JPS61185811A - Insulation radiation sheet - Google Patents

Insulation radiation sheet

Info

Publication number
JPS61185811A
JPS61185811A JP2519985A JP2519985A JPS61185811A JP S61185811 A JPS61185811 A JP S61185811A JP 2519985 A JP2519985 A JP 2519985A JP 2519985 A JP2519985 A JP 2519985A JP S61185811 A JPS61185811 A JP S61185811A
Authority
JP
Japan
Prior art keywords
sheet
particles
powder
silicone rubber
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2519985A
Other languages
Japanese (ja)
Inventor
洋 西川
椛島 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2519985A priority Critical patent/JPS61185811A/en
Publication of JPS61185811A publication Critical patent/JPS61185811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気絶縁性と熱伝導性の丁ぐれたざロンナイ
トライド粉末を含有した絶縁放熱シートに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an insulating heat dissipating sheet containing zaron nitride powder having excellent electrical insulation and thermal conductivity.

(従来の技術) 電子部品におい℃、使用時に発生する熱tどのように除
去するかは′iL要な問題であり、従来より放熱フィン
や金属ラミ気絶練性の熱伝導性シートを介して取り付け
る方法が採られて来た。この電気絶縁性の熱伝導性シー
ト(以下、絶縁放熱シートという)として、シリコーン
ゴムにポロンナイトライド粉末を分散させたものが知ら
れており、熱伝導性が良いこ尼から発熱性電子部品の多
くく使われている。しかし、最近、発熱性電子部品の高
密度、φ型化が増々進んで来て更に熱伝導性のすぐれた
絶縁放熱シートが要求されるようになった。
(Prior art) How to remove the temperature and heat generated during use of electronic components is an important issue. Conventionally, electronic components are attached via heat dissipation fins or metal laminated heat conductive sheets. A method has been adopted. This electrically insulating and thermally conductive sheet (hereinafter referred to as an insulating heat dissipating sheet) is made by dispersing poron nitride powder in silicone rubber. It is used a lot. However, recently, heat-generating electronic components have become increasingly dense and φ-shaped, and an insulating heat dissipation sheet with even better thermal conductivity has been required.

従来より、熱伝導性を高(するにはシリコーンイム忙含
有されるポロンナイトライド含有率を高(すれば良いこ
とは知られているが、シートの引張強度が低下するので
高充填には限度がるり、また、熱抵抗および電気絶縁性
がバラツキ易いとい5欠点がめった。
Conventionally, it has been known that in order to increase the thermal conductivity, it is possible to increase the poron nitride content contained in the silicone imprint, but this reduces the tensile strength of the sheet, so there is a limit to high filling. In addition, it had five drawbacks: thermal resistance and electrical insulation properties tend to vary.

また、シリコーンゴムに元項されるポロンナイトライド
は、その微粒子の量が熱云導性忙影曽を及はすことが知
られているが(特公昭57−19526号公報)、まだ
、十分な熱伝導性は得られるに至り℃いない。
In addition, it is known that the amount of fine particles of poron nitride, which is used in silicone rubber, has a large effect on thermal conductivity (Japanese Patent Publication No. 19526/1983), but it is still insufficient. Good thermal conductivity has not yet been achieved.

(発明が解決しようとする問題点) 本発明者は、シリコーンゴム絶縁放熱シートの電気絶縁
性及び強度特性を損なうことな(熱伝導性を大巾に向上
させるべく鋭意研究した結果、ボロンナイトライド粉末
を造粒し、ある特定の範囲に粒径を調整することにより
高い熱伝導性馨付与することができることt見出し本発
明を完成するに至った。
(Problems to be Solved by the Invention) As a result of intensive research in order to significantly improve the electrical insulation and strength characteristics (the thermal conductivity) of a silicone rubber insulating heat dissipating sheet, the present inventor discovered that boron nitride The present invention was completed based on the finding that high thermal conductivity can be imparted by granulating powder and adjusting the particle size within a certain range.

(発明を解決するための手段) すなわち、本発明は、6μ以下の粒子を実質的に含まず
、かつ、44μ以上の粒子が20〜60rc’it%含
むごロンナイトライド粉本を含有したシリコーンゴムか
うなる絶縁放熱シートである。
(Means for Solving the Invention) That is, the present invention provides a silicone rubber containing a nitride powder containing substantially no particles of 6 μ or less and containing 20 to 60 rc'it% of particles of 44 μ or more. This is an insulating heat dissipation sheet.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明でい5粒子とは、−次粒子のみではなく、二次粒
子をも言んだもので、シリコーンゴムに貧有分散されて
いる状態でのボロンナイトライド粒子のことである。こ
れは、通常、顕微に観察により測定される。
In the present invention, the term "5 particles" refers not only to secondary particles but also to secondary particles, and refers to boron nitride particles that are poorly dispersed in silicone rubber. This is usually measured by microscopic observation.

本発明に係る粒子の割合をもつボロンナイトライド粉末
を得るには、一般に知られている造粒法が採用される。
In order to obtain boron nitride powder with the proportion of particles according to the invention, generally known granulation methods are employed.

例えば、ホットプレス、コール・ドブレス等により一度
大きな塊としたものを粉砕する方法、有機、無機のバイ
ンダーを添加して、加熱、乾燥、回転、粉砕等にまり造
粒する方法などが用いられる。ボロンナイトライドは、
通常、偏平な形状の粉体であり、非常に嵩高であるが、
造粒することにより粒径が増大するのみならず形状も変
化し、シリコーンゴムとのなじみが悪いといプ欠点も改
善され、シリコーンゴムへの高充填が可能となる。
For example, a method of pulverizing a large mass by hot pressing, cold press, etc. or a method of adding an organic or inorganic binder and granulating it by heating, drying, rotating, pulverizing, etc. are used. Boron nitride is
It is usually a flat-shaped powder and is very bulky, but
Granulation not only increases the particle size but also changes the shape, which improves the granulation defect of poor compatibility with silicone rubber and enables high filling into silicone rubber.

本発明における、ボロンナイトライド粉は、6μ以下の
粒子を実質的にマ筐ず、かつ、44μ以上の粒子が20
〜60重′jjt%好ましくは25〜45皿t%tしめ
るよプな粒度構成とする必安がある。
In the present invention, the boron nitride powder contains substantially no particles of 6 μm or less and 20% of particles of 44 μm or more.
It is necessary to have a particle size structure as large as ~60% by weight, preferably 25-45%.

6μ以下の粒子を数%程度含むよプになるとシリコーン
ゴムへの高充填が困難となり、十分な熱伝導性を得るこ
とはできない。また、44μ以上の粒子が201tチ未
満であると、熱伝導率が低下し、絶縁放熱シートの熱抵
抗が増大する。しかも、高充填すると強度低下が著しく
犬ぎくなる。
If the silicone rubber contains about a few percent of particles of 6 μm or less, it will be difficult to fill the silicone rubber with a high degree of content, and sufficient thermal conductivity will not be obtained. Furthermore, if the particle size of 44μ or more is less than 201t, the thermal conductivity decreases and the thermal resistance of the insulating heat dissipation sheet increases. Moreover, if the filling is too high, the strength will drop significantly and it will become stiff.

一方、44μ以上の粒子が603Km%?こえるとシー
ト表面が荒れて密着性が悪くなり、発熱性電子部品や放
熱フィンとシートとの界面の熱抵抗が増大し、絶縁放熱
シートとしての機能を来さなくなる。
On the other hand, particles larger than 44μ are 603Km%? If the sheet exceeds this level, the surface of the sheet becomes rough and its adhesion deteriorates, and the thermal resistance at the interface between the sheet and heat-generating electronic components or heat-radiating fins increases, making it impossible to function as an insulating heat-radiating sheet.

なお、ボロンナイトライド粉の最大粒径がシート淳ざよ
り大ぎい粒子が存在する場合には、シート表面にボロン
ナイトライドの粒子の一部が突出して絶縁放熱シートの
表面が荒れ発熱性゛1電子品や放熱フィンなどに対する
′&!層性が悪(なるので、その最大粒径はシート厚未
満とするのが好ましい。
In addition, if there are boron nitride particles whose maximum particle size is larger than that of the sheet, some of the boron nitride particles will protrude from the sheet surface, causing the surface of the insulating heat dissipation sheet to become rough and generate heat. ′&! for electronic products and heat radiation fins, etc. Since the layer properties are poor, it is preferable that the maximum particle size is less than the sheet thickness.

シリコーンゴムとしては、一般に知られているシリコー
ンゴムが好適に使用され、例えば、過酸化物を用いた熱
加硫型シリコーンゴム、縮合反応により加硫する呈温加
蝋型シリコーンゴム、付加反応により加硫する液状シリ
コーンゴム等があげられる。
As the silicone rubber, generally known silicone rubbers are preferably used, such as heat-curable silicone rubber using peroxide, temperature-curing silicone rubber that is vulcanized by condensation reaction, and silicone rubber that is vulcanized by addition reaction. Examples include liquid silicone rubber that is vulcanized.

絶縁放熱シートは、シリコーンゴムにポロンナイトライ
ド粉t1 ロールミル、バンバリーミキサ−などの混合
機を用いた浴融混合方式、溶媒を加えてスラリー化して
混合する方式などにより均一混合した後、ロール方式、
カレンダ一方式、ドクターブレード方式などによりグリ
ーンシートとし、これを加硫することによって得られる
。なかでもスラリーをドクターブレード方式でシート化
し加硫する方法はシート製造過程でボロンナイトライド
粉の崩壊が生じにくいので熱抵抗の増大やバラツキがな
(有効な製造法である。
The insulating heat dissipation sheet is produced by uniformly mixing silicone rubber with poron nitride powder T1 using a bath melt mixing method using a mixer such as a roll mill or a Banbury mixer, or by adding a solvent to form a slurry and mixing.
It is obtained by making a green sheet using a single calendar method, a doctor blade method, etc., and vulcanizing this. Among these, the method of converting slurry into a sheet using a doctor blade method and vulcanizing it is an effective manufacturing method because the boron nitride powder is less likely to disintegrate during the sheet manufacturing process, so there is no increase in heat resistance or variation.

また、ざロンナイトライド粉とシリコーンゴムの配分割
合は、シリコーンゴム100憲菫部に対してボロンナイ
トライド粉200〜600重瀘部が好ましく、ボロンナ
イトライド粉が20(I1m部未満では熱六都率が低下
し、また、600重世部を越えると強度が低下して実用
に耐える絶縁放熱シートが得られなくなる。
In addition, the ratio of distribution of zaron nitride powder and silicone rubber is preferably 200 to 600 parts of boron nitride powder to 100 parts of silicone rubber, and 20 parts of boron nitride powder (less than 1 m part of I) If it exceeds 600 folds, the strength decreases and it becomes impossible to obtain an insulating heat dissipating sheet that can withstand practical use.

(実施例) 実施例1、比較例1 ポロンナイトライド粉(電気化学工業社「5P−1j)
Y20000C,200#/礪2でホットプレスして得
られたボロンナイトライド成型体をハンマーミルで粉砕
し、144μ以下にフィル分けして、粒径44μ以上の
粒子を40重量%含有し3μ以下の粒子を実質的に含ま
ないボロンナイトライド造粒粉(以下ム粉とい5)を得
た。A粉75gとシリコーンゴム(東芝シリコーン社「
THE −201J ) 2511、加硫剤(東芝シリ
コーン社[cx53J)及び1,1,1)リクロロエタ
ン200IIを混合し、得られたスラリーをドクターブ
レード法によりシートとし、これt乾燥して苗媒除去し
た後、加熱加硫して厚さ00−45xの絶縁放熱シート
とした。この絶縁放熱シートの熱抵抗を熱流通過面積t
トランジスターTO−6相尚の実験条件で、繰り返して
10回測定した。
(Example) Example 1, Comparative Example 1 Polon nitride powder (Denki Kagaku Kogyo Co., Ltd. "5P-1j")
The boron nitride molded body obtained by hot pressing with Y20000C, 200#/2 is crushed in a hammer mill and divided into fills of 144μ or less, containing 40% by weight of particles with a particle size of 44μ or more and 3μ or less. A boron nitride granulated powder (hereinafter referred to as "mu powder" 5) containing substantially no particles was obtained. 75g of A powder and silicone rubber (Toshiba Silicone Co., Ltd.)
THE-201J) 2511, a vulcanizing agent (Toshiba Silicone Co., Ltd. [cx53J), and 1,1,1)lichloroethane 200II were mixed, the resulting slurry was made into a sheet by the doctor blade method, and this was dried to remove the seedling medium. After that, it was heated and vulcanized to obtain an insulating heat dissipation sheet having a thickness of 00-45x. The thermal resistance of this insulating heat dissipation sheet is the heat flow passage area t
The measurement was repeated 10 times under the same experimental conditions for the transistor TO-6 phase.

その結果は、熱抵抗が平均0.25℃/Wでバラツキは
5%でめった。
The results showed that the average thermal resistance was 0.25° C./W with a variation of 5%.

比較のため、造粒してないボロンナイトライド粉末(電
気化学工業社IGpJ325メツシュ篩亙 全商品)(以下B粉という)を用いて同一の配合−1混
合条件でスラリーヲ得、同一の方法で厚さ0・45nの
絶縁放熱シートを作成した。得られた絶縁放熱シートの
熱抵抗は、10回の測定の平均で0.35℃/Wであり
、バラツキは7%であった。
For comparison, a slurry was obtained using ungranulated boron nitride powder (all products of Denki Kagaku Kogyo IGpJ325 mesh sieve) (hereinafter referred to as B powder) under the same formulation-1 mixing conditions, and a slurry was obtained using the same method. An insulating heat dissipation sheet with a thickness of 0.45 nm was created. The thermal resistance of the obtained insulating heat dissipation sheet was 0.35° C./W on the average of 10 measurements, and the variation was 7%.

なお、バラツキは、10回の測定値の平均値(X)と標
準偏差(σ)とから次式によって求めた。
In addition, the variation was calculated|required from the average value (X) of 10 measurement values, and standard deviation ((sigma)) by the following formula.

バラツキ(%)=−X100 実施例2〜6、比較例2〜4 ポロシナイトライド粉にホウ酸カルシウム塩(Cab/
 B2O3(モル比)=1/1.5)v3%添加し、1
850℃、140kfi/cR2にてホットプレスして
得られたざロンナイトライド焼結体をハンマーミルに℃
粉砕して、64メツシユの篩で大粒径粒子を除去し、ボ
ロンナイトライド粉(粒径44μ以上75:ff1i%
を含み、3μ以下の粒子は実質的に含ます)(以下C粉
という)を得た。また、C粉をさらに粉砕し、粒度44
μ以下に篩分けしてD粉(3μ以下の粒子は実質的に含
まず)を得た。このC粉及びD粉を表に示すよ5に混合
したボロンナイトライド粉80Iとシリコーンゴム(東
芝シリコーン社rTsx−2014)20g、加硫剤(
東芝シリコーン社1−CI−52」)及び1.1.1−
)リクロロエタン200.9ya−混合、スラリーとし
、ドクターブレード法によってグリーンシートを作成し
溶媒を除去した後、加硫して厚さ0.4511の絶縁放
熱シートを得た。得られた放熱シートの熱抵抗、1ii
tIE圧(、TIE C−2110法〕・及び締付強度
(To−220)ランシスターを実装した時シートが破
れる締付トルク)をそれ ”それ10回測定しその平均
値を求めた。それらの結果を表に示す。
Variation (%) = -X100 Examples 2 to 6, Comparative Examples 2 to 4 Calcium borate salt (Cab/
B2O3 (molar ratio) = 1/1.5) v3% added, 1
The zalon nitride sintered body obtained by hot pressing at 850℃ and 140kfi/cR2 was heated in a hammer mill at ℃
Grind, remove large particles with a 64-mesh sieve, and prepare boron nitride powder (particle size of 44μ or more 75: ff1i%).
(hereinafter referred to as powder C) (hereinafter referred to as powder C) was obtained. In addition, the C powder is further crushed and the particle size is 44.
The powder was sieved to particles smaller than 3 μm to obtain powder D (substantially free of particles smaller than 3 μm). This C powder and D powder were mixed in 5 as shown in the table, boron nitride powder 80I, silicone rubber (Toshiba Silicone Co., Ltd. rTsx-2014) 20g, and a vulcanizing agent (
Toshiba Silicone Company 1-CI-52'') and 1.1.1-
) Lichloroethane 200.9ya was mixed to form a slurry, a green sheet was prepared by a doctor blade method, the solvent was removed, and the mixture was vulcanized to obtain an insulating heat dissipation sheet with a thickness of 0.4511 mm. Thermal resistance of the obtained heat dissipation sheet, 1ii
The TIE pressure (TIE C-2110 method) and tightening strength (To-220), the tightening torque that causes the sheet to tear when the Runsister is mounted, were measured 10 times and the average value was calculated. The results are shown in the table.

畳 44μ以上の粒子の割合は、C粉に75重重%をか
げた111となる。
Tatami The ratio of particles larger than 44μ is 111, which is 75% by weight over C powder.

(発明の効果) 本発明によれば、熱伝導性が非常に丁ぐれ、電気絶縁性
、強度?十分備えた絶縁放熱シートが得られる。
(Effects of the Invention) According to the present invention, the thermal conductivity is very good, the electrical insulation is excellent, and the strength is excellent. A sufficiently insulated heat dissipation sheet can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 3μ以下の粒子を実質的に含まず、かつ、44μ以上の
粒子が20〜60重量%含むボロンナイトライド粉末を
含有したシリコーンゴムからなる絶縁放熱シート。
An insulating heat dissipating sheet made of silicone rubber containing boron nitride powder that does not substantially contain particles of 3 μm or less and contains 20 to 60% by weight of particles of 44 μm or more.
JP2519985A 1985-02-14 1985-02-14 Insulation radiation sheet Pending JPS61185811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2519985A JPS61185811A (en) 1985-02-14 1985-02-14 Insulation radiation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2519985A JPS61185811A (en) 1985-02-14 1985-02-14 Insulation radiation sheet

Publications (1)

Publication Number Publication Date
JPS61185811A true JPS61185811A (en) 1986-08-19

Family

ID=12159281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2519985A Pending JPS61185811A (en) 1985-02-14 1985-02-14 Insulation radiation sheet

Country Status (1)

Country Link
JP (1) JPS61185811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644411U (en) * 1987-06-25 1989-01-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644411U (en) * 1987-06-25 1989-01-11

Similar Documents

Publication Publication Date Title
JP3290127B2 (en) Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition
JP3654743B2 (en) Heat dissipation spacer
JP4108151B2 (en) Improved boron nitride composition and polymer-based high thermal conductivity molding compound
TWI241005B (en) Thermal interface material with aligned carbon nanotubes
CA2401299C (en) Morphing fillers and thermal interface materials
JP3807995B2 (en) Thermally conductive sheet
JP3256587B2 (en) High thermal conductive radiator and method of manufacturing the same
JP3891969B2 (en) Thermally conductive grease
US6338898B1 (en) Heat-conductive rubber composition material and heat-conductive rubber sheet
JP4014454B2 (en) Resin composition, method for producing the same, and heat radiating member
JPS61185811A (en) Insulation radiation sheet
JP3458196B2 (en) High thermal conductive resin composition
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP3685629B2 (en) Borate particles, method for producing inorganic powder containing the particles, and use thereof
JP2002237554A (en) Heat conductive resin formation and its use
JP7189879B2 (en) thermally conductive sheet
JP3209839B2 (en) Insulation heat dissipation sheet
JP3640524B2 (en) Heat dissipation spacer
JP3183502B2 (en) Heat radiation spacer
JPH11268903A (en) Silicon nitride-based filler and resin composition for sealing semiconductor
KR101864505B1 (en) Silicone composition having excellent heat-radiating function
CN114988375B (en) Heat-conducting microsphere, preparation method thereof and polymer composite material
JP2020037634A (en) Thermally conductive material, production method thereof and thermally conductive composition
JP2004363272A (en) Heat-dissipating member
JPH06164174A (en) Heat radiation sheet