JPS61183971A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS61183971A
JPS61183971A JP2383585A JP2383585A JPS61183971A JP S61183971 A JPS61183971 A JP S61183971A JP 2383585 A JP2383585 A JP 2383585A JP 2383585 A JP2383585 A JP 2383585A JP S61183971 A JPS61183971 A JP S61183971A
Authority
JP
Japan
Prior art keywords
thin film
film
layer
source
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2383585A
Other languages
Japanese (ja)
Inventor
Kenichi Fujii
謙一 藤井
Mamoru Takeda
守 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2383585A priority Critical patent/JPS61183971A/en
Publication of JPS61183971A publication Critical patent/JPS61183971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain the metal-semiconductor interface of stability and high reliability by a method wherein a thin film of any of titanium, zirconium, hafnium, and titanium nitride, and zirconium nitride is interposed as the diffusion barrier between an n<+> amorphous Si layer and source-drain electrodes. CONSTITUTION:A film of chromium or the like is formed over an insulation substrate 1 and etched into a gate electrode 2. A gate insulation film 3, an amorphous Si semiconductor film 4, and a protection insulation film 6 are formed thereon. Required contact windows are opened in the film 6 by etching, and n<+> amorphous Si thin films 5 are formed by plasma CVD. A Ti thin film is formed by evaporation or sputtering, and an Al thin film is formed thereon in the same manner. Thereafter, these films are etched into a required shape, thus making each as an n<+> amorphous Si layer 5, a diffusion barrier layer 8, and source-drain electrodes 7, respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアクティブマトリクス型液晶表示装置、イメー
ジセンサ等に用いられる薄膜トランジスタ(以下、TP
Tと略称する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to thin film transistors (hereinafter referred to as TP) used in active matrix liquid crystal display devices, image sensors, etc.
(abbreviated as T).

従来の技術 近年、低温プロセスや大面積化を特徴とするアモルファ
スシリコンTPTを液晶表示装置、イメージセンサ−等
に利用する研究開発が活発である。
BACKGROUND OF THE INVENTION In recent years, there has been active research and development into the use of amorphous silicon TPT, which is characterized by its low temperature process and large area, for liquid crystal display devices, image sensors, and the like.

以下図面を参照しながら従来のTPTの一例について説
明する。第2図は従来のTPTの断面図であり、1はガ
ラス等の絶縁性基板であり、この上にゲート電極2、ゲ
ート絶縁膜3、アモルファスシリコン半導体薄膜4、n
+アモルファスシリコン薄膜6、保護絶縁膜6、および
ソース・ドレイン電極7を形成する。
An example of a conventional TPT will be described below with reference to the drawings. FIG. 2 is a cross-sectional view of a conventional TPT, in which 1 is an insulating substrate made of glass or the like, on which are formed a gate electrode 2, a gate insulating film 3, an amorphous silicon semiconductor thin film 4, and an amorphous silicon semiconductor thin film 4.
+Amorphous silicon thin film 6, protective insulating film 6, and source/drain electrodes 7 are formed.

以上のように構成されたTPTについてその動作を以下
に説明する。ソース・ドレイン電極7の電極間に電圧を
印加したとき、ゲート電極2が零電位であれば半導体薄
膜4は通常高抵抗なのでソース・ドレイン電極7を流れ
る電流は少い。しかし、ゲート電圧を正または負に増加
させるとゲート絶縁膜3を介して半導体薄膜4と絶縁膜
3の界面付近にチャネルが誘起されるためソース・ドレ
イン電流が増加する。例えば、「日経エレクトロニクス
J 1982年12月20日号、105〜179ページ
The operation of the TPT configured as described above will be explained below. When a voltage is applied between the source and drain electrodes 7, if the gate electrode 2 is at zero potential, the semiconductor thin film 4 usually has a high resistance, so the current flowing through the source and drain electrodes 7 is small. However, when the gate voltage is increased to be positive or negative, a channel is induced near the interface between the semiconductor thin film 4 and the insulating film 3 via the gate insulating film 3, so that the source-drain current increases. For example, "Nikkei Electronics J, December 20, 1982 issue, pages 105-179.

発明が解決しようとする問題点 しかしながら上記のような構成では、ソース・ドレイン
電極として導電率の良いアルミニウム膜を用いた場合、
n+7モル7727937層との界面でアルミ・シリコ
ンの反応が比較的低温から生じるため安定な金属・半導
体界面は得られないという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, when an aluminum film with good conductivity is used as the source/drain electrode,
Since the reaction between aluminum and silicon occurs at a relatively low temperature at the interface with the n+7 mol 7727937 layer, there was a problem in that a stable metal/semiconductor interface could not be obtained.

本発明は上記問題点に鑑み、ソース・ドレイン電極とn
+7モル7727937層との界面を安定化し、経時変
化が少く信頼性の高いTPTを提供するものである。
In view of the above problems, the present invention provides source/drain electrodes and
The interface with the +7 mol 7727937 layer is stabilized to provide a highly reliable TPT with little change over time.

問題点を解決するための手段 上記問題点を解決するために本発明のTPTは、n ア
モルファスシリコン層とソース・ドレイン電極との間に
相互拡散障壁層としてチタン、ジルコニウム、ハフニウ
ム、窒化チタン、窒化ジルコニウムのいずれかを用いる
という構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the TPT of the present invention uses titanium, zirconium, hafnium, titanium nitride, or titanium nitride as an interdiffusion barrier layer between the n-amorphous silicon layer and the source/drain electrodes. It has a structure that uses either zirconium.

作  用 本発明は上記した構成によって、拡散障壁層として高融
点金属であるチタン、ジルコニウム、ハフニウム、およ
びその窒化物である窒化チタン。
Function The present invention uses titanium, zirconium, and hafnium, which are high melting point metals, and titanium nitride, which is a nitride thereof, as a diffusion barrier layer.

窒化ジルコニウムのいずれかの薄膜を用いる。これらは
シリコンと反応してシリコン化合物(シリサイド)を形
成するがその温度はTiSiがsoo’c。
Use any thin film of zirconium nitride. These react with silicon to form a silicon compound (silicide), but the temperature is soo'c for TiSi.

ZrSi2カフ00 ℃、 HfSiが550−70C
)Cである。
ZrSi2 cuff 00℃, HfSi 550-70C
)C.

(VLSI  Electronics Vo16.p
346)。TPTは通常これらの温度よりずっと低い温
度におかれるので上記金属とn+7モル7727937
層の界面は安定している。アモルファスシリコン中では
単結晶シリコンの場合に比べ物質の拡散速度が桁違いに
大きくなることが見い出されており、ソース・ドレイン
電極としてアルミニウム膜を用いた場合、比較的低温(
200〜3oo℃)でも界面拡散が進行して、TPTの
電気的特性を劣化させるのはこのためである。本発明の
場合はより高い温度域まで界面は安定している。さらに
チタン。
(VLSI Electronics Vol16.p
346). Since TPT is normally kept at temperatures much lower than these temperatures, the above metals and n+7 moles of 7727937
The layer interfaces are stable. It has been found that the diffusion rate of substances in amorphous silicon is an order of magnitude higher than in single crystal silicon, and when aluminum films are used as source and drain electrodes, the temperature is relatively low (
This is the reason why interfacial diffusion progresses even at temperatures of 200 to 300° C.) and deteriorates the electrical characteristics of TPT. In the case of the present invention, the interface is stable up to a higher temperature range. More titanium.

ジルコニウム、ハフニウムの仕事関数は各々4.33e
V 、 4.05 eV 、 3.9eVであり、アモ
ルファスシリコンとの仕事関数の違いが少いのでオーム
性接触が得られやすい。
The work functions of zirconium and hafnium are each 4.33e.
V, 4.05 eV, and 3.9 eV, and since the difference in work function from amorphous silicon is small, ohmic contact is easily obtained.

実施例 以下本発明の一実施例のTPTについて、図面を参照し
ながら説明する。
EXAMPLE Hereinafter, a TPT according to an example of the present invention will be explained with reference to the drawings.

第1図は本発明の実施例におけるTPTの断面図を示す
ものである。第1図において、n+7モル777797
7層5とソース・ドレイン電極7との間にチタン、ジル
コニウム、ハフニウム、窒化チタン、窒化ジルコニウム
のいずれかよりなる拡散障壁層8が存在する。その他は
第2図の従来例と同一であシ、同一部分は第2図と同一
符号を付してその説明を省略する。
FIG. 1 shows a sectional view of a TPT in an embodiment of the present invention. In Figure 1, n+7 moles 777797
A diffusion barrier layer 8 made of titanium, zirconium, hafnium, titanium nitride, or zirconium nitride is present between layer 5 and source/drain electrode 7 . The rest is the same as the conventional example shown in FIG. 2, and the same parts are given the same reference numerals as in FIG. 2 and their explanation will be omitted.

このようなTPTは以下のようにして製造される。まず
、ガラスなどの絶縁性基板1上にクロムなどの膜を蒸着
またはスパッタリングによシ形成し、所定形状にフォト
リングラフ・エツチング加工を施し、ゲート電極2とす
る。この上にプラズマCVDなどにより、シリコン窒化
膜、アモルファスシリコン膜、シリコン窒化膜の順で3
層形成しフォトリングラフ・エツチング加工を行い、所
定の形状にし、各々ゲート絶縁膜3.アモルファスシリ
コン半導体膜4.保護絶縁膜6とする。保護絶縁膜6に
フォトリングラフ・エツチング加工により所定のコンタ
クト窓を開け、n+アモルファスシリコン薄膜をプラズ
マCVD法で形成し、チタン薄膜を蒸着またはスパッタ
リングによシ形成し、アルミニウム薄膜をさらにその上
に蒸着またはスパッタリングによシ形成する。この後フ
ォトリングラフ・エツチング加工により所定の形状にし
、各々n+7モル7727937層6.拡散障壁層8.
ソース・ドレイン電極7とする。
Such TPT is manufactured as follows. First, a film of chromium or the like is formed on an insulating substrate 1 of glass or the like by vapor deposition or sputtering, and photolithographic etching is applied to a predetermined shape to form the gate electrode 2. On top of this, a silicon nitride film, an amorphous silicon film, and a silicon nitride film are deposited in the order of 3 using plasma CVD or the like.
The layers are formed and subjected to photolithographic etching processing to form a predetermined shape, and each gate insulating film 3. Amorphous silicon semiconductor film 4. A protective insulating film 6 is used. A predetermined contact window is opened in the protective insulating film 6 by photolithographic etching, an n+ amorphous silicon thin film is formed by plasma CVD, a titanium thin film is formed by vapor deposition or sputtering, and an aluminum thin film is further formed thereon. Formed by vapor deposition or sputtering. After that, it is formed into a predetermined shape by photoringraph etching, and each layer is formed into a layer of n+7 moles of 7727937 layers.6. Diffusion barrier layer 8.
This is assumed to be a source/drain electrode 7.

以上のように本実施例によれば、n+7モル77779
77層5とソース・ドレイン電極70間に拡散障壁層8
が存在しているため安定な金属・半導体界面が得られ、
TPTの信頼性を向上させている。
As described above, according to this example, n+7 moles 77779
A diffusion barrier layer 8 is provided between the 77 layer 5 and the source/drain electrode 70.
A stable metal-semiconductor interface is obtained due to the presence of
Improves the reliability of TPT.

上記の実施例では拡散障壁層8としてチタン薄膜を用い
、ソース・ドレイン電極7としてアルミニウム薄膜を用
いたが、チタンのかわりに、ジルコニウム、ハフニウム
、窒化チタン、窒化ジルコニウムのいずれかを用いても
上記実施例と同様の効果が得られる。さらに、アルミニ
ウム薄膜のかワリに、シリコン、銅、マグネシウム、チ
タンのいずれかを少量添加したアルミニウム合金薄膜を
用いてもよい。
In the above embodiment, a titanium thin film was used as the diffusion barrier layer 8 and an aluminum thin film was used as the source/drain electrode 7, but instead of titanium, any of zirconium, hafnium, titanium nitride, or zirconium nitride may be used. Effects similar to those of the embodiment can be obtained. Furthermore, an aluminum alloy thin film in which a small amount of silicon, copper, magnesium, or titanium is added to the aluminum thin film may be used.

発明の効果 以上のように本発明はn アモルファスシリコン層とソ
ース・ドレイン電極の間に拡散障壁層とシテ、チタン、
ジルコニウム、・・フニウム、窒化チタン、窒化ジルコ
ニウムのいずれかの薄膜を介在させることにより安定で
信頼性の高い金属・半導体界面が得られTPTを液晶表
示装置やイメージセンサ−に応用する場合に有利となる
Effects of the Invention As described above, the present invention provides a diffusion barrier layer between the amorphous silicon layer and the source/drain electrodes, titanium, titanium,
By interposing a thin film of zirconium, hunium, titanium nitride, or zirconium nitride, a stable and highly reliable metal-semiconductor interface can be obtained, which is advantageous when applying TPT to liquid crystal display devices and image sensors. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一つの実施例における薄膜トランジス
タの断面図、第2図は従来の薄膜トランジスタの断面図
である。 1・・・・・・絶縁性基板、2・・・・・・ゲート電極
、3・・・・・・ケート絶縁膜、4・・・・・・アモル
ファスシリコン半導体膜、5・・・・・・n+アモルフ
ァスシリコン薄膜、6・・・・・・保護絶縁膜、7・・
・・・・ソース・ドレイ/電極、8・・・・・・拡散障
壁層。
FIG. 1 is a sectional view of a thin film transistor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional thin film transistor. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Gate electrode, 3... Kate insulating film, 4... Amorphous silicon semiconductor film, 5...・n+ amorphous silicon thin film, 6...protective insulating film, 7...
. . . Source/dray/electrode, 8 . . . Diffusion barrier layer.

Claims (2)

【特許請求の範囲】[Claims] (1)少くともゲート電極、絶縁体層、アモルファスシ
リコン半導体層n^+アモルファスシリコン層、ソース
、ドレイン電極を備え、前記n^+アモルファスシリコ
ン層とソース・ドレイン電極との間に、相互拡散障壁層
としてチタン、ジルコニウム、ハフニウム、窒化チタン
、窒化ジルコニウムのいずれかを用いることを特徴とす
る薄膜トランジスタ。
(1) At least a gate electrode, an insulator layer, an amorphous silicon semiconductor layer n^+ amorphous silicon layer, a source, and a drain electrode, and a mutual diffusion barrier between the n^+ amorphous silicon layer and the source/drain electrode. A thin film transistor characterized in that a layer is made of titanium, zirconium, hafnium, titanium nitride, or zirconium nitride.
(2)ソース・ドレイン電極としてアルミニウム薄膜も
しくは、アルミニウムに添加元素としてシリコン、銅、
マグネシウム、チタンのいずれかを加えたアルミニウム
合金薄膜を用いる特許請求の範囲第1項記載の薄膜トラ
ンジスタ。
(2) Use an aluminum thin film as source/drain electrodes, or use silicon, copper, etc. as additive elements to aluminum.
The thin film transistor according to claim 1, which uses an aluminum alloy thin film to which either magnesium or titanium is added.
JP2383585A 1985-02-08 1985-02-08 Thin film transistor Pending JPS61183971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2383585A JPS61183971A (en) 1985-02-08 1985-02-08 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2383585A JPS61183971A (en) 1985-02-08 1985-02-08 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS61183971A true JPS61183971A (en) 1986-08-16

Family

ID=12121445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2383585A Pending JPS61183971A (en) 1985-02-08 1985-02-08 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS61183971A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191467A (en) * 1987-10-02 1989-04-11 Asahi Glass Co Ltd Thin film transistor substrate
JPH0548106A (en) * 1991-02-20 1993-02-26 Alps Electric Co Ltd Thin film transistor and its manufacture
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production
US5536951A (en) * 1993-06-24 1996-07-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having thin film transistor with diffusion preventing layer
US5808315A (en) * 1992-07-21 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having transparent conductive film
JP2000216403A (en) * 1994-07-30 2000-08-04 Semiconductor Energy Lab Co Ltd Active matrix circuit
US6201281B1 (en) 1993-07-07 2001-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6608353B2 (en) 1992-12-09 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having pixel electrode connected to a laminate structure
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2007204332A (en) * 2006-02-03 2007-08-16 Sumco Corp Device and method for manufacturing single crystal
US8147613B2 (en) 2002-11-12 2012-04-03 Memc Electronic Materials, Inc. Crystal puller and method for growing a monocrystalline ingot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224270A (en) * 1984-04-20 1985-11-08 Fujitsu Ltd Thin film amorphous silicon transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224270A (en) * 1984-04-20 1985-11-08 Fujitsu Ltd Thin film amorphous silicon transistor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191467A (en) * 1987-10-02 1989-04-11 Asahi Glass Co Ltd Thin film transistor substrate
JPH0548106A (en) * 1991-02-20 1993-02-26 Alps Electric Co Ltd Thin film transistor and its manufacture
US5808315A (en) * 1992-07-21 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having transparent conductive film
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7547916B2 (en) 1992-12-09 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7897972B2 (en) 1992-12-09 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US6608353B2 (en) 1992-12-09 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having pixel electrode connected to a laminate structure
US7045399B2 (en) 1992-12-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7061016B2 (en) 1992-12-09 2006-06-13 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7105898B2 (en) 1992-12-09 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US8294152B2 (en) 1992-12-09 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit including pixel electrode comprising conductive film
US5536951A (en) * 1993-06-24 1996-07-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having thin film transistor with diffusion preventing layer
US6201281B1 (en) 1993-07-07 2001-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6784453B2 (en) 1993-07-07 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6569719B2 (en) 1993-07-07 2003-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
JP2000216403A (en) * 1994-07-30 2000-08-04 Semiconductor Energy Lab Co Ltd Active matrix circuit
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production
US8147613B2 (en) 2002-11-12 2012-04-03 Memc Electronic Materials, Inc. Crystal puller and method for growing a monocrystalline ingot
JP2007204332A (en) * 2006-02-03 2007-08-16 Sumco Corp Device and method for manufacturing single crystal

Similar Documents

Publication Publication Date Title
US4128670A (en) Fabrication method for integrated circuits with polysilicon lines having low sheet resistance
US7384831B2 (en) Thin film transistor and manufacturing method thereof
JPS61183971A (en) Thin film transistor
JPS61171166A (en) Thin film transistor
US20160343739A1 (en) Thin film transistor, method of manufacturing thin film transistor, array substrate and display device
JPS60160170A (en) Thin film transistor
US6686661B1 (en) Thin film transistor having a copper alloy wire
EP0641028B1 (en) A thin film device and a method for fabricating the same
JPH1195256A (en) Active matrix substrate
JP2756841B2 (en) Display device
CN101919060A (en) Thin film transistor substrate and display device
JPS62111466A (en) Semiconductor device
JPS6358943A (en) Structure of electrode and wiring film
JPH10284437A (en) Method for forming metal interconnection layer of semiconductor device
JP2000252472A (en) Thin film semiconductor element and manufacture thereof
JPS61183970A (en) Thin film transistor
JPS61135164A (en) Thin-film transistor element
JPS6136705B2 (en)
JPS63177553A (en) Semiconductor device
JP2563760B2 (en) Method for manufacturing semiconductor device
JPS63193568A (en) Thin film transistor
JPS60198867A (en) Thin film type semiconductor device
JPH04250626A (en) Multilayer interconnection device
JP3245613B2 (en) Manufacturing method of thin film element
JP3071939B2 (en) Method for manufacturing insulated gate semiconductor device