、
特に原子炉における過熱水蒸気中においてのジルコニウ
ム基合金の腐食抵抗を判別するのに最適なジルコニウム
基合金の耐食性判別法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for determining corrosion resistance of zirconium-based alloys,
In particular, the present invention relates to a method for determining the corrosion resistance of zirconium-based alloys that is optimal for determining the corrosion resistance of zirconium-based alloys in superheated steam in nuclear reactors.

〔発明の背景〕[Background of the invention]

一般に、ジルコニウム基合金は、その優れた耐食性と非
常に小さい中性子吸収断面を有することから、原子カプ
ラントの燃料被覆管及び燃料チャンネルボックス等に用
いられている。ジルコニウム基合金からなる構造物は、
原子炉内で長時間中性子の照射を受けると同時に、高温
高圧水または蒸気にさらされるため、腐食が進み、ノジ
ュラ腐食とよばれる斑点状の白色酸化物が表面に生成す
ることがろる。斑点状の白色酸化物は、腐食反応の進行
につれて粗大化し、表面から剥離することがある。その
ため長時間の使用により構造物の部材が減肉する場合が
生ずる。したがって、原子炉内に使用されるジルコニウ
ム基合金からなる部材は、異常腐食による減肉を起すと
、強度低下の原因となり、炉内構造部材の安全性及び信
頼性が懸念されている。このような観点から、ノジュラ
腐食とよばれる異常腐食を防止するため、ジルコニウム
基合金の改良方法が検討されている。
Generally, zirconium-based alloys are used for fuel cladding tubes, fuel channel boxes, etc. of atomic couplants because of their excellent corrosion resistance and extremely small neutron absorption cross section. Structures made of zirconium-based alloys are
Because they are exposed to long-term neutron irradiation inside a nuclear reactor and high-temperature, high-pressure water or steam, corrosion progresses, and speckled white oxides called nodular corrosion form on the surface. As the corrosion reaction progresses, the spotted white oxide becomes coarse and may peel off from the surface. Therefore, there are cases where the thickness of the structural members decreases due to long-term use. Therefore, when a member made of a zirconium-based alloy used in a nuclear reactor undergoes thinning due to abnormal corrosion, it causes a decrease in strength, and there are concerns about the safety and reliability of the reactor internal structural member. From this point of view, methods for improving zirconium-based alloys are being studied in order to prevent abnormal corrosion called nodular corrosion.

ジルコニウム基合金としては、ジルカロイ−2(重量比
で約1.5%Sn、 0.1%lli”e、 0.1%
Cr及び0.05%Niを付加した7、r合金)、ジル
カロイ−4(重量比で約1.5%Sn、0.1%FaV
O,1% Crを添加した7、r合金)がある。これら
のノジュラ腐食を防止す込方法としては、特開昭58−
25’466号、特開昭58−25467号および嬌開
昭58−22316号公報に示されるように、(α+β
)相あるいはβ相の温度領域に急速加熱し、その後急速
冷却する処理(以下、β焼入と称す)により耐食性が著
しく向上することが知られている。また、他の方法とし
ては、ジルコニウムに約0.5〜5%Nbを付加するこ
とにより高耐食性を示すことが知られている。このよう
に熱処理による組織の改善あるいは化学組成の調整によ
りジルコニウム基合金のノジュラ腐食を改善することは
一般に知られている。
As a zirconium-based alloy, Zircaloy-2 (approximately 1.5% Sn, 0.1%lli"e, 0.1% by weight)
7, r alloy with added Cr and 0.05% Ni), Zircaloy-4 (approximately 1.5% Sn, 0.1% FaV by weight)
There is a 7,r alloy containing O, 1% Cr). A method for preventing these nodular corrosions is described in Japanese Patent Application Laid-open No. 58-
As shown in No. 25'466, Japanese Patent Application Laid-open No. 58-25467, and Japanese Patent Publication No. 58-22316, (α+β
It is known that corrosion resistance can be significantly improved by rapid heating to a temperature range of ) phase or β phase and then rapid cooling (hereinafter referred to as β quenching). Furthermore, as another method, it is known that high corrosion resistance can be achieved by adding about 0.5 to 5% Nb to zirconium. It is generally known that nodular corrosion of zirconium-based alloys can be improved by improving the structure or adjusting the chemical composition through heat treatment.

しかしながら、ノジュラ腐食の改善効果には変動があり
、特にβ焼入における温度及び時間の設定不良、焼なま
し処理の不十分さ、熱間及び冷間塑性加工の不良または
溶接施工による組織の不均一などが変動の主な要因とな
っている。
However, the effectiveness of improving nodular corrosion varies, especially due to improper temperature and time settings in β-quenching, insufficient annealing, poor hot and cold plastic working, or structural defects due to welding. Uniformity is the main cause of variation.

そのため、従来のジルコニウム基合金からなる原子炉燃
料集合体部品は、耐食性に対する不均一性を有するので
、原子炉内で使用するうえで安全対策上好ましくない。
Therefore, conventional nuclear reactor fuel assembly parts made of zirconium-based alloys have non-uniform corrosion resistance, and are therefore unfavorable from a safety standpoint when used in a nuclear reactor.

そこで原子炉部材用ジルコニウム基合金として。Therefore, as a zirconium-based alloy for nuclear reactor parts.

は、予め耐食性を炉外試験で確実に把握しておく必要が
ある。この炉外における耐食性評価試験としては、40
(I’X72hあるいは500CX24hカどのAST
M規格の試験が知られている。
It is necessary to thoroughly understand the corrosion resistance in advance through an outside-furnace test. As a corrosion resistance evaluation test outside the furnace, 40
(AST of I'X72h or 500CX24h)
The M standard test is known.

しかしこの評価試験では、原子炉内のノジュラ腐食感受
性を評価するには不十分である。
However, this evaluation test is insufficient to evaluate the susceptibility to nodular corrosion inside a nuclear reactor.

そこで、近年、ノジュラ腐食の評価方法としては、特開
昭58−95247号公報に示すように、約300〜4
20Cの水蒸気中に約5時間暴露し、続いて約490〜
520Cの水蒸気中で約12時間暴露する方法が開示さ
れており、主に燃料被覆管に対しては適用できるもので
ある。
Therefore, in recent years, as a method for evaluating nodular corrosion, as shown in Japanese Patent Application Laid-Open No. 58-95247,
Exposure to water vapor at 20C for about 5 hours, followed by about 490~
A method of exposure in 520C steam for about 12 hours is disclosed and is primarily applicable to fuel cladding tubes.

この評価方法では、発電プラントの効率向上の観点から
、燃料集合体の長期使用が計画され、部利の耐食性も著
しく高いものが要求されるのに伴い、十分な耐食性を評
価することができないのが現状である。特にこれらの腐
食試験は、高温高圧加熱蒸気中で実施するため、評価設
備が大規模になると共に、試験に長時間を要すると同時
に評価結果もかなりバラツキがあるという問題点を有し
ていた。
With this evaluation method, from the perspective of improving the efficiency of power plants, long-term use of fuel assemblies is planned, and extremely high corrosion resistance of the parts is required, so it is difficult to evaluate the corrosion resistance sufficiently. is the current situation. In particular, since these corrosion tests are carried out in high-temperature, high-pressure heated steam, the evaluation equipment is large-scale, the tests take a long time, and the evaluation results vary considerably.

そこで、原子炉用ジルコニウム基合金のノジュラ腐食感
受性を炉外で確実に判別し得る簡単な方法が強く望まれ
ている。
Therefore, there is a strong demand for a simple method that can reliably determine the nodular corrosion susceptibility of zirconium-based alloys for nuclear reactors outside the reactor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子炉の環境中における高温水または
水蒸気中でのノジュラ腐食抵抗を相対的に簡便かつ確実
に判別することができるジルコニウム基合金の耐食性判
別法を提供することにある。
An object of the present invention is to provide a method for determining the corrosion resistance of zirconium-based alloys that can relatively easily and reliably determine the nodular corrosion resistance in high-temperature water or steam in the environment of a nuclear reactor.

〔発明の概要〕[Summary of the invention]

本発明は、加熱蒸気中におけるジルコニウム基合金の耐
食性を判別する方法において、前記ジルコニウム基合金
を陽極とし、酸性電解質水溶液中に浸漬して、該陽極に
直流電圧を印加して電解し、その分極カーブを求め、そ
のカーブにおける電流密度が極大になる極大値をもって
腐食抵抗を評価することを特徴とするものである。さら
に具体的には電解条件として0.1〜2.5 motI
−Is SO2あるいは/〜7 m o L HNO3
等の酸性電解質水溶液を用い、電解の温度を20〜80
Cおよび電位送り速度を50〜1500mV/mで走行
させてジルコニウム基合金のアノード分極カーブを求め
ることを特徴としている。
The present invention provides a method for determining the corrosion resistance of a zirconium-based alloy in heated steam, in which the zirconium-based alloy is used as an anode, immersed in an acidic electrolyte aqueous solution, electrolyzed by applying a DC voltage to the anode, and polarized. The method is characterized in that a curve is determined and the corrosion resistance is evaluated based on the maximum value at which the current density on the curve becomes maximum. More specifically, the electrolytic conditions are 0.1 to 2.5 motI.
-Is SO2 or/~7 m o L HNO3
Using an acidic electrolyte aqueous solution such as
The method is characterized in that the anodic polarization curve of the zirconium-based alloy is determined by running C at a potential feed rate of 50 to 1500 mV/m.

第1図は本発明のジルコニウム基合金の耐食性判別法に
用いる定電位電解装置の概要図であって、電解セル1に
電解液として硫酸水溶液2を収容し、ジルコニウム基合
金の試薊3を陽極としてその対極に白金4並びに塩橋5
を介して照合電極に飽和甘こう電極6を用いてジルコニ
ウム基合金の分極カーブ7を求めるものである。なお8
は記録計、9は熱電対、lOは温度調節計、11はヒー
タ、12は脱気用Arガスである。
FIG. 1 is a schematic diagram of a constant potential electrolyzer used in the method of determining the corrosion resistance of zirconium-based alloys according to the present invention, in which an electrolytic cell 1 contains an aqueous sulfuric acid solution 2 as an electrolyte, and a sample 3 of the zirconium-based alloy is used as an anode. As for the opposite pole, Shirokane 4 and Shiobashi 5
The polarization curve 7 of the zirconium-based alloy is determined using the saturated agaric electrode 6 as a reference electrode. Note 8
9 is a recorder, 9 is a thermocouple, 1O is a temperature controller, 11 is a heater, and 12 is Ar gas for degassing.

第2図A、Bに本発明によるジルコニウム基合金の耐食
性判別法において求めた分極カーブの一例を示す線図を
示している。A図には、腐食抵抗の高いジルコニウム基
合金の分極カーブを、B図には腐食抵抗の低いジルコニ
ウム基合金を示している。分極カーブは電位に対し電流
密度がある部分で極大値りを示し、この極大値りの大小
により、炉内のノジュラ腐食抵抗を評価するものである
FIGS. 2A and 2B show diagrams showing an example of polarization curves determined by the method for determining corrosion resistance of zirconium-based alloys according to the present invention. Figure A shows the polarization curve of a zirconium-based alloy with high corrosion resistance, and Figure B shows a zirconium-based alloy with low corrosion resistance. The polarization curve shows maximum values in areas where the current density is relative to the potential, and the nodular corrosion resistance in the furnace is evaluated based on the magnitude of this maximum value.

本発明による電解液としては酸性水溶液特に硫酸水溶液
を用いることが最も重要なことである。この電解液の濃
度は硫酸(H2S 04 )で0,1〜2.5mol、
硝酸(HNOs )で1.0〜7.0motが最適であ
る。
It is most important to use an acidic aqueous solution, particularly a sulfuric acid aqueous solution, as the electrolyte according to the invention. The concentration of this electrolyte is sulfuric acid (H2S 04 ), 0.1 to 2.5 mol;
The optimal value for nitric acid (HNOs) is 1.0 to 7.0 mot.

下限の濃度以下では明瞭な分極カーブを検出すること、
ができない一方、上限の濃度を越えると、ジルコニウム
基合金間の電位密度の差が現われない。
Detecting a clear polarization curve below the lower concentration limit;
On the other hand, if the upper limit concentration is exceeded, no difference in potential density will appear between the zirconium-based alloys.

電解液の温度としては、20〜80Cが好ましく、20
C以下ではジルコニウム基合金の表面が活性化し難く、
所定の分極カーブが得られない。
The temperature of the electrolytic solution is preferably 20 to 80C, and 20 to 80C.
Below C, the surface of the zirconium-based alloy is difficult to activate,
Predetermined polarization curve cannot be obtained.

温度を高くするほどジルコニウム基合金の表面の活性化
を図ることができるが、80Cを越えると酸化の先行と
共に気泡の発生に起因して極大カーブを検出することが
できなくなる。そこで本発明では、電解質の温度を20
〜80Cに限定した。
The higher the temperature, the more activated the surface of the zirconium-based alloy can be, but if it exceeds 80C, the maximum curve cannot be detected due to the advance of oxidation and the generation of bubbles. Therefore, in the present invention, the temperature of the electrolyte is set to 20
-80C.

次に、本発明の耐食性判別法では、電位送り速度も重要
な因子であって、電位送り速度は50〜1500mV/
”にすることが好ましい。5 omv/−以下ではアノ
ード分極カーブにおける電流密度の上昇が検出できず、
有意差として耐食性の判定ができない。また、1500
onV/mを越えると、分極カーブにおいて極大値を検
出することができないため、ジルコニウム基合金のノジ
ュラ腐食抵抗を判定することができない。
Next, in the corrosion resistance determination method of the present invention, the potential feed rate is also an important factor, and the potential feed rate is 50 to 1500 mV/
” is preferable. Below 5 omv/-, an increase in current density in the anode polarization curve cannot be detected;
Corrosion resistance cannot be determined as a significant difference. Also, 1500
OnV/m is exceeded, the maximum value cannot be detected in the polarization curve, and therefore the nodular corrosion resistance of the zirconium-based alloy cannot be determined.

以上のような電解条件において、ジルコニウム基合金を
陽極として定電位を印加し、アノード分極カーブを求め
、時間との関係からジルコニウム基合金のノジュラ腐食
抵抗を判定することが可能となる。すなわち、定電位に
おける気障密度の変化は、時間の経過と共に一様力勾配
で低下する。
Under the above electrolytic conditions, a constant potential is applied using the zirconium-based alloy as an anode, an anode polarization curve is obtained, and the nodular corrosion resistance of the zirconium-based alloy can be determined from the relationship with time. That is, the change in airway density at constant potential decreases over time with a uniform force gradient.

この電流密度の変化が任意の電圧でも変わらない場合は
高耐食性を有する材料であり、その反対に固有の電圧で
異質の変化を示す場合は腐食抵抗が低いと判別すること
ができる。
If this change in current density does not change even with a given voltage, it can be determined that the material has high corrosion resistance.On the other hand, if it shows a different change at a specific voltage, it can be determined that the material has low corrosion resistance.

〔実施例1〕 重量比で1.4.O% S n、  0.15 %F 
e、  0.12%Cr、0.06%Ni及び残Zrの
化学組成からなるジルカロイ−2のインゴットから燃料
被覆管を製造し、供試材とした。この被覆管は現行の工
程で製造し九通堂の9稲類と、最近注目されるβ焼入を
採用したβ焼入管の2種類の計4種類である。試験はこ
れらの被覆管を原子炉内で長時間暴露試験する一方、炉
外において本発明の電解液:0、5 mol H280
4、電解温度:30’l::、電位送り速度:100m
V/―の電解条件で分極測定を行い、その関係を調べた
[Example 1] Weight ratio: 1.4. O% Sn, 0.15%F
A fuel cladding tube was manufactured from an ingot of Zircaloy-2 having a chemical composition of 0.12% Cr, 0.06% Ni, and the remainder Zr, and was used as a test material. There are four types of cladding tubes: Kutsudo's 9 types manufactured using the current process, and two types of β-quenched tubes that use β-quenching, which has been attracting attention recently. In the test, these cladding tubes were subjected to a long-term exposure test inside the reactor, while outside the reactor, the electrolyte of the present invention: 0.5 mol H280
4. Electrolysis temperature: 30'l::, Potential feeding speed: 100m
Polarization was measured under electrolytic conditions of V/-, and the relationship was investigated.

第3図は電流密度の差と炉内環境下におけるノジュラ腐
食占有率との関係を示す線図である。その結果、本発明
法で判定した電流密度の差が太きい被覆管はノジュラ腐
食が著しく発達していることがわかった。一方、本発明
法で判定した電流密度の差の小さい被覆管はノジュラ腐
食が認め難い。    ゛このように本発明によるアノ
ード分極法による電流密度の差の大小がノジュラ腐食感
受性に大きく関係することが判明した。
FIG. 3 is a diagram showing the relationship between the difference in current density and the nodular corrosion occupancy rate in the furnace environment. As a result, it was found that nodular corrosion had significantly developed in cladding tubes with a large difference in current density determined by the method of the present invention. On the other hand, nodular corrosion is difficult to recognize in cladding tubes with small differences in current density determined by the method of the present invention. ``As described above, it has been found that the magnitude of the difference in current density due to the anodic polarization method according to the present invention is significantly related to the nodular corrosion susceptibility.

なお酸化被膜の深さは、光学顕微鏡観察並びにうす電流
測定法によって測定したもので、ノジュラ腐食感受性の
高い被覆管は、その深さが大きいことが判明した。
The depth of the oxide film was measured by optical microscopy and thin current measurement, and it was found that cladding tubes with high susceptibility to nodular corrosion had a large depth.

〔実施例2〕 燃料被覆管のノジュラ腐食を原子炉外で調べる方法は、
高温高圧加熱蒸気中で加速試験を行い、その挙動の変化
から炉内腐食を推定する方法がある。
[Example 2] A method for investigating nodular corrosion of fuel cladding outside the reactor is as follows:
There is a method of conducting accelerated tests in high-temperature, high-pressure heated steam and estimating corrosion in the furnace from changes in behavior.

第4図1は従来の炉外試験における腐食増量と、本発明
によるアノード分極の電流密度の差との関係を示す線図
である。なお、加熱蒸気中の試験は105Kq/cm”
の加重の下で燃料被覆管を5300で20h保持して行
った。図に示すように、腐食増量が高い被覆管Lot、
3.4は電流密度の差が大きく、その反対に腐食増量の
低い被覆管Lot、1.2では電流密度の差が小さい値
を示し、その差が明確に現われている。この結果が示す
ように、高い耐食性を要求される原子炉用部材としてジ
ルコニウム基合金を選定するに当って、本発明法による
耐食性判別法を採用することが有効であることがわかる
FIG. 4 is a diagram showing the relationship between the corrosion weight increase in the conventional outside-furnace test and the difference in current density of anode polarization according to the present invention. In addition, the test in heated steam is 105Kq/cm"
The test was carried out by holding the fuel cladding tube at 5300 for 20 hours under a load of . As shown in the figure, cladding tube Lot with high corrosion weight increase,
3.4 has a large difference in current density, while cladding tube Lot 1.2, which has a low corrosion weight increase, shows a small difference in current density, and the difference is clearly visible. As shown by these results, it is found that it is effective to employ the corrosion resistance determination method according to the present invention when selecting a zirconium-based alloy as a nuclear reactor member that requires high corrosion resistance.

〔実施例3〕 用いたジルコニウム基合金はジルカロイ−4板材で、そ
の主な化学組成は1.50チSn、0.19%Fe、0
.010チCrおよび残Zrである。このジルカロイ−
4の板材は、溶体化処理してその後熱間及び冷間の塑性
加工を施して供試材A、Bとし、かつその一部をβ焼入
して供試材C9Dとし″た。そして上記板材を本発明の
耐食性判別法を行い、電流密度の差の大小によって耐ノ
ジュラ腐食性を判定した。かつ過熱蒸気中の腐食試験(
500C,1(15Kl/lri 、50 h )を行
ってその腐食挙動を比較した。表1はアノード分極結果
と腐食試験結果を比較したもので、本発明の電流密度の
差が各製造履歴によって異なる値を示し、高い値はどノ
ジュラ腐食が著しいことが検証された。
[Example 3] The zirconium-based alloy used was Zircaloy-4 plate material, and its main chemical composition was 1.50% Sn, 0.19% Fe, 0.
.. 010% Cr and remaining Zr. This Zircaloy
The plate material No. 4 was solution-treated and then subjected to hot and cold plastic working to obtain test materials A and B, and a portion thereof was β-quenched to obtain test material C9D. The plate material was subjected to the corrosion resistance determination method of the present invention, and the nodular corrosion resistance was determined based on the magnitude of the difference in current density.In addition, the corrosion resistance in superheated steam (
500C.1 (15 Kl/lri, 50 h) was conducted to compare the corrosion behavior. Table 1 compares the anode polarization results and the corrosion test results, and it was verified that the difference in current density of the present invention varies depending on the manufacturing history, and a high value indicates significant nodular corrosion.

(収″F−企助 表1 耐食性について相対比較(実績のある材料を基準とする
)すると、β焼入材ががなり高いことが容易に判定でき
る。なお表中には電解液の温度を変えたときの6電流密
度の差を示したが、温度上昇に伴ってやや高めの値を示
す。
(Income Table 1) When comparing corrosion resistance (based on proven materials), it can be easily determined that β-quenched materials have higher corrosion resistance.The table also shows the temperature of the electrolyte The difference in the six current densities when changing the temperature is shown, and the values become slightly higher as the temperature rises.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、原子炉用ジルコニウム基
合金の7ジユラ腐食抵抗を簡便でかつ正確に判別す゛る
ことかできる。
As described above, according to the present invention, it is possible to easily and accurately determine the seven-day corrosion resistance of a zirconium-based alloy for nuclear reactors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のジルコニウム基合金の耐食性判別法に
用いる定電圧電解セルの概要図、第2図はジルコニウム
基合金のアノード分極カーブの一例を示す線図、第3図
は原子炉内のノジュラ腐食と電流密度の差との関係を示
す縮図、第4図は電流密度の差と腐木増量との関係を示
す線図でらる。 1・・・電解セル、3・・・ジルコニウム基合金の試料
、7・・・分極カーブ。
Figure 1 is a schematic diagram of a constant voltage electrolytic cell used in the corrosion resistance determination method of zirconium-based alloys of the present invention, Figure 2 is a diagram showing an example of an anode polarization curve of zirconium-based alloys, and Figure 3 is a diagram showing an example of the anode polarization curve of a zirconium-based alloy. FIG. 4 is a miniature diagram showing the relationship between nodular corrosion and the difference in current density, and FIG. 4 is a diagram showing the relationship between the difference in current density and the increase in rotten wood. 1... Electrolytic cell, 3... Zirconium-based alloy sample, 7... Polarization curve.

Claims (1)

【特許請求の範囲】 1、過熱水蒸気中におけるジルコニウム基合金の耐食性
を判別する方法において、前記ジルコニウム基合金を陽
極として酸性電解質水溶液中に浸漬して該陽極に直流電
圧を印加して電解し、その分極カーブを求め、そのカー
ブにおける電流密度が極大になる極大値をもつて腐食抵
抗を評価することを特徴とするジルコニウム基合金の耐
食性判別法。 2、特許請求の範囲第1項において、前記電解条件は、
0.1〜2.5molH_2SO_4の酸化性電解質水
溶液、浴温度20〜80℃、および50〜1500mV
/mmの電位送り速度で走行させることを特徴とするジ
ルコニウム基合金の耐食性判別法。 3、特許請求の範囲第1項において、前記電解条件は1
〜7molHNO_3の酸性電解質水溶液、浴温度20
〜80Cおよび50〜1500mV/mmの電位送り速
度で走行させることを特徴とするジルコニウム基合金の
耐食性判別法。 4、特許請求の範囲第1項〜第3項において、前記ジル
コニウム基合金は電解直前あるいは少なくとも24時間
以内に前処理を施して新生面を露出させることを特徴と
するジルコニウム基合金の耐食性判別法。
[Claims] 1. In a method for determining the corrosion resistance of a zirconium-based alloy in superheated steam, the zirconium-based alloy is immersed in an acidic electrolyte aqueous solution as an anode, and electrolyzed by applying a DC voltage to the anode, A method for determining corrosion resistance of zirconium-based alloys, which is characterized in that the polarization curve is obtained and the corrosion resistance is evaluated based on the maximum value at which the current density in the curve becomes maximum. 2. In claim 1, the electrolytic conditions are:
Oxidizing electrolyte aqueous solution of 0.1-2.5 mol H_2SO_4, bath temperature 20-80 °C, and 50-1500 mV
A method for determining the corrosion resistance of a zirconium-based alloy, which is characterized by running at a potential feed rate of /mm. 3. In claim 1, the electrolytic conditions are 1.
~7 mol HNO_3 acidic electrolyte aqueous solution, bath temperature 20
A method for determining corrosion resistance of a zirconium-based alloy, characterized by running at a potential feed rate of ~80C and 50-1500mV/mm. 4. A method for determining corrosion resistance of a zirconium-based alloy according to claims 1 to 3, characterized in that the zirconium-based alloy is pretreated immediately before electrolysis or within at least 24 hours to expose a newly formed surface.
JP14111384A 1984-07-06 1984-07-06 Method for descriminating corrosion resistance of zirconium-base alloy Pending JPS6118842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14111384A JPS6118842A (en) 1984-07-06 1984-07-06 Method for descriminating corrosion resistance of zirconium-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14111384A JPS6118842A (en) 1984-07-06 1984-07-06 Method for descriminating corrosion resistance of zirconium-base alloy

Publications (1)

Publication Number Publication Date
JPS6118842A true JPS6118842A (en) 1986-01-27

Family

ID=15284461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14111384A Pending JPS6118842A (en) 1984-07-06 1984-07-06 Method for descriminating corrosion resistance of zirconium-base alloy

Country Status (1)

Country Link
JP (1) JPS6118842A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271598B1 (en) 2006-06-28 2007-09-18 Hitachi Global Storage Technologies Netherlands, B.V. Conductor coil defect identifier
KR100783967B1 (en) 2006-10-10 2007-12-10 현대자동차주식회사 Electrochemical testing cell
KR100892522B1 (en) 2007-04-23 2009-04-10 현대자동차주식회사 Electrochemical testing cell apparatus
CN103460019A (en) * 2011-04-12 2013-12-18 杰富意钢铁株式会社 Method for evaluating corrosion resistance of molded can against content

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271598B1 (en) 2006-06-28 2007-09-18 Hitachi Global Storage Technologies Netherlands, B.V. Conductor coil defect identifier
KR100783967B1 (en) 2006-10-10 2007-12-10 현대자동차주식회사 Electrochemical testing cell
KR100892522B1 (en) 2007-04-23 2009-04-10 현대자동차주식회사 Electrochemical testing cell apparatus
CN103460019A (en) * 2011-04-12 2013-12-18 杰富意钢铁株式会社 Method for evaluating corrosion resistance of molded can against content
EP2698623A1 (en) * 2011-04-12 2014-02-19 JFE Steel Corporation Method for evaluating corrosion resistance of molded can against content
EP2698623A4 (en) * 2011-04-12 2014-11-05 Jfe Steel Corp Method for evaluating corrosion resistance of molded can against content
US8906212B2 (en) 2011-04-12 2014-12-09 Jfe Steel Corporation Method for evaluating corrosion resistance of cans to contents

Similar Documents

Publication Publication Date Title
Andresen et al. Environmentally assisted cracking of types 304L/316L/316NG stainless steel in 288 C water
Urquhart et al. A Mechanism for the Effect of Heat‐Treatment on the Accelerated Corrosion of Zircaloy‐4 in High Temperature, High Pressure Steam
Uhlig et al. Chemical Factors Affecting Stress Corrosion Cracking of 18–8 Stainless Steels
Ruther et al. Effect of Sulfuric Acid, Oxygen, and Hydrogen in High Temperature Water on Stress Corrosion Cracking of Sensitized AISI 304 Stainless Steel
JPS6118842A (en) Method for descriminating corrosion resistance of zirconium-base alloy
Kim et al. Environmental behavior of light water reactor accident tolerant candidate cladding materials under design conditions
Jones Potential and chloride effects in the stress corrosion cracking of type 304 stainless steel in 290 C water
US3428532A (en) Method for identifying metals and alloys
Ueno et al. Study on the effect of phosphorous concentration on intergranular corrosion of stainless steel in boiling nitric acid solution
Cheng et al. Development of a Sensitive and Reproducible Steam Test for Zircaloy Nodular Corrosion
JPS6014155A (en) Detection for secular brittleness
JP2000199751A (en) Determining method for corrosion resistance of zirconium alloy
Ulaganathan et al. Mitigating effect of magnetite buffering on alloy 800 tubing degradation in acidic, sulphate-dominated environments at 300 o C
Marichev A nonequilibrium approach to development of reference electrodes and oxygen sensors for high-temperature aqueous systems
JP2000329720A (en) Method for judging corrosion property of zirconium alloy
JPS6237340B2 (en)
Saburov et al. Delayed Hydride Cracking of Fuel Rod Claddings Made of Three Zirconium Alloys
Maier The corrosion behavior of nickel 270 in phosphate-containing solutions
Afghani Corrosion behavior analysis of zirconium alloy for nuclear fuel cladding materials through electrochemical method
JPH06265514A (en) Sensor for water quality
Tanno et al. Stress Corrosion Cracking of Sensitized AISI 304 Stainless Steel in High-Temperature Sodium Sulfate Solutions
Irisawa et al. Effect of oxidizing metallic ions on corrosion of stainless steel during concentration process simulating High-level Activity Liquid Waste (HALW) concentrator
Fox et al. Stress Corrosion Cracking of Candidate Structural Materials in Simulated First-Wall/Aqueous Coolant Environments
Kehler et al. Comparison of the Crevice Corrosion Resistance of Alloys 625 and 22 in Concentrated Chloride Solution From 60deg?? to 95deg. C
KR20210010337A (en) Zirconium alloy structural material and manufacturing method thereof