JPS61183448A - Sintered iron alloy for valve seat - Google Patents

Sintered iron alloy for valve seat

Info

Publication number
JPS61183448A
JPS61183448A JP2313685A JP2313685A JPS61183448A JP S61183448 A JPS61183448 A JP S61183448A JP 2313685 A JP2313685 A JP 2313685A JP 2313685 A JP2313685 A JP 2313685A JP S61183448 A JPS61183448 A JP S61183448A
Authority
JP
Japan
Prior art keywords
alloy
valve
valve seat
iron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313685A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2313685A priority Critical patent/JPS61183448A/en
Publication of JPS61183448A publication Critical patent/JPS61183448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the tilted alloy having superior wear resistance and attacking hardly an opposite material by uniformly dispersing Co alloy grains and grains of a carbide such a Cr7C3 as hard grains in a pearlite-base iron matrix under specified conditions. CONSTITUTION:A sintered iron alloy for a valve seat having improved wear resistance and weakened attacking properties on an opposite valve is obtd. by uniformly dispersing, by weight, 5-25% alloy grains consisting of 10-40% Cr, 5-20% W, 0.5-3% C and the balance Co and 1-10% hard grains of one or more kinds of carbides selected among Cr7C3, Cr3C2 and Mo2C in a pearlite- base iron matrix contg. 0.5-2.0% C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のパ弄ブシート用焼結合金の性能改善
に係わシ、よく詳しくは自身の耐摩耗性を高めるととも
に、相手バルブに対する攻撃性を弱めた鉄系焼結合金に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improving the performance of a sintered alloy for a public valve seat of an internal combustion engine, and more specifically, it improves its own wear resistance and improves its wear resistance against the mating valve. Concerning iron-based sintered alloys with weakened aggressiveness.

〔従来の技術〕[Conventional technology]

内燃機関のバルブシートには高温での耐摩耗at高める
ため、クロム(Cr)、二y ケ/I/(1’Qi)、
=rパルト(Co)、モリブデy(Mo)等の合金元素
を添加した鉄系焼結合金が多用されつつるる。
Valve seats of internal combustion engines contain chromium (Cr), 2yke/I/(1'Qi),
=r Iron-based sintered alloys to which alloying elements such as pult (Co) and molybdenum (Mo) are added are increasingly being used.

ところで、バルブシートの材質の選択は、相手部材すな
わちエンジンバルブとの相関において決定されるべきも
ので、この選択を誤ると自身の#摩耗性を弱めるばかり
か、相手部材に対する攻撃性を増して、バルブ機構全体
に思わしくない影響を与えることになる。例えば従来、
エンジンパルプとしては耐摩耗性を高めるため、ステラ
イト等の盛金を施したものが多用されているが、近年、
原価医減の要求からバルブ盛金を廃止する動きにある。
By the way, the selection of the material for the valve seat should be determined in relation to the mating member, that is, the engine valve.If this selection is incorrect, it will not only weaken its own abrasion resistance, but also increase its aggressiveness against the mating member. This will have an undesirable effect on the entire valve mechanism. For example, conventionally,
In order to improve wear resistance, engine pulp is often coated with stellite or other metals, but in recent years,
There is a movement to abolish valve merchandising due to demands for lower medical costs.

このような背景のもとに、従来のような例えばフェロモ
リブデン等ノ金属間化合物又は複合炭化物を添加して、
極度に耐摩耗性を高めた合金からなるバルブシートをそ
の1)使用すると、エンジンパルプの摩耗を増大させる
結果となる。
Based on this background, by adding intermetallic compounds such as ferromolybdenum or composite carbides as in the past,
1) Use of valve seats made of extremely wear-resistant alloys results in increased engine pulp wear.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の盛金処理等により耐摩耗性が高めらtて
いない汎用エンジンバルブ(例エバJI88UH35)
を相手にした場合にも、相手部材を摩耗し、あるいは自
身の摩耗が著しく増大するととがないようにする友めの
もので、耐摩耗性と相手攻撃性との適度のバランスのと
れたバルブシート用鉄系焼結合金を提供しようとするも
のである。
The present invention is a general-purpose engine valve (e.g. EVA JI88UH35) whose wear resistance has not been increased by the above-mentioned overlay treatment, etc.
It is a companion valve that prevents damage to the other member or excessive wear when dealing with other parts, and has a good balance between wear resistance and aggressiveness. The present invention aims to provide a ferrous sintered alloy for sheets.

〔問題点解決するための手段〕[Means for solving problems]

本発明のバルブシート用鉄系焼結合金は、重量比で炭素
(C)を15〜2.0%含有し、所望により更にニッケ
ル(Ni)を1〜10%添加してなるバーライトラ主体
とする鉄基地中に、りOA (Cr)10〜4Q%、p
7グステ7(W)5〜20%、炭素(C)15〜3%及
び残部コバルト(Co)からなる合金粒子を5〜25%
、及び硬質粒子として三度化七クロム(Cr、C3)、
二炭化三クロム(Cr3C2)と炭化モリブデン(Mo
2C)から選ばれる炭化物の1m又は2種以上を1〜1
0%均一に分散させ之ことを特徴とする。
The iron-based sintered alloy for valve seats of the present invention contains 15 to 2.0% carbon (C) by weight, and is made mainly of barite, to which 1 to 10% of nickel (Ni) is added if desired. In the iron base, RiOA (Cr) 10-4Q%, p
5 to 25% alloy particles consisting of 7 Guste 7 (W) 5 to 20%, carbon (C) 15 to 3%, and the balance cobalt (Co)
, and heptachromium tertide (Cr, C3) as hard particles,
Trichromium dicarbide (Cr3C2) and molybdenum carbide (Mo
2C) 1 m or 2 or more types of carbides selected from 1 to 1
It is characterized by 0% uniform dispersion.

また、本発明は、上記焼結合金に鉛(Pb)を1〜20
重量%溶浸したことを特徴とする。
Further, the present invention includes 1 to 20% of lead (Pb) in the sintered alloy.
It is characterized by being infiltrated by weight%.

なお、本発明において%は特記しない限り重量%を示す
In the present invention, % indicates weight % unless otherwise specified.

以下、本発明で用いる各成分元素の限定理由について説
明する。
The reason for limiting each component element used in the present invention will be explained below.

まず、Go (コバルト)基合金粒子について説明する
と、Cr (クロム)はC(炭素)と化合して炭化物を
形成するともに一部がCOと合金を形成し合金粒子の硬
さを向上させる効果を有しているが、Crが10%未満
では上記の効果が不充分であり、40%を超えるとCr
の拡散が周囲に進み過ぎ、空隙を生じ、合金粒子がもろ
〈表る。そのためCrは10〜40%と限定し友。
First, to explain Go (cobalt)-based alloy particles, Cr (chromium) combines with C (carbon) to form carbides, and a portion also forms an alloy with CO, which has the effect of improving the hardness of the alloy particles. However, if Cr is less than 10%, the above effect is insufficient, and if it exceeds 40%, Cr
The diffusion of the alloy proceeds to the surrounding area too much, creating voids and the alloy particles are exposed. Therefore, Cr should be limited to 10-40%.

W(タングステン)は、Cと化合してWC型の硬質炭化
物を形成し、合金粒子の硬さを向上させ、一部がCO基
に固溶して、合金粒子の強度を向上させるが、Wが5%
未満ではその効果が発揮されず、20%を超えると合金
粒子が硬くなり過ぎ、相手材であるバルブへの攻撃性が
増大するため、Wは5〜20%とした。
W (tungsten) combines with C to form a WC-type hard carbide, improving the hardness of the alloy particles, and a part of it dissolves in the CO group, improving the strength of the alloy particles. is 5%
If it is less than 20%, the effect will not be exhibited, and if it exceeds 20%, the alloy particles will become too hard and the aggressiveness towards the mating material, the valve, will increase, so W is set to 5 to 20%.

CけCr及びWと化合して炭化物を形成し、合金粒子の
硬さを向上させるが、Cがα5%未満ではその効果が発
揮されず、3%を超えると炭化物量が多すぎてもろくな
る。そのため、CはcL5〜3%とした。
C combines with Cr and W to form carbides and improves the hardness of the alloy particles, but if C is less than α5%, this effect is not exhibited, and if it exceeds 3%, the amount of carbides is too large and becomes brittle. . Therefore, C was set at 5 to 3% cL.

CO基合金粒子は耐摩耗性の向上に効果があり、その粒
径は30〜150μmが好ましく、合金粒子は5%未満
ではその効果が発揮されず、25%を超えると成形性、
焼結性及び被削性が低下するとと本に相手材であるバル
ブへの攻撃性が増大する。その几めCO基合金粒子は5
〜25%と限定した。
CO-based alloy particles are effective in improving wear resistance, and the particle size is preferably 30 to 150 μm. If the alloy particles are less than 5%, the effect will not be exhibited, and if it exceeds 25%, the formability,
If the sinterability and machinability decrease, the aggressiveness towards the valve, which is the mating material, increases. The refined CO-based alloy particles are 5
It was limited to ~25%.

硬質粒子として分散させる炭化物について説明すると、
Cry c、 、 Or、 C,及びMow Cは、H
v1000〜1800の硬さ全有し、硬く、#摩耗性の
向上に効果があり、炭化物粒子の粒径は2〜61#IL
が好ましいが、炭化物が1%未満では効果がなく、10
%を超えると成形性及び被剛性が低下する定め、炭化物
の添加量は1〜10%とした。
To explain the carbide dispersed as hard particles,
Cry c, , Or, C, and Mow C are H
It has a hardness of v1000 to 1800, is hard, and is effective in improving wear resistance, and the carbide particle size is 2 to 61 #IL.
is preferable, but it is ineffective if the carbide content is less than 1%, and 10
The amount of carbide added was set at 1 to 10%, since moldability and rigidity deteriorate when the amount exceeds 1%.

次に基地について説明する。Cは基地のFe(鉄)に固
溶してパーライト組織を形成し、焼結合金の強度と硬さ
を向上させるとともに前記Co基合金粒子中のCr及び
Wと化合して硬質の炭化物を生成し、CO基合金粒子の
硬さを更に向上させる効果があるが、Cがα5%未満で
はその効果がなく、2.0%を超えるとセメンタイトが
析出し、基地がもろくなるため、C#1(L5〜2.0
%とした。
Next, I will explain about the base. C forms a pearlite structure by forming a solid solution in the base Fe (iron), improving the strength and hardness of the sintered alloy, and also combines with Cr and W in the Co-based alloy particles to form hard carbides. However, C #1 has the effect of further improving the hardness of CO-based alloy particles, but if C is less than α5%, this effect is not present, and if it exceeds 2.0%, cementite will precipitate and the base will become brittle. (L5~2.0
%.

Ni にッケル)はFe基地に固溶して基地の強度を向
上せしめるのに役立つため、更に強度を必要とする場合
に添加されるが、Niが1%未満ではその効果が発揮さ
れず、10%を超えると基地が軟化し、耐摩耗性が低下
するため、Niは1〜10%とした。
Ni (nickel) is solid dissolved in the Fe base and helps improve the strength of the base, so it is added when further strength is required, but if Ni is less than 1%, its effect will not be exhibited, and 10 If it exceeds 1%, the base becomes soft and the wear resistance decreases, so the Ni content was set to 1 to 10%.

Pb (鉛)の焼結合金への溶浸け、よりきびしい条件
下で使用されるバルブシートの場合に行われる。溶浸さ
れたpbはバルブとノ(ルブシートの接触部に介在して
Pb酸化物層を形成することにより潤滑剤として作用し
て/<ルブ及び)ぐルブシート相互の耐摩耗性を向上さ
せるが、pbの溶浸が1%未満ではPb溶漫の効果が発
揮されず、20%を超えて溶浸すると焼結合金のスケル
トンが弱化して摩耗が増大することから1〜20%と限
定した。
Infiltration of Pb (lead) into sintered alloys is carried out in the case of valve seats used under more severe conditions. The infiltrated PB acts as a lubricant by forming a Pb oxide layer at the contact area between the valve and the valve seat, thereby improving the mutual wear resistance of the valve and the valve seat. If the Pb infiltration is less than 1%, the effect of Pb infiltration will not be exhibited, and if the Pb infiltration exceeds 20%, the skeleton of the sintered alloy will be weakened and wear will increase, so it was limited to 1 to 20%.

(作用) 本発明にオイて、Cr10〜40%、W5〜20%、C
(15〜3%及び残部COからなる合金粒子を5〜25
%、及び硬質粒子としてCry C,、Cr3C4とM
at Cから選ばれる炭化物の1種又は2種以上を1〜
10%均一に分散させることは、)くルブシート用焼結
合金の相手材に対する攻撃性を高めることなく、それ自
体の耐摩耗性を向上させる効果がある。上記合金粒子に
おいてCrはCと化合して炭化物を形成するとともに一
部がCOと合金を形成し、合金粒子の硬さを向上させ、
WはCと化合して炭化物を形成し、合金粒子の硬さを向
上させ、一部がCo基地に固溶して合金粒子の強度を向
上させ、CはCr及びWと化合して炭化物を形成し、合
金粒子の硬さを向上させる。
(Function) According to the present invention, Cr10-40%, W5-20%, C
(5-25% alloy particles consisting of 15-3% and the balance CO)
%, and as hard particles Cry C, Cr3C4 and M
1 to 2 or more types of carbides selected from at C
Uniform dispersion of 10% has the effect of improving the wear resistance of the sintered alloy for the club sheet without increasing its aggressiveness against the mating material. In the alloy particles, Cr combines with C to form carbides, and a portion also forms an alloy with CO to improve the hardness of the alloy particles,
W combines with C to form carbides, improving the hardness of the alloy particles, and a part of it dissolves in the Co base to improve the strength of the alloy particles, and C combines with Cr and W to form carbides. forming and improving the hardness of alloy particles.

また、鉄基地へのCcL5〜2.0の添加はツク−ライ
ト組織を形成させ、鉄基地を強化するとともに耐摩耗性
を向上させる。ノ(−ライト組織は基地に靭性を与え、
硬く、強くする・Ni1〜10%の基地への添加はNi
が基地に固溶して基地を強くする。
Further, the addition of CcL5 to 2.0 to the iron base forms a tskurite structure, which strengthens the iron base and improves wear resistance.ノ(-Light organization gives toughness to the base,
Make it hard and strong ・Addition of 1 to 10% Ni to the base is Ni
solidly dissolves in the base and strengthens the base.

Pb 1〜20%の溶浸は焼結合金の耐摩耗性を向上さ
せる。
Infiltration of 1-20% Pb improves the wear resistance of the sintered alloy.

(実施例) 本発明を実施例により説明する。(Example) The present invention will be explained by examples.

実施例1 本実施例は炭化物としてCry c、を用いた例である
。Cr 30%、W10%、Cr2.5%及び残部CO
カらなるCO基合金アトマイズ粉(−joOメツシュ)
10%、硬質粒子としてCr、Cs (10Am以下)
2%、黒鉛粉末(−350メツシユ)12%、カルボニ
ルNi粉末(10μm以下)2%及び残部還元鉄粉(−
100メツシエ)に潤滑剤としてステアリン酸亜鉛α8
%を配合し混合した後、この混合粉末を金型内に充てん
し、成形圧7t/dで成形してバルブシート粗形状の成
形体を得た。
Example 1 This example uses Cry c as the carbide. Cr 30%, W10%, Cr2.5% and balance CO
CO-based alloy atomized powder (-joO mesh)
10%, Cr, Cs as hard particles (10 Am or less)
2%, graphite powder (-350 mesh) 12%, carbonyl Ni powder (10 μm or less) 2%, and the balance reduced iron powder (-
Zinc stearate α8 as a lubricant in
% and mixed, the mixed powder was filled into a mold and molded at a molding pressure of 7 t/d to obtain a molded body having a rough shape of a valve seat.

この粉末成形体をアンモニア分解ガス雰囲気中で1)5
0℃の温度にて60分間焼結して焼結体を得た。焼結体
密度は7.1 i/cd 。
This powder compact was placed in an ammonia decomposition gas atmosphere (1)5.
A sintered body was obtained by sintering at a temperature of 0° C. for 60 minutes. The density of the sintered body is 7.1 i/cd.

得られた焼結体を排気弁座の形状に加工して排気量20
00 cc4気筒エンジンに装着し、全負荷で200時
間台上耐久試験を実施し、バルブシート当り面幅増加量
及びバルブ摩耗量を測定した。
The obtained sintered body was processed into the shape of an exhaust valve seat and the displacement was 20.
A bench durability test was conducted for 200 hours at full load on a 00 cc 4-cylinder engine, and the amount of increase in face width per valve seat and the amount of valve wear were measured.

実施例2〜4 表1に示す各組成割合にそれぞれ配合して実施例1と同
様に行い、各焼結体を得た。なお、実施例3及び4は得
られた焼結体をPb塊と接触させて再度アンモニア分解
ガス雰囲気中で1050℃の温度にて30分間加熱して
焼結体中にPbを溶浸したものである。
Examples 2 to 4 Each sintered body was obtained in the same manner as in Example 1 by adding the respective composition ratios shown in Table 1. In addition, in Examples 3 and 4, the obtained sintered body was brought into contact with a Pb lump and heated again at a temperature of 1050°C for 30 minutes in an ammonia decomposition gas atmosphere to infiltrate Pb into the sintered body. It is.

得られた各焼結体を弁座形状に加工し、バルブシート当
り面幅増加量及びバルブ摩耗量を実施例1と同様に試験
したのち測定した。
Each of the obtained sintered bodies was processed into a valve seat shape, and the increase in surface width per valve seat and the amount of valve wear were tested and measured in the same manner as in Example 1.

比較例1及び2 比較例1としてJIS FC30鋳鉄、比較例2として
JIS耐熱鋼材5UH4Bをそれぞれ用いて弁座形状に
加工し、これらを実施例1と同様に試験してバルブシー
ト当り面幅増加量及びバルブ摩耗量を測定した@ 以上の測定結果をまとめて表1に示す。
Comparative Examples 1 and 2 JIS FC30 cast iron as Comparative Example 1 and JIS heat-resistant steel 5UH4B as Comparative Example 2 were processed into a valve seat shape, and tested in the same manner as Example 1 to determine the amount of increase in surface width per valve seat. The above measurement results are summarized in Table 1.

表1かられかるように炭化物としてCr7cs及び/又
はCr5C意を用いた実施例1〜4のバルブシート当夛
面輻増加量#′1oltないし0.3+amで、比較例
1及び2のt2及びt4socに比してかなり小さな値
を示し、実施例1〜4の焼結合金は耐摩耗性に優れてい
る。また、実施例1〜4のバルブ摩耗量は2ないし4μ
mで、比較例1及び2の12及び14μ雪に比して小さ
く、実施例1〜4の焼結合金は相手材であるバルブに対
する攻撃性が低い。
As can be seen from Table 1, in Examples 1 to 4 in which Cr7cs and/or Cr5C was used as the carbide, the increment in the convergence on the surface of the valve seat was #'1olt to 0.3+am, and t2 and t4soc in Comparative Examples 1 and 2. The sintered alloys of Examples 1 to 4 have excellent wear resistance. Further, the amount of valve wear in Examples 1 to 4 was 2 to 4μ.
m, which is smaller than the 12 and 14μ snow of Comparative Examples 1 and 2, and the sintered alloys of Examples 1 to 4 have low aggressiveness against the opposing material, the valve.

実施例5〜8 これらの実施例は炭化物としてMo、Cを用いた例で・
表2に示す各組成割合にそれぞれ配合して実施例1と同
様に行い、各焼結体を得た・なお、実施例7及び8は得
られた焼結体に実施例3と同様にしてPb i溶浸した
ものである。
Examples 5 to 8 These examples are examples using Mo and C as carbides.
Each composition ratio shown in Table 2 was mixed and the same procedure as in Example 1 was carried out to obtain each sintered body.In addition, in Examples 7 and 8, the obtained sintered body was mixed in the same manner as in Example 3. It was infiltrated with Pb i.

得られた各焼結体を弁座形状に刀ロエし、バルブシート
当り面幅増加量及びバルブ摩耗fを実施例1と同様に試
験したのち測定した。
Each of the obtained sintered bodies was shaped into a valve seat shape, and the amount of increase in surface width per valve seat and valve wear f were tested and measured in the same manner as in Example 1.

以上の測定結果を筐とめて表2に示す。The above measurement results are summarized in Table 2.

表2かられかるように炭化物としてMOICを用いた実
施例5〜8のバルブシート当り面幅増加量はa2ないし
α3uで、比較例1及び2のt2及び14mに比してか
なり小さな値を示し、実施例5〜8の焼結合金は耐摩耗
性に優れている。
As can be seen from Table 2, the amount of increase in the surface width per valve seat of Examples 5 to 8 using MOIC as the carbide is a2 to α3u, which is a considerably smaller value than t2 and 14m of Comparative Examples 1 and 2. The sintered alloys of Examples 5 to 8 have excellent wear resistance.

ま几、実施例5〜8のバルブ摩耗量は2ないし4μmで
、比較例1及び2の12及び14μmに比して小さく、
実施例5〜8の焼結合金は相手材であるバルブに対する
攻撃性が低い。
The amount of valve wear in Examples 5 to 8 was 2 to 4 μm, which was smaller than 12 and 14 μm in Comparative Examples 1 and 2.
The sintered alloys of Examples 5 to 8 have low aggressiveness against the opposing material, the valve.

〔発明の効果〕〔Effect of the invention〕

本発明のバルブシート用鉄糸結合金は、上記したように
、硬質粒子として、CO基合金粒子と膨化物粒子とを、
パーライトを主体とする鉄基地中に分散させたので、耐
摩耗性に優れ、かつ相手材であるバルブに対する攻撃性
が低く、バルブシート用焼結合金として最適な本のであ
る。
As described above, the iron thread alloy for valve seats of the present invention includes CO-based alloy particles and expanded particles as hard particles.
Since it is dispersed in an iron matrix mainly composed of pearlite, it has excellent wear resistance and is less aggressive to the mating material of valves, making it ideal as a sintered alloy for valve seats.

Claims (4)

【特許請求の範囲】[Claims] (1)重量比で炭素(C)を0.5〜2.0%含有する
パーライトを主体とする鉄基地中に、クロム(Cr)1
0〜40%、タングステン(W)5〜20%、炭素(C
)0.5〜3%及び残部コバルト(Co)からなる合金
粒子を5〜25%、及び硬質粒子として三炭化七クロム
(Cr_7C_3)、二炭化三クロム(Cr_3C_2
)と炭化モリブデン(Mo_2C)から選ばれる炭化物
の1種又は2種以上を1〜10%均一に分散させたこと
を特徴とするバルブシート用鉄系焼結合金。
(1) Chromium (Cr) 1
0-40%, tungsten (W) 5-20%, carbon (C
)0.5 to 3% and the balance is 5 to 25% of alloy particles consisting of cobalt (Co), and hard particles such as heptachromium tricarbide (Cr_7C_3) and trichromium dicarbide (Cr_3C_2).
) and molybdenum carbide (Mo_2C), wherein 1 to 10% of one or more carbides selected from molybdenum carbide (Mo_2C) are uniformly dispersed.
(2)重量比で炭素(C)を0.5〜2.0%及びニッ
ケル(Ni)を1〜10%含有するパーライトを主体と
する鉄基地中に、クロム(Cr)10〜40%、タング
ステン(W)5〜20%、炭素(C)0.5〜3%及び
残部コバルト(Co)からなる合金粒子を5〜25%、
及び硬質粒子として三炭化七クロム(Cr_7C_3)
、二炭化三クロム(Cr_3C_2)と炭化モリブデン
(Mo_2C)から選ばれる炭化物の1種又は2種以上
を1〜10%均一に分散させたことを特徴とするバルブ
シート用鉄系焼結合金。
(2) 10 to 40% of chromium (Cr) in an iron matrix mainly composed of pearlite containing 0.5 to 2.0% of carbon (C) and 1 to 10% of nickel (Ni) by weight; 5 to 25% of alloy particles consisting of 5 to 20% of tungsten (W), 0.5 to 3% of carbon (C), and the balance cobalt (Co);
and heptachromium tricarbide (Cr_7C_3) as hard particles.
An iron-based sintered alloy for a valve seat, characterized in that one or more carbides selected from trichromium dicarbide (Cr_3C_2) and molybdenum carbide (Mo_2C) are uniformly dispersed in an amount of 1 to 10%.
(3)重量比で炭素(C)を0.5〜2.0%含有する
パーライトを主体とする鉄基地中に、クロム(Cr)1
0〜40%、タングステン(W)5〜20%、炭素(C
)0.5〜3%及び残部コバルト(Co)からなる合金
粒子を5〜25%、及び硬質粒子として三炭化七クロム
(Cr_7C_3)、二炭化三クロム(Cr_3C_2
)と炭化モリブデン(Mo_2C)から選ばれる炭化物
の1種又は2種以上を1〜10%均一に分散させた焼結
合金に、鉛(Pb)を1〜20%溶浸したことを特徴と
するバルブシート用鉄系焼結合金。
(3) Chromium (Cr) 1
0-40%, tungsten (W) 5-20%, carbon (C
)0.5 to 3% and the balance is 5 to 25% of alloy particles consisting of cobalt (Co), and hard particles such as heptachromium tricarbide (Cr_7C_3) and trichromium dicarbide (Cr_3C_2).
) and molybdenum carbide (Mo_2C) and molybdenum carbide (Mo_2C). Iron-based sintered alloy for valve seats.
(4)重量比で炭素(C)を0.5〜2.0%及びニッ
ケル(Ni)を1〜10%含有するパーライトを主体と
する鉄基地中に、クロム(Cr)10〜40%、タング
ステン(W)5〜20%、炭素(C)0.5〜3%及び
残部コバルト(Co)からなる合金粒子を5〜25%、
及び硬質粒子として三炭化七クロム(Cr_7C_3)
、二炭化三クロム(Cr_3C_2)と炭化モリブデン
(Mo_2C)から選ばれる炭化物の1種又は2種以上
を1〜10%均一に分散させた焼結合金に、鉛(Pb)
を1〜20%溶浸したことを特徴とするバル ブシート用鉄系焼結合金。
(4) 10 to 40% of chromium (Cr) in an iron base mainly composed of pearlite containing 0.5 to 2.0% of carbon (C) and 1 to 10% of nickel (Ni) by weight; 5 to 25% of alloy particles consisting of 5 to 20% of tungsten (W), 0.5 to 3% of carbon (C), and the balance cobalt (Co);
and heptachromium tricarbide (Cr_7C_3) as hard particles.
, lead (Pb) is added to a sintered alloy in which 1 to 10% of one or more carbides selected from trichromium dicarbide (Cr_3C_2) and molybdenum carbide (Mo_2C) are uniformly dispersed.
An iron-based sintered alloy for valve seats, characterized by being infiltrated with 1 to 20% of.
JP2313685A 1985-02-08 1985-02-08 Sintered iron alloy for valve seat Pending JPS61183448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313685A JPS61183448A (en) 1985-02-08 1985-02-08 Sintered iron alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313685A JPS61183448A (en) 1985-02-08 1985-02-08 Sintered iron alloy for valve seat

Publications (1)

Publication Number Publication Date
JPS61183448A true JPS61183448A (en) 1986-08-16

Family

ID=12102125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313685A Pending JPS61183448A (en) 1985-02-08 1985-02-08 Sintered iron alloy for valve seat

Country Status (1)

Country Link
JP (1) JPS61183448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247337A (en) * 1987-03-31 1988-10-14 Sumitomo Electric Ind Ltd Wear resistant iron based sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247337A (en) * 1987-03-31 1988-10-14 Sumitomo Electric Ind Ltd Wear resistant iron based sintered alloy

Similar Documents

Publication Publication Date Title
JPH0555589B2 (en)
JPS61183448A (en) Sintered iron alloy for valve seat
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPS61117254A (en) Ferrous sintered alloy for valve seat
JPH0555591B2 (en)
JPS62207847A (en) Ferrous sintered alloy for valve seat
JPS60258449A (en) Sintered iron alloy for valve seat
JPH0313546A (en) Ferrous sintered alloy for valve seat
JPS61179856A (en) Iron system sintered alloy for valve seat
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JPS61183447A (en) Sintered iron alloy for valve seat
JPS6164855A (en) Iron compound sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH0559981B2 (en)
JPS62164858A (en) Ferrous sintered alloy for valve seat
JPS6296661A (en) Sintered iron alloy for valve seat
JPS63171858A (en) Ferrous sintered alloy for valve seat
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0559982B2 (en)
JPH0115577B2 (en)
JPS61179857A (en) Iron system sintered alloy for valve seat
JPS6296659A (en) Sintered iron alloy for valve seat
KR970001323B1 (en) Sintering alloy of valve seat