JPS61185961A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61185961A
JPS61185961A JP60025137A JP2513785A JPS61185961A JP S61185961 A JPS61185961 A JP S61185961A JP 60025137 A JP60025137 A JP 60025137A JP 2513785 A JP2513785 A JP 2513785A JP S61185961 A JPS61185961 A JP S61185961A
Authority
JP
Japan
Prior art keywords
blocks
channel mos
buried diffusion
semiconductor device
pattern shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025137A
Other languages
Japanese (ja)
Inventor
Hitoshi Tsubone
坪根 衡
Tatsuya Kimura
木村 立也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60025137A priority Critical patent/JPS61185961A/en
Publication of JPS61185961A publication Critical patent/JPS61185961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a deviation in relative position between the MOS regions and the buried diffusion layers from generating by a method wherein the MOS blocks of each of the two CMOS logic blocks of a CMOS semiconductor device and the respective buried diffusion layer of the two CMOS logic blocks are formed in such a way that the longitudinal direction of the blocks and the buried diffusion layers become parallel with the pattern shift direction of the epitaxially grown layer. CONSTITUTION:N-channel MOS blocks 30, p-channel MOS blocks 31 and buried diffu sion layers 37 are formed in a rectangular form, and these are formed on a wafer 42 in such a way as to become roughly parallel to one another and are formed in roughly parallel to a pattern shift direction 11. CMOS logic blocks 41 capable of performing the prescribed operation in a combination of these mutually adjacent n-channel MOS blocks 30 and p-channel MOS blocks 31 are formed. When it is assumed that the surface of the substrate 42 is a (100) plane and the axis of the (100) plane is slanting at 1 deg.-5 deg. in the <001> axial direction, the pattern shift direction 11 becomes the <001> axial direction. Even when the CMOS logic blocks 41 are formed on the assumption that no pattern shift is generated, a latch-up phenomenon is hard to generate. By this way, the need for making a margin is eliminated and the integra tion degree of the CMOS semiconductor device can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置に関し、なかでもBi−CMO8半
導体装置のCMO8部分に好んで用いられる、エピタキ
シャル層及び埋め込み拡散層を有する半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an epitaxial layer and a buried diffusion layer, which is preferably used in the CMO8 portion of a Bi-CMO8 semiconductor device.

(従来の技術) 半導体装置を第3図に示す。図は、Bi−CMO8半導
体装置のCMO8部分であシ、以下CMO8半導体装置
の語を用いる。CMOS半導体装置は、n−チャネルM
O8’ロック(n−チャネルMO8)ランジスタの集合
体をいう。図面ではn−チャネルMOSトランジスタを
1つだけ示す。)30と、p−チャネルMOSブロック
(p−チャネルトランジスタの集合体をいう。図面では
p−チャネルトランジスタを1つだけ示す。)31とを
有する。尚、32はアライメント・マークであって、製
造工程中のマスク合わせに用いられる。
(Prior Art) A semiconductor device is shown in FIG. The figure shows the CMO8 portion of a Bi-CMO8 semiconductor device, and the term CMO8 semiconductor device will be used hereinafter. CMOS semiconductor devices are n-channel M
Refers to a collection of O8' lock (n-channel MO8) transistors. Only one n-channel MOS transistor is shown in the drawing. ) 30, and a p-channel MOS block (referring to an aggregate of p-channel transistors. In the drawing, only one p-channel transistor is shown) 31. Note that 32 is an alignment mark, which is used for mask alignment during the manufacturing process.

n−チャネルMOSブロック30は、p−半導体基板3
3上n−のエピタキシャル成長層34中に形成されたp
−ウェル領域35と、更にこの中に形成されたn ソー
ス・ドレイン領域36を有する。p−チャネルMOSプ
ロ、り31は、基板33とエピタキシャル成長層34と
の間に設けられた埋め込み拡散層37mと、エピタキシ
ャル成長層34中に形成されたp ソース・ドレイン領
域38を有する。
The n-channel MOS block 30 has a p-semiconductor substrate 3
3 formed in the n- epitaxial growth layer 34
- It has a well region 35 and an n source/drain region 36 formed therein. The p-channel MOS transistor 31 has a buried diffusion layer 37m provided between the substrate 33 and the epitaxial growth layer 34, and a p-source/drain region 38 formed in the epitaxial growth layer 34.

この様なp−−ウェル領域35、n 及びp ソース・
ドレイン領域36及び38を形成する際は、♂埋め込み
拡散層37bを形成する際に半導体基板33上に形成さ
れた凹部がエピタキシャル成長層34が成長するに従が
ってひき継がれたアライメント・マーク32を用−いて
マスク合わせを1行なう。
Such p-well region 35, n and p source
When forming the drain regions 36 and 38, an alignment mark 32 that is inherited as the epitaxial growth layer 34 grows is formed in the recess formed on the semiconductor substrate 33 when forming the male buried diffusion layer 37b. Perform one mask alignment using .

尚、実際にはとれらの上に絶縁層を介して配線層が形成
されているが説明しない。
Incidentally, a wiring layer is actually formed on these layers with an insulating layer interposed therebetween, but this will not be explained.

この様なCMO8半導体装置は、通常、第4図に社様に
論理ブロックごとに0MO8素子の集合体として形成さ
れる。図において、一点鎖線で示すCMOS論理ブロッ
ク4ノは、半導体基板33上にエピタキシャル成長層3
4が形成された半導体ウェー・42内に形成されている
。この様な論理ブロックは、n−チャネルMO8が多数
集合したn−チャネルMOSブロック30及びp−チャ
ネルMO8が多数集合シたp−チャネルMOSブロック
31の形状に合わせて、いろいろな方向に形成されてい
る。尚、図において点線は、埋め込み拡散層37のウェ
ー・42内の位置と示す。
Such a CMO8 semiconductor device is normally formed as an assembly of 0MO8 elements for each logic block as shown in FIG. In the figure, a CMOS logic block 4 indicated by a dashed line is formed by forming an epitaxial growth layer 3 on a semiconductor substrate 33.
4 is formed in a semiconductor wafer 42. Such logic blocks are formed in various directions according to the shapes of the n-channel MOS block 30 in which a large number of n-channel MO8s are assembled and the p-channel MOS block 31 in which a large number of p-channel MO8s are assembled. There is. In the figure, the dotted line indicates the position of the buried diffusion layer 37 within the wafer 42.

(発明が解決しようとする問題点) しかしながらこの様なCMO8半導体装置は、しばしば
第3図及び第4図に示す様に、♂埋め込み拡散層37と
、他の領域のパターンがずれることがある。これはいわ
ゆるノヂターンシフトの影響である。パターンシフトと
は、S、P、Weeks、5olid 5tateTa
ch、日本版、 Tan、1982 p、61〜d、6
8にも記載されている様に、半導体基板33に埋め込み
拡散層37を形成する際に形成された凹部がエピタキシ
ャル成長層34が成長するに従ってずれていくことをい
う。又、これを本件明細書中では、埋め込み拡散層37
bの位置と、アライメント・マーク32の位置がずれる
ことであると理解しても良い。これは、通常CMO8半
導体装置はアライメン)−マーク等の・ぐターンだれ防
止あるいは格子欠陥・防止の為に(100)面あるいは
(111)面から10〜5°傾けた面を有する基板33
を用いる為に生゛する。この様な基準面から傾いた基板
33を用いると、この傾きの為にエピタキシャル成長層
34の成長が一様でなくなシ、傾いた方向の成長が早く
なシ、エピタキシャル成長層34上のパターンの位置が
ずれるのである。
(Problems to be Solved by the Invention) However, in such a CMO8 semiconductor device, as shown in FIGS. 3 and 4, the patterns of the male buried diffusion layer 37 and other regions are often misaligned. This is the effect of so-called no-turn shift. Pattern shift is S, P, Weeks, 5olid 5tateTa
ch, Japanese version, Tan, 1982 p, 61-d, 6
As described in 8, this refers to the fact that the recesses formed when forming the buried diffusion layer 37 in the semiconductor substrate 33 shift as the epitaxial growth layer 34 grows. In addition, this is referred to as the buried diffusion layer 37 in this specification.
It may be understood that this is a deviation between the position of b and the position of the alignment mark 32. This is normally used for CMO8 semiconductor devices, in order to prevent alignment marks, etc., and to prevent lattice defects or lattice defects.
It is born in order to use it. If such a substrate 33 is tilted from the reference plane, the growth of the epitaxial growth layer 34 will not be uniform due to this tilt, and the growth in the tilted direction will be faster, and the position of the pattern on the epitaxial growth layer 34 will change. The difference is caused by the difference.

この様な・ぐターンシフトの為にアライメント・マーク
32を構成する凹部はもとのn 埋め込み拡散層37b
の位置からずれた位置にひき継がれることとなシ、この
アライメント・マークを用いてマスク合わせを行ないC
MOS半導体装置を形成すると、第5図の様にn 埋め
込み拡散層37と他の拡散領域パターンがずれて寄生サ
イリスタがターンオンしゃすくなシ、ラッチアップが生
じやすくなるのである。
Because of this type of turn shift, the concave portion forming the alignment mark 32 is recessed from the original n buried diffusion layer 37b.
To prevent the mask from being transferred to a position shifted from the position of C, use this alignment mark to align the mask.
When a MOS semiconductor device is formed, as shown in FIG. 5, the patterns of the n-buried diffusion layer 37 and other diffusion regions are misaligned, making it difficult for the parasitic thyristor to turn on and latch-up.

この寄生サイリスタについて簡単に説明する。This parasitic thyristor will be briefly explained.

寄生サイリスタは、p+ソース・ドレイン領域3B一層
埋め込み拡散層37・P−ウェル領域35・n/−ス・
ドレイン領域36でPN PNサイリスタを構成してな
る。ここでパターンシフトの為、第5図の様にn ソー
ス・ドレイン領域36とn 埋め込み拡散層37との距
離が短かくなると、p−−ウェル領域35からなるダー
トの厚さが薄くなった状態となる。ダートの厚さが薄く
なると、ターンオン電圧が低くなり、ラッチアップが生
じやすくなるのである。(CMO8ICのラッチアップ
については信学技報SSD 82−39(1982)に
詳しい。)ラッチアップが生ずると過剰電流が流れ、半
導体装置が破壊されたシ、そこまでに到らなくても暴走
して、使用に耐えなくなる。
The parasitic thyristor includes the p+ source/drain region 3B, the buried diffusion layer 37, the P-well region 35, the n/-s.
The drain region 36 constitutes a PN thyristor. Here, due to pattern shift, as the distance between the n source/drain region 36 and the n buried diffusion layer 37 becomes shorter as shown in FIG. 5, the thickness of the dart made of the p-well region 35 becomes thinner. becomes. As the dart becomes thinner, the turn-on voltage becomes lower, making latch-up more likely to occur. (For more information about CMO8IC latch-up, see IEICE Technical Report SSD 82-39 (1982).) When latch-up occurs, excessive current flows and the semiconductor device is destroyed. It becomes unusable.

この様な不都合があるラッチア、fを避けるために、あ
らかじめパターンシフトのずれ分を考慮した位置にアラ
イメント・マーク32を形成するという考えがあるが、
このパターンシフトの程度はエピタキシャル成長層34
の成長条件例えば成長炉の方式、温度、ソースガスの種
類、成長レートあるいは成長圧力等の多数のパラメータ
によってエピタキシャル成長層34の成長角度が、半導
体基板33の法線を基準として矢印方向へ00−65゜
の間になシ、この多数の・母うメータが複雑に関係しあ
い、どのくらいの距離シフトするかほとんど予測が困難
な為実際にこれを行なうことはできない。
In order to avoid such an inconvenient latch, there is an idea to form the alignment mark 32 at a position that takes into account the deviation of the pattern shift in advance.
The degree of this pattern shift is determined by the epitaxial growth layer 34.
The growth angle of the epitaxially grown layer 34 varies from 00 to 65 degrees in the direction of the arrow with respect to the normal to the semiconductor substrate 33 depending on many parameters such as the method of growth furnace, temperature, type of source gas, growth rate, or growth pressure. This cannot be done in practice because the large number of meters interrelate with each other in a complex manner, and it is difficult to predict how far the distance will shift.

その為、従来パターンシフトを考慮1.、/#ターンシ
フトが大きい場合でもn ソース・ドレイン領域36と
n+埋め込み拡散層37との距離を太きくとることが行
なわれている。すなわち、第4図に示す様に矢印方向へ
パターンシフトが起こっても?ソースドレイン領域36
と?埋め込み拡散層37との距離が十分保てる様に、n
−チャネルMOSブロック30とp−チャネルMOSブ
ロック3ノとの間のマージンを十分大きくしたシ、?−
チャネル題Sブロック31の面積を大きくとる等のこと
が行なわれている。この様にマージンを大きくすると、
素子を形成しない領域が増加していき、集積度が低下す
るという欠点がある。
Therefore, considering the conventional pattern shift 1. , /# Even when the turn shift is large, the distance between the n source/drain region 36 and the n+ buried diffusion layer 37 is increased. That is, even if a pattern shift occurs in the direction of the arrow as shown in FIG. Source drain region 36
and? In order to maintain a sufficient distance from the buried diffusion layer 37,
- Is the margin between channel MOS block 30 and p-channel MOS block 3 sufficiently large? −
Efforts are being made to increase the area of the channel title S block 31. If you increase the margin like this,
This has the disadvantage that the area where no elements are formed increases and the degree of integration decreases.

(問題点を解決するだめの手段) 本発明は、以上の様な問題点を解消した半導体装置を提
供するものであって、半導体装置のCMO8論理ブロッ
クの両方のMOSブロック及び埋め込み拡散層の長手方
向がエピタキシャル成長層の・ぐターンシフト方向と平
行となる様に形成するものである。
(Means for Solving the Problems) The present invention provides a semiconductor device that solves the above-mentioned problems. It is formed so that the direction is parallel to the turn shift direction of the epitaxial growth layer.

(作用) 本発明は、CMO8論理ブロックの両方のMOSブロッ
ク及び埋め込み拡散層をエピタキシャル成長層のパター
ンシフト方向に沿う様に形成するので、エピタキシャル
成長層の、?ターンシフトにかかわらず、MO8領域と
埋め込み拡散層との相対位置がずれないのである。
(Function) In the present invention, both MOS blocks and buried diffusion layers of the CMO8 logic block are formed along the pattern shift direction of the epitaxial growth layer. Regardless of the turn shift, the relative positions of the MO8 region and the buried diffusion layer do not shift.

(実施例) 第1図は本発明の一実施例を示す平面モデル図である。(Example) FIG. 1 is a plan model diagram showing an embodiment of the present invention.

図に示す様に、n−チャネルMOSブロック30、p−
チャネルMOSブロック31及び埋み込み拡散層37は
長方形状で、これらがほぼ平行となる様にウェハ42に
形成する。これらはA?ターンシフト方向11にほぼ平
行に形成する。そして、41は、この隣接したn−チャ
ネルMOSブロック30とp−チャネルMOSブロック
31との組み合わせで所定の動作をする0MO8論理ブ
ロック4ノを形成する。尚1図に示すこれらブロックの
囲いは、n−領域あるいはp−領域等のウェルを表わす
ものではない。
As shown in the figure, an n-channel MOS block 30, a p-
The channel MOS block 31 and the buried diffusion layer 37 have a rectangular shape, and are formed on the wafer 42 so that they are substantially parallel to each other. Are these A? It is formed substantially parallel to the turn shift direction 11. 41 forms an 0MO8 logic block 4 which performs a predetermined operation by a combination of the adjacent n-channel MOS block 30 and p-channel MOS block 31. It should be noted that the enclosures of these blocks shown in Figure 1 do not represent wells such as n-regions or p-regions.

ここで基板42の面が(100)面であり、この軸が(
001>軸方向に1°〜5°傾いているとすると、パタ
ーンシフト方向11は<001>軸方向となる。この・
ぐターンシフトの程度は前述の様に多数のパラメータに
よシエピタキシャル成長層34の成長方向が0〜65°
の間にばらつくので、予想ができない。しかしながら、
パターンシフト方向1)のずれは<ool〉軸から±3
°以内であるので、ツクターンシフト方向1ノのずれは
考慮する必要はない。その為、パターンシフト方向1ノ
と直角方向は全く・母ターンシフトが生じない場合と同
じとなり、パターンシフトが生じていないものとしてC
MO8論理ブロック41を形成しても、ラッチアップは
生じにくい。又、その為、ノ4ターンシフト方向11と
直角方向には、p−チャネルMO8論理ブロック31及
びとのp−チャネルMO8論理ブロック3ノとn−チャ
ネルMO8論理ブロック3oとの間を広くする必要がな
くなる。従ってマージンをとる必要がなくなるので、C
MO8半導体装置の集積度を上げることができる様にな
るのである。
Here, the surface of the substrate 42 is the (100) plane, and this axis is (
If it is tilted by 1° to 5° in the <001> axial direction, the pattern shift direction 11 becomes the <001> axial direction. this·
As mentioned above, the degree of turn shift depends on a number of parameters.
It is impossible to predict as it varies between periods. however,
The deviation in pattern shift direction 1) is ±3 from the <ool> axis
Since it is within 1°, there is no need to consider the deviation of 1° in the turn shift direction. Therefore, the direction perpendicular to pattern shift direction 1 is the same as when no main turn shift occurs, and C is assumed that no pattern shift occurs.
Even if the MO8 logic block 41 is formed, latch-up is unlikely to occur. Also, for this reason, in the direction perpendicular to the four-turn shift direction 11, it is necessary to widen the space between the p-channel MO8 logic block 31 and the p-channel MO8 logic block 3 and the n-channel MO8 logic block 3o. disappears. Therefore, there is no need to take a margin, so C
This makes it possible to increase the degree of integration of MO8 semiconductor devices.

第2図は、第1図の一部を拡大したものであシ、(、)
は平面図、(b)は(、)におけるAl−A2断面図、
(C)は(b)におけるB1−82断面図である。第2
図(、)ではCMO8論理ブロック41として点線の記
号で示したインバータを例にとって説明する。
Figure 2 is an enlarged part of Figure 1.
is a plan view, (b) is an Al-A2 cross-sectional view in (,),
(C) is a sectional view taken along line B1-82 in (b). Second
In the figure (,), an example of an inverter indicated by a dotted line symbol as the CMO8 logic block 41 will be explained.

(、)に示す様に、各チャネルのMOSトランジスタは
、横方向すなわちパターンシフト方向11と平行に形成
された長方形状のn−チャネルMOSブロック30及び
p−チャネルMOSブロック31に収まる様にパターン
設計されている。これらMOSブロック30及び3ノは
、完全な四辺を持つ長方形に形成する必要は必らずしも
ない。しかし、長辺と短辺の比が大きい長方形状にする
のは好ましい。この為の最も好ましい態様はn−チャネ
ルMOSブロック30とp−チャネルMOSブロック3
1が半導体チップを形成するウェハ42上でこのチップ
のほぼ一端から他端に亘シはぼパターンシフト方向11
に平行に交互に配置された縞状となる形状である。
As shown in (,), the pattern of the MOS transistors of each channel is designed so that they fit into a rectangular n-channel MOS block 30 and a p-channel MOS block 31 formed in the horizontal direction, that is, parallel to the pattern shift direction 11. has been done. These MOS blocks 30 and 3 do not necessarily need to be formed into rectangular shapes with four complete sides. However, it is preferable to use a rectangular shape with a large ratio of long sides to short sides. The most preferred embodiment for this purpose is an n-channel MOS block 30 and a p-channel MOS block 3.
1 is a pattern shift direction 11 on a wafer 42 on which a semiconductor chip is formed, extending substantially from one end to the other end of the chip.
It has a striped shape that is alternately arranged parallel to the .

以上の様に形成するのが好ましい理由を説明する。すな
わち、ノぐターンシフト方向11が(001)方向の場
合は、これと直角方向には、前述の様にパターンシフト
が発生しないので、マージン’tとる必要がなくなるが
、〈001〉方向には、第2図に示す様にdだけ・ぐタ
ーンシフトが生ずるので、このパターンシフト幅dに対
するマージンをとらなければならない。このパターンシ
フト幅dに対応する面積を小さくする為には、・母ター
ンシフト方向11と直角方向の辺の長さを極力短かくす
るのが好ましいのである。
The reason why it is preferable to form as described above will be explained. In other words, when the nog turn shift direction 11 is the (001) direction, no pattern shift occurs in the direction perpendicular to this as described above, so there is no need to take a margin 't, but in the <001> direction , as shown in FIG. 2, a turn shift of d occurs, so a margin must be provided for this pattern shift width d. In order to reduce the area corresponding to the pattern shift width d, it is preferable to make the length of the side perpendicular to the main turn shift direction 11 as short as possible.

(発明の効果) 本発明は、以上説明した様に、CMO8半導体装置のn
−チャネルMOSブロック、p−チャネルMOSブロッ
ク及び埋め込み拡散層の長手方向が、エピタキシャル成
長層のA’ターンシフト方向とはホ平行となる様に形成
したので、・母ターンシフト方向に対し直角方向の相対
位置がずれず、この方向のマージンを考慮する必要がな
くなるので、この方向の集積度を低下させることなく、
ラッチアップが生じにくいCMO8論理ブロックを有す
る半導体装置を得ることができる。
(Effects of the Invention) As explained above, the present invention provides an n
- Since the channel MOS block, p-channel MOS block, and buried diffusion layer were formed so that the longitudinal direction was parallel to the A' turn shift direction of the epitaxial growth layer, - the relative direction perpendicular to the mother turn shift direction Since the position does not shift and there is no need to consider the margin in this direction, the integration degree in this direction does not decrease.
A semiconductor device having a CMO8 logic block in which latch-up is less likely to occur can be obtained.

【図面の簡単な説明】 第1図は本発・明の一実施例を説明する為の平面図、第
2図は本発明の一実施例を説明する為に第1図を拡大し
、MO8ICを記号で記入した図で、6)は平面図、(
b)は(、)のAl−A2断面図、(c)はB1−82
断面図、第3図はCMO8半導体装置を説明する為の断
面図、第4図は従来のCMO8半導体装置を説明する為
の平面図である。 11・・・パターンシフト方向、3o・・・n−チャネ
ルMOSブロック、31・・・p−チャネルMO87”
ロック、33・・・半導体基板、34・・・エピタキシ
ャル成長層、35・・・p−ウェル領域、37・・・埋
め込み拡散層、4ノ・・・CMOS論理ブロック。 特許出願人 沖電気工業株式会社 手続補正書(自制 60.621 昭和  年  月  日
[Brief Description of the Drawings] Figure 1 is a plan view for explaining an embodiment of the present invention, and Figure 2 is an enlarged view of Figure 1 for explaining an embodiment of the present invention. 6) is a plan view, (6) is a plan view, (
b) is an Al-A2 cross-sectional view of (,), (c) is B1-82
3 is a sectional view for explaining a CMO8 semiconductor device, and FIG. 4 is a plan view for explaining a conventional CMO8 semiconductor device. 11...Pattern shift direction, 3o...n-channel MOS block, 31...p-channel MO87"
Lock, 33... Semiconductor substrate, 34... Epitaxial growth layer, 35... P-well region, 37... Buried diffusion layer, 4... CMOS logic block. Patent Applicant Oki Electric Industry Co., Ltd. Procedural Amendment (Self-Restraint 60.621 Showa Year, Month, Day)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成されたエピタキシャル成長層と、
該エピタキシャル成長層に形成されたn−チャネルMO
Sブロック及びp−チャネルMOSブロックを有し、前
記MOSブロックのいずれか一方に埋め込み拡散層を有
する半導体装置に於て、前記両ブロック及び埋め込み拡
散層の長手方向が前記エピタキシャル成長層のパターン
シフト方向とほぼ平行となるように構成された半導体装
置。
an epitaxial growth layer formed on a semiconductor substrate;
n-channel MO formed in the epitaxial growth layer
In a semiconductor device having an S block and a p-channel MOS block, and having a buried diffusion layer in either one of the MOS blocks, the longitudinal direction of both blocks and the buried diffusion layer is the pattern shift direction of the epitaxial growth layer. A semiconductor device configured to be almost parallel.
JP60025137A 1985-02-14 1985-02-14 Semiconductor device Pending JPS61185961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025137A JPS61185961A (en) 1985-02-14 1985-02-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025137A JPS61185961A (en) 1985-02-14 1985-02-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61185961A true JPS61185961A (en) 1986-08-19

Family

ID=12157578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025137A Pending JPS61185961A (en) 1985-02-14 1985-02-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61185961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287665A (en) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2007311669A (en) * 2006-05-22 2007-11-29 Toshiba Corp Semiconductor device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522022A (en) * 1978-07-26 1980-02-16 Kanebo Ltd Manufacture of fancy twisted yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522022A (en) * 1978-07-26 1980-02-16 Kanebo Ltd Manufacture of fancy twisted yarn

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287665A (en) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2007311669A (en) * 2006-05-22 2007-11-29 Toshiba Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8410526B2 (en) Semiconductor integrated circuit device with reduced cell size
US6204542B1 (en) Field effect transistor with improved driving capability
JP2006147718A (en) Semiconductor device and manufacturing method thereof
JP2011243866A (en) Method of manufacturing super junction semiconductor device
JP2006351930A (en) Semiconductor device and its manufacturing method
JP2007142276A (en) Semiconductor device and method of manufacturing same
JP2006128640A (en) Semiconductor apparatus and method of manufacturing the same
TW201806116A (en) Semiconductor device and method of manufacturing semiconductor device
US7391069B2 (en) Semiconductor device and manufacturing method thereof
JPS61185961A (en) Semiconductor device
US5861659A (en) Semiconductor device
JP5003856B2 (en) Semiconductor device
CN101154662A (en) Transistor and method for manufacturing the same
JP2018061055A (en) Semiconductor device
JPH02158143A (en) Semiconductor device and manufacture thereof
KR100789606B1 (en) Semiconductor device and manufacturing method thereof
JP4784739B2 (en) Semiconductor device
JPH01241854A (en) Semiconductor device
JPH1187485A (en) Semiconductor device and fabrication thereof
JP3950092B2 (en) NAND type non-volatile memory device
US5753944A (en) Layout of butting contacts of a semiconductor device
JP3164067B2 (en) Semiconductor integrated circuit device
JP4784737B2 (en) Semiconductor device
JP2006286862A (en) Designing method and manufacturing method for semiconductor device
JPS59124157A (en) Complementary type semiconductor integrated circuit