JPS61181124A - Method for liquid-phase growth - Google Patents

Method for liquid-phase growth

Info

Publication number
JPS61181124A
JPS61181124A JP60022416A JP2241685A JPS61181124A JP S61181124 A JPS61181124 A JP S61181124A JP 60022416 A JP60022416 A JP 60022416A JP 2241685 A JP2241685 A JP 2241685A JP S61181124 A JPS61181124 A JP S61181124A
Authority
JP
Japan
Prior art keywords
inp
solution
uniformity
crystals
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022416A
Other languages
Japanese (ja)
Inventor
Yasuo Shinohara
篠原 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60022416A priority Critical patent/JPS61181124A/en
Publication of JPS61181124A publication Critical patent/JPS61181124A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the non-uniformity in the degree of supersaturation of an In solution and thereby to eliminate the non-uniformity in a speed of growth to an InP substrate, by putting a plurality of InP crystals on the In solution. CONSTITUTION:In 12 and InP crystals 13 are put in a bath 11 of a carbon boat, a push lid 14 is set, and temperature is raised and kept high for a pre scribed time so that InP is dissolved sufficiently in the In solution 12. When the temperature is lowered for the entire boat in the above state, P turning surplus in the In solution 12 is educed in the solid-phase InP crystals 13. When the temperature continues to be lowered further at a prescribed speed, the degree of super-saturation of P in the InP solution 12 turns to have a distribu tion which is decided by a distance from the solid-phase InP crystals 13. When an InP substrate 16 set on a substrate holder 15 is moved to the lower part of the InP solution 12 in the above condition, an epitaxial growth occurs and proceeds on the InP substrate 16. In the case when a plurality of InP crystals 13 are on the InP solution 12, accordingly, the non-uniformity in the distance from the solid phase lessens in comparison with the case of presence of one InP crystal, and the non-uniformity in the degree of supersaturation also lessens.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は元ファイバー通信あるいはDAD等の元ビーム
応用等に用いられる光半導体素子の結晶成長方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing crystals of optical semiconductor devices used in fiber optic communications, DAD, and other beam applications.

〔従来の技術〕[Conventional technology]

従来、この種の光半導体素子のエピタキシャル成長では
液相成長法が主に用いられる。この数層の薄膜を連続し
て成長させる液相成長法ではIn1Ga等の溶媒物質に
InPyGaAs等の溶質を高温で飽和状態近(まで溶
かし込み、降温させることにより過剰の溶質を基板上に
析出させる方法を用いている。この時、高温において溶
質が溶媒中に完全に溶解し、液相のみになってしまう場
合をスーパークーリング法溶質が溶媒に溶は切らずに固
相として残る場合を二相成長法と呼ぶ。
Conventionally, a liquid phase growth method has been mainly used for epitaxial growth of this type of optical semiconductor device. In this liquid phase growth method, in which several layers of thin films are successively grown, a solute such as InPyGaAs is dissolved in a solvent substance such as In1Ga at a high temperature until it reaches a near saturation state, and the excess solute is precipitated on the substrate by lowering the temperature. At this time, super cooling is used when the solute completely dissolves in the solvent at high temperatures, leaving only a liquid phase.When the solute does not dissolve in the solvent and remains as a solid phase, it is called two-phase. It is called the growth method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のエピタキシャル成長法では過飽和度の制
御が離しく、結晶成長速度の再現性及び均一性に問題が
ある。
In the conventional epitaxial growth method described above, the degree of supersaturation is difficult to control, and there are problems with the reproducibility and uniformity of the crystal growth rate.

液相エピタキシャル成長においては、成長は溶質が過剰
に溶解しているいわゆる過飽和状態におい【行われる。
In liquid phase epitaxial growth, growth is carried out in a so-called supersaturated state where an excessive amount of solute is dissolved.

従来のスーパークーリング法においては溶液全体の過飽
和度の均−注は良いが、初期の仕込み量の微妙な変動が
過飽和度の変動に大きく影響する。又過飽和度がある限
界を越えた場合溶液全体において微小核形成が起り、過
飽和度は急激に低下しかつ不均一になる。一方、二相成
長法におい【は降温により過剰となった溶質は固相に析
出する。従って溶液中の過飽和度は固相からの距離で決
まる分布を待つようになる。そのため溶液中の固相の大
きさ、位置により基板上への成長速度に不均一性が生じ
る。そこでこの成長速度の不均一性を改善する手段とし
て溶液全面に固相を載置したオーバーシード法が行なわ
れているが、固相かもの距離が太き(取れず、溶液の過
飽和度が大きく出来ないという欠点がある。従ってこの
オーバーシード法は薄膜成長の均一性は良いが、埋込み
成及や厚膜成長には不向きである。
In the conventional supercooling method, the supersaturation level of the entire solution can be uniformly poured, but subtle fluctuations in the initial charge amount greatly affect the fluctuations in the supersaturation level. Furthermore, when the degree of supersaturation exceeds a certain limit, micronucleation occurs throughout the solution, and the degree of supersaturation rapidly decreases and becomes non-uniform. On the other hand, in the two-phase growth method, excess solute is precipitated in the solid phase due to temperature decrease. Therefore, the degree of supersaturation in the solution follows a distribution determined by the distance from the solid phase. Therefore, non-uniformity occurs in the growth rate on the substrate depending on the size and position of the solid phase in the solution. Therefore, as a means to improve the non-uniformity of the growth rate, an overseeding method in which a solid phase is placed on the entire surface of the solution has been used, but the distance between the solid phases is large (it is impossible to achieve this), and the degree of supersaturation of the solution is large. Therefore, although this overseeding method has good uniformity in thin film growth, it is not suitable for buried deposition or thick film growth.

〔間趙点ヲ解決するための手段〕[Means to solve the problem]

本発明の液相エピタキシャル成長法は高温において浴液
上に複数個の固相物質を載置する方法る得る。
The liquid phase epitaxial growth method of the present invention involves placing a plurality of solid phase substances on a bath liquid at high temperatures.

〔作用〕[Effect]

飽和溶液を固相物質が存在する状態で降温してゆくと過
剰となった溶買は固相に析出する。この時溶液内の過飽
和度は固相近傍では′O”に近くなジ、同相から離れる
に従って大きくなる。同相物質が一個の場合は固相から
の距離の不均一性が大きく、距離の遠い部分も多く、過
飽和度は太きく不均一性も大きい。一方、固相物質が溶
液全面に存在する場合は固相からの距離が小6い部分が
多く距離の不均一性は小さい。従って、過飽)I]度は
小さく不均一性も小さい。本発明の様に数個の固相物質
が溶液上に存在する場合は固相物質が一個の場合より溶
液内の固相からの距離の不均一性が小さく、過飽和度の
不均一性も小さい。父、溶液全面に固相物質が存在する
場合より溶液内の固相からの距離が太き(なるため過飽
和度が大きく出来る。
When the temperature of a saturated solution is lowered in the presence of a solid phase substance, excess molten metal precipitates into the solid phase. At this time, the degree of supersaturation in the solution is near the solid phase, and increases as you move away from the same phase.If there is only one same phase substance, there is great non-uniformity in the distance from the solid phase, and in the farthest part The degree of supersaturation is large, and the non-uniformity is large.On the other hand, when the solid phase substance is present over the entire surface of the solution, there are many areas where the distance from the solid phase is small6, and the non-uniformity of the distance is small. The degree of saturation is small and the heterogeneity is small. When several solid phase substances are present on the solution as in the present invention, the distance from the solid phase in the solution is less uniform than when there is only one solid phase substance. The uniformity is small, and the non-uniformity of the degree of supersaturation is also small.The distance from the solid phase in the solution is larger (because the distance from the solid phase in the solution becomes larger) than when the solid phase substance is present over the entire surface of the solution.

〔実施例〕〔Example〕

矢に、本発明について図面を参照して説明する。 The present invention will now be described with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

一方第2図、第3図は従来の方法を説明する縦断面図で
ある。本実施例ではInを溶媒としてInPの液相エピ
タキシャル成長させる方法を用いて説明する。
On the other hand, FIGS. 2 and 3 are longitudinal sectional views illustrating the conventional method. In this embodiment, a method of liquid phase epitaxial growth of InP using In as a solvent will be described.

カーボンボートの浴槽11,21,31にIn 129
22.32及びInP結晶13,23,33t−入れ、
カーボンの押し蓋14,24,34t”セットし、昇温
する。
In 129 in carbon boat bathtubs 11, 21, 31
22.32 and InP crystal 13, 23, 33t-put,
Set the carbon press lids 14, 24, and 34t'' and raise the temperature.

一定時間高温保持し、Im溶液12,22,32中にL
mP を充分浴力1し込む。この保持温度でIn中溶解
する量よジ充分多い■mP結晶13.23.33をあら
かじめ仕込んでおいた場合、高温保持の平衡状態におい
て固相のInP結晶13,23.33がIn ft3W
12,22.32上に浮いた形の二相状態が実現出来る
。この状態小リポート全体を降温すると1.溶液12,
22.32中で過剰となったPFi固相のInP 結晶
13,23.33に析出する。さらに一定の速度で降温
を続けると、In溶液12,22゜32中Pの過飽和度
はIn溶液12,22.32中で固相のIn溶液12,
22.32中で固相の1.P 結晶13,23.33か
らの距離で決まる分布を持つようになる。この状態で基
板ホルダー15.25.35上に載置されたInP 基
板16.2(5,36iIn溶液12,22.32下部
に移動させると、Inり 基板16.26.36上にエ
ピタキシャル成長が行われる。
Maintain the high temperature for a certain period of time, and add L to Im solution 12, 22, 32.
Pour enough mP into the bath. If mP crystals 13, 23, 33 which are sufficiently larger than the amount dissolved in In at this holding temperature are charged in advance, the solid phase InP crystals 13, 23, 33 will become In ft3W in the equilibrium state of holding at high temperature.
A two-phase state floating above 12, 22, and 32 can be realized. If you lower the temperature of this small state report as a whole, 1. solution 12,
Excess PFi solid phase InP in 22.32 is precipitated on crystals 13 and 23.33. If the temperature is further lowered at a constant rate, the degree of supersaturation of P in the In solution 12,22°32 becomes as follows:
22.1 of the solid phase in 32. It comes to have a distribution determined by the distance from P crystals 13, 23, and 33. In this state, when the InP substrate 16.2 (5,36iIn solution 12, 22.32) placed on the substrate holder 15.25.35 is moved to the lower part, epitaxial growth is performed on the InP substrate 16.26.36. be exposed.

第2図にあるようにIn#液2液上2上nP 結晶23
が1 jl!ilである場合は固相からの距離の不均一
性が大きく溶液中の過飽和度の不均一性が大きくなり、
基板上への成長速度の不均一性が犬さくなる。4$3図
をこめるようにInP 結晶33がIn溶液32全面に
ある場合は固相からの距離の不均一性は小さくなるが、
固相からの距離が小さい為、過飽和度が大きく出来ず、
成長速度が大さく出来ない。一方、第1図にあるように
InP 結晶13が複数個In溶液12上にある場合は
、1個の場合と比較し固相からの距離の不均一性が減少
し。
As shown in Figure 2, nP crystal 23 on In# liquid 2 liquid 2
1 jl! In the case of il, the distance from the solid phase is highly non-uniform, and the supersaturation degree in the solution is highly non-uniform.
The non-uniformity of the growth rate on the substrate is exacerbated. 4$3 As shown in the figure, if the InP crystal 33 is on the entire surface of the In solution 32, the non-uniformity of the distance from the solid phase will be small, but
Because the distance from the solid phase is small, the degree of supersaturation cannot be increased,
The growth rate cannot be increased. On the other hand, when a plurality of InP crystals 13 are present on the In solution 12 as shown in FIG. 1, the non-uniformity of the distance from the solid phase is reduced compared to the case where there is only one InP crystal 13.

過飄和度の不均一性も減少する。又固相が全面にある場
合と比較し、固相からの距離が大きく出来るため、溶液
の過飽和度が大きく出来、成長速度が大きく出来る利点
がある。
The non-uniformity of the degree of overabundance is also reduced. Furthermore, compared to the case where the solid phase is on the entire surface, since the distance from the solid phase can be increased, there is an advantage that the degree of supersaturation of the solution can be increased and the growth rate can be increased.

〔発明の効果〕 以上説明したように本発明a、1.溶液上に複数個のI
nP 結晶を載置することlこより、In浴液の過飽和
度の不均一性が改善され、従ってInP基板への成長速
度の不均一性も少なくなり、成長速度も所要のtli[
を得ることが出来る効果がある。
[Effects of the Invention] As explained above, the present invention a, 1. Multiple I on the solution
By placing the nP crystal, the non-uniformity of the supersaturation degree of the In bath solution is improved, and therefore the non-uniformity of the growth rate on the InP substrate is reduced, and the growth rate is also maintained at the required level.
It has the effect of allowing you to obtain the following.

この実施例では工1溶液を用いたInPのエピタキシャ
ル成長について述べたが、In溶液を用いたInGaA
s*InGaAsP  等の三元、四元のエシ ピタキシャル成長についても同様の効果があるこは明ら
かである。又Ga溶液を用いたGaAt、eAIGaA
s等のエピタキシャル成長についても同様の効果がある
ことは明らかである。
In this example, epitaxial growth of InP using an In solution was described, but InGaA using an In solution was described.
It is clear that the epitaxial growth of ternary and quaternary materials such as s*InGaAsP has similar effects. Also, GaAt using Ga solution, eAIGaA
It is clear that the epitaxial growth of s etc. has similar effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する縦断面図。 第2図、第3図は従来の方法の例を説明する縦断面図で
ある。 11.21.31・・・・・・カーボン浴槽、12,2
2,32・・・・・・In溶液、13,23,33・・
・・・・InE’ 結晶、14.24,34・・・・・
・カーボン押し蓋、15,25,35・・・・・・基板
ホルダー、16,26,36・・・・・・基板。 井21iJ 算3 頂
FIG. 1 is a longitudinal sectional view illustrating an embodiment of the present invention. FIGS. 2 and 3 are longitudinal sectional views illustrating an example of a conventional method. 11.21.31...Carbon bathtub, 12,2
2,32...In solution, 13,23,33...
...InE' crystal, 14.24,34...
・Carbon press lid, 15, 25, 35...Substrate holder, 16, 26, 36...Substrate. I21iJ Calculation 3 Top

Claims (1)

【特許請求の範囲】[Claims]  溶液上に固相物質を複数個載置した状態で、液相エピ
タキシャル成長を行うことを特徴とする液相成長方法。
A liquid phase growth method characterized by performing liquid phase epitaxial growth with a plurality of solid phase substances placed on a solution.
JP60022416A 1985-02-07 1985-02-07 Method for liquid-phase growth Pending JPS61181124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022416A JPS61181124A (en) 1985-02-07 1985-02-07 Method for liquid-phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022416A JPS61181124A (en) 1985-02-07 1985-02-07 Method for liquid-phase growth

Publications (1)

Publication Number Publication Date
JPS61181124A true JPS61181124A (en) 1986-08-13

Family

ID=12082060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022416A Pending JPS61181124A (en) 1985-02-07 1985-02-07 Method for liquid-phase growth

Country Status (1)

Country Link
JP (1) JPS61181124A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102779A (en) * 1972-04-10 1973-12-24
JPS50156873A (en) * 1974-06-06 1975-12-18
JPS5742211A (en) * 1980-08-28 1982-03-09 Nippon Gakki Seizo Kk Feedback amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102779A (en) * 1972-04-10 1973-12-24
JPS50156873A (en) * 1974-06-06 1975-12-18
JPS5742211A (en) * 1980-08-28 1982-03-09 Nippon Gakki Seizo Kk Feedback amplifier

Similar Documents

Publication Publication Date Title
US4243472A (en) Method for liquid phase epitaxy multiple dipping of wafers for bubble film growth
KR19990078057A (en) Silicon single crystal and method for producing the same
JPS61181124A (en) Method for liquid-phase growth
Huggins et al. Morphological stability of a Plane interface during electroncrystallization from molten salts
US2861905A (en) Process for controlling excess carrier concentration in a semiconductor
JPH0217519B2 (en)
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
US4123302A (en) Method for depositing epitaxial semiconductor from the liquid phase
US3810794A (en) Preparation of gap-si heterojunction by liquid phase epitaxy
JPS598698A (en) Apparatus for vertical liquid-phase epitaxial growth
JP3018738B2 (en) Single crystal manufacturing equipment
JPH0464174B2 (en)
JPS5776821A (en) Liquid phase epitaxial growing method
US3729291A (en) Method for growing crystals from molten melts saturated with crystalline material
JP3173402B2 (en) Liquid phase growth equipment for semiconductor substrates
JPS60192339A (en) Liquid phase epitaxial growing method
JPS61202411A (en) Liquid-phase epitaxial growth method
JPS6028799B2 (en) Liquid phase epitaxial growth method
JPS6110099A (en) Method for continuous growth of thin film crystal
JPS61122191A (en) Liquid-phase crystal growth
SU1705425A1 (en) Method of producing epitaxial layers of gallium nitride
JP2773339B2 (en) Liquid phase epitaxial growth method
JPH03295889A (en) Semiconductor single crystal and its production
JPS61280613A (en) Liquid epitaxial growing process
JPH02175697A (en) Production of non-linear optical crystal thin film