JPS61187228A - Semiconductor manufacturing equipment by vapor growth - Google Patents

Semiconductor manufacturing equipment by vapor growth

Info

Publication number
JPS61187228A
JPS61187228A JP2803385A JP2803385A JPS61187228A JP S61187228 A JPS61187228 A JP S61187228A JP 2803385 A JP2803385 A JP 2803385A JP 2803385 A JP2803385 A JP 2803385A JP S61187228 A JPS61187228 A JP S61187228A
Authority
JP
Japan
Prior art keywords
raw material
gas supply
exhaust pipe
material gas
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2803385A
Other languages
Japanese (ja)
Other versions
JPH0351293B2 (en
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2803385A priority Critical patent/JPS61187228A/en
Publication of JPS61187228A publication Critical patent/JPS61187228A/en
Publication of JPH0351293B2 publication Critical patent/JPH0351293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To perform the improvement of sharpness in the formation of heterointerfaces of semiconductors and the prevention of impurity contamination by flowing a carrier gas into an exhaust tube which has been branched and parallelly connected to the branching tubes of plural raw-material-gas supply tubes. CONSTITUTION:The apparatus mainly comprises a crystal growth furnace 11, an inlet tube 5 connected to the furnace 11 to flow a carrier gas, an exhaust tube 6 connected to an exhauster 12 to flow the carrier gas, bypassing the furnace 11, and raw-material-gas supply tubes 1-4 having three-way valves 7-10 at their branch points. The exhaust tube 6 is branched and parallelly connected to each of the branched tubes of the raw-material-gas supply tubes 1-4 and merged again to a tube leading to the exhauster 12. It is then required to maintain the internal pressure of the exhaust tube 6 at a pressure slightly higher than that of the inlet tube 5 for the effective prevention of the backward gas flow which can cause the entering of impurity to the raw-material-gas supply tubes 1-4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気相成長による半導体製造装置に関し更に詳し
くいえば複数の原料ガスを使用する気相成長において、
成長炉へ通じる導入管と成長炉ノくイバスで排気装置へ
通じる排気管との間で原料ガスをバルブによって切り換
える際の不純物となる異なる原料ガスの逆流による原料
ガス供給管の汚染防止に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor manufacturing apparatus using vapor phase growth, and more specifically, in vapor phase growth using a plurality of raw material gases,
This invention relates to the prevention of contamination of raw material gas supply pipes due to backflow of different raw material gases that become impurities when switching raw material gases using a valve between an inlet pipe leading to a growth reactor and an exhaust pipe leading to an exhaust device in a growth furnace bus.

従来の技術 最近、半導体薄膜デバイスの薄膜化や多層化等の技術と
して、例えばOMVPE法等の気相成長法を利用する試
みがなされている。
BACKGROUND OF THE INVENTION Recently, attempts have been made to utilize vapor phase growth methods such as OMVPE as a technique for thinning and multilayering semiconductor thin film devices.

OMVPE法は通常液体や固体の状態で存在する有機金
属をH2などのキャリアガスでバブリングし有機金属の
蒸気とし、これを水素化物等と同時に成長炉に導入し、
熱、プラズマあるいは光のエネルギーを用いて化学反応
を励起し、化合物半導体等を成長する気相成長法であり
、有機金属としてGa (CHa ) 3とIn(にH
a)3、水素化物としてA s Haを用いてn+−v
族化合物半導体であるI nGaAs  をInP基板
」二に成長させる例や、有機金属とじてZn(CHa)
2、水素化物としてH2Seを用いてII−Vl族化合
物半導体であるZn5eをGaAs基板上に成長させる
例等がある。
In the OMVPE method, organic metals that normally exist in a liquid or solid state are bubbled with a carrier gas such as H2 to form organic metal vapor, which is introduced into a growth reactor simultaneously with hydrides, etc.
This is a vapor phase growth method that uses heat, plasma, or light energy to excite chemical reactions and grow compound semiconductors.
a) 3, n+-v using As Ha as hydride
Examples include growing I nGaAs, a group compound semiconductor, on an InP substrate, and growing Zn(CHa) as an organic metal.
2. There is an example in which Zn5e, which is a II-Vl group compound semiconductor, is grown on a GaAs substrate using H2Se as a hydride.

ところで、このよ、うなOMVPE法により化合物半導
体を成長させる場合、特に超格子のように極薄の膜を周
期的に多層にわんって成長する場合には各層の成長の開
始および停止は、原料ガス供給管に設けたバルブを開弁
および閉弁することにより行われ、このようなバルブ操
作を短い時間周期で繰り返し行う必要がある。交互に成
長する層が異なる元素によって構成される場合には、原
料ガスはバルブによって周期的に流される状態と遮断さ
れる状態を繰り返すことになり、これによって原料ガス
供給管内圧力が変動するため、原料ガス、特に有機金属
蒸気の流量が定常的に安定に保たれない(即ち、遮断さ
れる状態では原料ガス供給管内圧力が上昇し成長開始時
にバルブが開弁されたとき瞬間的に大量の原料ガスが成
長炉に流れ込むことになる)という重大な問題となる。
By the way, when growing a compound semiconductor using the OMVPE method, especially when growing an extremely thin film like a superlattice in multiple layers periodically, the start and stop of the growth of each layer depends on the raw material. This is performed by opening and closing a valve provided in the gas supply pipe, and it is necessary to repeatedly perform such valve operations at short time intervals. When the layers that grow alternately are composed of different elements, the source gas is periodically passed through and shut off by the valve, which causes the pressure inside the source gas supply pipe to fluctuate. The flow rate of the raw material gas, especially organometallic vapor, cannot be kept constant and stable (i.e., if it is shut off, the pressure inside the raw material gas supply pipe will increase, and when the valve is opened at the start of growth, a large amount of raw material will be released instantly). (gas flowing into the growth reactor) is a serious problem.

この問題を解決するために、従来は添付第2図に示すよ
うに、三方バルブ7.8,9.10(この場合三方バル
ブの代わりにバルブを2個三方バルブの上下に設けて連
動させてもよい)を用いることにより、原料ガスを成長
炉11に供給するときは導入管5を通じて導入し、成長
炉11に供給しないときは排気管6を通じて排気装置に
流し、原料ガスは定常的に流した状態を保つ。ここで、
導入管5と排気管6は内部にキャリアガスが流され、こ
れら両管の差圧をとり排気管6の内部を流れるキャリア
ガスの流量を制御することにより圧力バランスがとられ
ている。このとき、導入管5および排気管6を流れるキ
ャリアガスは、原料ガスを強制的に成長炉J1および排
気装置12に運ぶ役目も有している。
In order to solve this problem, conventionally, as shown in the attached Figure 2, three-way valves 7.8, 9.10 (in this case, instead of a three-way valve, two valves are provided above and below the three-way valve and are interlocked). When supplying the raw material gas to the growth furnace 11, it is introduced through the inlet pipe 5, and when it is not supplied to the growth furnace 11, it flows through the exhaust pipe 6 to the exhaust device, so that the raw material gas is constantly flowing. maintain the condition. here,
A carrier gas is flowed inside the inlet pipe 5 and the exhaust pipe 6, and the pressure is balanced by taking the differential pressure between these two pipes and controlling the flow rate of the carrier gas flowing inside the exhaust pipe 6. At this time, the carrier gas flowing through the inlet pipe 5 and the exhaust pipe 6 also has the role of forcibly transporting the raw material gas to the growth furnace J1 and the exhaust device 12.

しかしながら、このような従来法では導入管と排気管の
圧力バランスをとったとしても三方バルブの切り換えに
伴う圧力差によって三方バルブ切り換え時に三方バルブ
を通して導入管あるいは排気管から原料ガス供給管へガ
スの逆流が生じ、この場合、導入管および排気管が各原
料ガスに対して共通であるため、原料ガス供給管が不純
物となる他の原料ガスの逆流によって汚染されるという
欠点がある。
However, in such conventional methods, even if the pressure between the inlet pipe and the exhaust pipe is balanced, the pressure difference caused by switching the three-way valve causes gas to flow from the inlet pipe or the exhaust pipe to the source gas supply pipe through the three-way valve when the three-way valve is switched. Backflow occurs, and in this case, since the inlet pipe and the exhaust pipe are common to each raw material gas, there is a disadvantage that the raw material gas supply pipe is contaminated by the backflow of other raw material gases that become impurities.

発明が解決しようとする問題点 そこで、上記のような従来法の欠点を解決し、新しい気
相成長による半導体製造装置を開発することは、これら
技術の応用分野の拡大、例えば、不純物混入の少ない急
峻を半導体へテロ界面形成などにとって大きな意義を有
するものと思われる。
Problems to be Solved by the Invention Therefore, solving the above-mentioned drawbacks of conventional methods and developing new semiconductor manufacturing equipment using vapor phase growth will expand the application fields of these technologies, for example, reduce the amount of impurity contamination. This is thought to be of great significance for the formation of steep interfaces in semiconductor heterostructures.

本発明の目的はバルブを切り換える際の不純物となり得
るガスの逆流による原料ガス供給管の汚染を防止し得る
新たな気相成長による半導体製造装置を提供することに
あり、それによって半導体へテロ界面等の形成における
急峻性の改善と不純物混入防止を図ることにある。
An object of the present invention is to provide a new semiconductor manufacturing apparatus using vapor phase growth that can prevent contamination of raw material gas supply pipes due to backflow of gas that may become an impurity when switching valves. The objective is to improve the steepness of the formation and to prevent the contamination of impurities.

問題点を解決するための手段 本発明は上記のような気相成長による半導体製造装置の
現状に鑑みて、その諸欠点を改善すべく種々検討しな結
果、従来の排気管の代りに複数の原料ガス供給管の排気
管への分岐管に並列に分離して連結した排気管を用い、
キャリアガスを該排気管に流すことが上記本発明の目的
を達成する上で極めて有効であることを見出しk。本発
明はかかる知見に基き完成されたものである。
Means for Solving the Problems In view of the current state of semiconductor manufacturing equipment using vapor phase growth as described above, the present invention has been developed after various studies to improve the various drawbacks thereof. Using an exhaust pipe separated and connected in parallel to the branch pipe of the raw material gas supply pipe to the exhaust pipe,
It has been found that flowing carrier gas through the exhaust pipe is extremely effective in achieving the above object of the present invention. The present invention has been completed based on this knowledge.

即ち、本発明の気相成長による半導体製造装置は、成長
炉と、該成長炉に連結されてその内部に成長に必要な原
料ガスを強制的に上記成長炉に運ぶなめのキャリアガス
を流す導入管と、上記成長炉をバイパスして排気装置に
連結されてその内部に上記原料ガスを強制的に上記排気
装置に運ぶためのキャリアガスを流す排気管と、原料ガ
ス供給源から上記導入管と上記排気管に分岐して連結さ
れ、かつ上記分岐部分に三方バルブを有するかあるいは
上記分岐管の各々にバルブを有する複数の原料ガス供給
管を具備することを特徴とする半導体製造装置において
、上記排気管を該排気管に連結される複数の上記原料ガ
ス供給管の個々の上記分岐管に並列に分離して連結する
ことを特徴とする。
That is, the semiconductor manufacturing apparatus by vapor phase growth of the present invention includes a growth furnace, and an introduction system that is connected to the growth furnace and flows a diagonal carrier gas inside the growth furnace to forcibly carry the raw material gas necessary for growth to the growth furnace. an exhaust pipe that bypasses the growth furnace and is connected to an exhaust device through which a carrier gas flows for forcibly transporting the raw material gas to the exhaust device; and an inlet pipe from the raw material gas supply source. In the semiconductor manufacturing apparatus, the semiconductor manufacturing apparatus is equipped with a plurality of source gas supply pipes that are branched and connected to the exhaust pipe and have a three-way valve at the branched portion, or each of the branch pipes has a valve. It is characterized in that the exhaust pipe is separated and connected in parallel to each of the branch pipes of the plurality of raw material gas supply pipes connected to the exhaust pipe.

本発明の装置の1例を添付第1mに従って説明すると、
成長炉11と、該成長炉1工に連結されて原料ガスを強
制的に成長炉11に運ぶためのキャリアガスを流す導入
管5と、成長炉11をバイパスして排気装置12に連結
されて原料ガスを強制的に上記排気装置に運ぶためのキ
ャリアガスを流す排気管6と原料ガス供給源から導入管
5と排気管6に分岐して連結され、かつ上記分岐部分に
三方バルブ7〜10を有する原料ガス供給管1〜4・か
ら主として構成され、排気管6は該排気管6と原料ガス
供給管1−4.の分岐管との連結部分13〜16のキャ
リアガス供給源側で個々の上記分岐管に並列に分離して
連結され、かつ上記分岐管との連結部分13〜16の排
気装置側で再び統合される。
An example of the device of the invention is described according to attached No. 1m:
A growth furnace 11, an inlet pipe 5 connected to the growth furnace 1 and through which a carrier gas flows for forcibly transporting raw material gas to the growth furnace 11, and an inlet pipe 5 connected to an exhaust device 12 bypassing the growth furnace 11. An exhaust pipe 6 through which a carrier gas for forcibly transports the raw material gas to the exhaust device is branched and connected from the raw material gas supply source to an introduction pipe 5 and an exhaust pipe 6, and three-way valves 7 to 10 are provided at the branched portion. The exhaust pipe 6 is mainly composed of the raw material gas supply pipes 1-4. having the raw material gas supply pipes 1-4. The connection parts 13 to 16 with the branch pipes are separated and connected in parallel to the individual branch pipes on the carrier gas supply source side, and the connection parts 13 to 16 with the branch pipes are integrated again on the exhaust device side. Ru.

ここで、排気管6の管内圧力は、導入管5の管内圧力よ
りもわずかに高い圧力とすることが三方バルブ7〜10
を排気管6から導入管5へ切り換える際の導入管5から
原料ガス供給管1〜4・への不純物となり得るガスの逆
流を有効に防止するkめに必要である。
Here, the pressure inside the exhaust pipe 6 may be set to be slightly higher than the pressure inside the introduction pipe 5.
This is necessary to effectively prevent the backflow of gases that may become impurities from the inlet pipe 5 to the raw material gas supply pipes 1 to 4 when switching from the exhaust pipe 6 to the inlet pipe 5.

作用 かくして、本発明の装置によれば、排気管を該排気管に
連結される複数の原料ガス供給管の個々の分岐管に並列
に分離して連結し内部にキャリアガスを流すことによっ
て、成長炉へ通じる導入管と成長炉バイパスで排気装置
へ通じる排気管との間で原料ガスをバルブによって切り
換える際の不純物となる異なる原料ガスの逆流による原
料ガス供給管の汚染が効果的に防止され、半導体へテロ
界面形成における急峻性が改善されることになる。
Thus, according to the apparatus of the present invention, growth can be achieved by separating and connecting the exhaust pipe in parallel to individual branch pipes of a plurality of raw material gas supply pipes connected to the exhaust pipe and flowing the carrier gas inside. When the raw material gas is switched by a valve between the inlet pipe leading to the furnace and the exhaust pipe leading to the exhaust device through the growth furnace bypass, contamination of the raw material gas supply pipe due to backflow of different raw material gases that become impurities is effectively prevented. The steepness of semiconductor heterointerface formation will be improved.

尚、原料ガスを排気管から導入管へ切り換える際に導入
管から原料ガス供給管へのガスの逆流を効果的に防止す
るkめには圧力の制御が重要であり、導入管5内の圧力
をPl、排気管6内の圧力をP2  とすると、これを Pl、<P2 となるように調節することが必要である。従って圧力上
ンサなどを用いて排気管6内の圧力を自動的に制御する
ことが望ましい。
Furthermore, when switching the raw material gas from the exhaust pipe to the inlet pipe, it is important to control the pressure in order to effectively prevent the backflow of gas from the inlet pipe to the raw material gas supply pipe. Let Pl be the pressure in the exhaust pipe 6, and P2 be the pressure inside the exhaust pipe 6, then it is necessary to adjust this so that Pl<P2. Therefore, it is desirable to automatically control the pressure inside the exhaust pipe 6 using a pressure sensor or the like.

ここで、上記の圧力条件では、原料ガスを導入管から排
気管へ切り換える際に排気管から原料ガス供給管へのキ
ャリアガスの逆流が生じるが、これは不純物による汚染
とはならないことはいうまでもない。
Under the above pressure conditions, when the raw material gas is switched from the inlet pipe to the exhaust pipe, carrier gas backflows from the exhaust pipe to the raw material gas supply pipe, but it goes without saying that this does not result in contamination by impurities. Nor.

発明の効果 以上詳しく説明したように、本発明の気相成長による半
導体製造装置によれば、いわゆるOMVPE等による半
導体薄膜成長の際に従来みられたような原料ガス切り換
え時の異なる原料ガスの逆流による原料ガス供給管の汚
染、即ち原料ガスの汚染を有利に回避し、多層薄膜成長
における各層の成長開始時に成長炉に導入される原料ガ
スを他の原料ガスによる汚染の少ないものとすることが
できる。その結果、不純物汚染が少なく、かつ界面急峻
性が優れた半導体多層薄膜を成長でき、半導体薄膜デバ
イスの性能においても大きく改善されるものと期待する
Effects of the Invention As explained in detail above, the semiconductor manufacturing apparatus using vapor phase growth of the present invention eliminates the backflow of different source gases when switching source gases, which has conventionally been seen when growing semiconductor thin films by so-called OMVPE. It is possible to advantageously avoid contamination of the raw material gas supply pipe, that is, contamination of the raw material gas, and to make the raw material gas introduced into the growth furnace at the start of growth of each layer in multilayer thin film growth less contaminated by other raw material gases. can. As a result, it is possible to grow semiconductor multilayer thin films with less impurity contamination and excellent interface steepness, and it is expected that the performance of semiconductor thin film devices will be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための模式的な図であ
り、 =9− 第2図は、従来の気相成長による半導体薄膜成長装置を
説明するための模式的な図である。 1.2,3,4  :  原料ガス供給管5 : 導入
管 6 : 排気管 7.8,9,10  :  三方バルブll : 成長
炉 12 : 排気装置 13.14..15.16:排気管と原料ガス供給管の
連結部分 手続補正書 特許庁長官 志賀  学    殿    い1、事件
の表示 昭和60年特許願 第 28033  号2、発明の名
称 気相成長による半導体製造装置 8、補正をする者 事件との関係   特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住友電気工業株式会社 社長 用上哲部 4、代理人 住所    大阪市此花区島屋1丁目1番3号住友電気
工業株式会社内 (電話 大阪461−1031) 氏名(7881)弁理士 上代哲司 5、補正命令の日付 6、補正の対象 明細寄生発明の詳細な説明の欄 7、補正の内容 (1)明細書箱5頁14行目 [界面等・・・急峻性」を[接合等の形状における界面
急峻性]に補正します。 ■同第8頁10行目 [界面形成・・・急峻性」を「接合形成における界面急
峻性」に補正します。
FIG. 1 is a schematic diagram for explaining the present invention in detail, and FIG. 2 is a schematic diagram for explaining a conventional semiconductor thin film growth apparatus using vapor phase growth. 1.2, 3, 4: Raw material gas supply pipe 5: Inlet pipe 6: Exhaust pipe 7.8, 9, 10: Three-way valve 1: Growth furnace 12: Exhaust device 13.14. .. 15.16: Partial procedure amendment for connection of exhaust pipe and raw material gas supply pipe Manabu Shiga, Director General of the Japan Patent Office, 1. Indication of the case, 1985 Patent Application No. 28033 2. Name of the invention, Semiconductor manufacturing device by vapor phase growth 8 , Relationship with the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) President of Sumitomo Electric Industries, Ltd. Tetsube Yogami 4, agent address within Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka (telephone: 461-1031 Osaka) Name (7881) Patent attorney Tetsuji Uedai 5 , date of the amendment order 6, detailed description of the parasitic invention to be amended column 7, content of the amendment (1) Specification box page 5, line 14, [interface, etc....steepness] changed to [shape of joint, etc.] interface steepness]. ■Page 8, line 10, [Interface formation...steepness] will be corrected to "Interface steepness in bond formation."

Claims (1)

【特許請求の範囲】[Claims] (1)成長炉と、該成長炉に連結されてその内部に成長
に必要な原料ガスを強制的に上記成長炉に運ぶためのキ
ャリアガスを流す導入管と、上記成長炉をバイパスして
排気装置に連結されてその内部に上記原料ガスを強制的
に上記排気装置に運ぶためのキャリアガスを流す排気管
と、原料ガス供給源から上記導入管と上記排気管に分岐
して連結されかつ上記分岐管の各々にバルブを有するか
あるいは上記分岐部分に三方バルブを有する複数の原料
ガス供給管を具備することを特徴とする気相成長による
半導体製造装置において、上記排気管を該排気管に連結
される複数の上記原料ガス供給管の個々の分岐管に並列
に分離して連結することを特徴とする気相成長による半
導体製造装置。
(1) A growth furnace, an inlet pipe connected to the growth furnace and through which a carrier gas flows forcibly carrying the raw material gas necessary for growth to the growth furnace, and an exhaust pipe that bypasses the growth furnace. an exhaust pipe connected to the device and through which a carrier gas for forcibly transporting the raw material gas to the exhaust device flows, and an exhaust pipe connected to the raw material gas supply source by branching to the introduction pipe and the exhaust pipe A semiconductor manufacturing apparatus by vapor phase growth characterized in that each of the branch pipes has a valve or a plurality of source gas supply pipes each having a three-way valve in the branch part are provided, and the exhaust pipe is connected to the exhaust pipe. A semiconductor manufacturing apparatus by vapor phase growth, characterized in that the plurality of raw material gas supply pipes are separated and connected in parallel to individual branch pipes.
JP2803385A 1985-02-14 1985-02-14 Semiconductor manufacturing equipment by vapor growth Granted JPS61187228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2803385A JPS61187228A (en) 1985-02-14 1985-02-14 Semiconductor manufacturing equipment by vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2803385A JPS61187228A (en) 1985-02-14 1985-02-14 Semiconductor manufacturing equipment by vapor growth

Publications (2)

Publication Number Publication Date
JPS61187228A true JPS61187228A (en) 1986-08-20
JPH0351293B2 JPH0351293B2 (en) 1991-08-06

Family

ID=12237426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2803385A Granted JPS61187228A (en) 1985-02-14 1985-02-14 Semiconductor manufacturing equipment by vapor growth

Country Status (1)

Country Link
JP (1) JPS61187228A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188500A (en) * 1975-01-31 1976-08-03 GARIUMUHISOKETSUSHONO SEIZOHOHO
JPS5816583A (en) * 1981-02-04 1983-01-31 ゼロツクス・コ−ポレ−シヨン Semiconductor device having non-planar layer characteristic and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188500A (en) * 1975-01-31 1976-08-03 GARIUMUHISOKETSUSHONO SEIZOHOHO
JPS5816583A (en) * 1981-02-04 1983-01-31 ゼロツクス・コ−ポレ−シヨン Semiconductor device having non-planar layer characteristic and method of producing same

Also Published As

Publication number Publication date
JPH0351293B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JPH0429313A (en) Device for producing semiconductor crystal
JPS61500994A (en) Material deposition technology
JPS61187228A (en) Semiconductor manufacturing equipment by vapor growth
JPS61264722A (en) Manufacture of semiconductor device
JP2581117B2 (en) Vapor phase growth equipment
JPS60182722A (en) Decompression cvd device
JPH01270314A (en) Vapor growth device
JPS61187229A (en) Semiconductor manufacturing equipment by vapor growth
JP3702403B2 (en) Vapor growth method
JPS6060714A (en) Vapor-phase epitaxial crowing method for i-v group compound semiconductor
JPS59229816A (en) Vapor growth apparatus for compound semiconductor
JPS6251209A (en) Vapor growth apparatus
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JPS60131968A (en) Vapor growth deposition device
JPS61186285A (en) Apparatus for multi-layer vapor-phase growth
JPS59170000A (en) Device for crystal growth
JPS61187230A (en) Semiconductor manufacturing equipment by vapor growth
JPS6194319A (en) Evaporator of volatile matter
JPS63151017A (en) Semiconductor thin film manufacturing apparatus
JPS5961030A (en) Vapor growth method for semiconductor
JPS6284513A (en) Preparing apparatus for epitaxial crystal
JPS63257216A (en) Apparatus for manufacturing semiconductor crystal
JPH0442898A (en) Crystal growth of compound semiconductor
JPS6244966B2 (en)
JPH0265125A (en) Reaction pipe of mocvd crystal growth device