JPS61181122A - Reaction tube for vapor growth apparatus - Google Patents

Reaction tube for vapor growth apparatus

Info

Publication number
JPS61181122A
JPS61181122A JP2114385A JP2114385A JPS61181122A JP S61181122 A JPS61181122 A JP S61181122A JP 2114385 A JP2114385 A JP 2114385A JP 2114385 A JP2114385 A JP 2114385A JP S61181122 A JPS61181122 A JP S61181122A
Authority
JP
Japan
Prior art keywords
reaction tube
tube
growth
reaction
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2114385A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2114385A priority Critical patent/JPS61181122A/en
Publication of JPS61181122A publication Critical patent/JPS61181122A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides

Abstract

PURPOSE:To form a reaction tube enabling the excellent growth of crystals, by providing a plurality of folds of partition walls at intervals concentrically with the central axis of the reaction tube so that the ends of the partition walls are located farther on the downstresm side of a flow of a gaseous body as walls are positioned farther outside of the central axis. CONSTITUTION:A material which would otherwise stick to an inserted tube 20b is forwarded downstream by a gaseous body flowing between inserted tubes 20a and 20b. Although the material is diffused and is to stick to an inserted tube 20c, it is forwarded downstream further, not sticking to the inserted tube 20c, by the gaseous body flowing between the inserted tubes 20b and 20c. By the repetition of these actions, eventually, the material diffused toward the walls of the tubes are forwarded on the downstream side of a sub strate 4 for growth. As the result, no sticking of a reaction product occurs on the inner wall in the vicinity and on the upstream side of the position of the substrate 4 for growth inside the reaction tube 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気相成長装置用反応管に関し、特に有機金属分
解堆積法(以下MOCVD法という)に代表される気相
成長装置用反応管に関する〇(従来の技術とその間電点
) 従来、MOCVD法は大面積で均一性の優れたかつ量産
性に適した結晶成長法として研究が活発に行なわれてい
る。また、MOCvD法によシ超薄膜デバイス、超高速
デバイスの研究も活発に進められている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a reaction tube for a vapor phase growth apparatus, and more particularly to a reaction tube for a vapor phase growth apparatus typified by metal organic decomposition deposition method (hereinafter referred to as MOCVD method). 〇 (Prior art and interconductive point) The MOCVD method has been actively researched as a crystal growth method that has a large area, excellent uniformity, and is suitable for mass production. Furthermore, research into ultra-thin film devices and ultra-high speed devices using the MOCvD method is also actively underway.

第2図は従来のMOCVD法による気相成長装置の反応
管の成長用基板がるる位置の近傍の断面図である。
FIG. 2 is a cross-sectional view of a reaction tube of a conventional MOCVD vapor phase growth apparatus near a position where a growth substrate is located.

反応管1は石英で円筒形に作られている。この反応管1
の内部にカーボン製のサセプタ2が石英棒3あるいは石
英管によシ支見られ、そのサセプタ2上に成長用基板4
が載せられる。反応原料をキャリアガスによシ第2図矢
印の方4すなわち図の左から右へ流しかつサセプタ2を
加熱して成長用基板4上に結晶成長を行なう。このとき
、反芯管lの内壁に反応生成物が付層する。これにより
、結晶成長回at”−11uうどとに反応生成物が成長
用基板4をMOCVD炉内に押入する際及び成長中に反
応管1の内壁に付層し、成長表面が悪化するとともに結
晶性が悪化するという問題点がある。
The reaction tube 1 is made of quartz and has a cylindrical shape. This reaction tube 1
A susceptor 2 made of carbon is supported by a quartz rod 3 or a quartz tube inside the susceptor 2, and a growth substrate 4 is placed on the susceptor 2.
will be posted. The reaction raw material is passed through the carrier gas in the direction of the arrow 4 in FIG. 2, that is, from the left to the right in the figure, and the susceptor 2 is heated to grow crystals on the growth substrate 4. At this time, the reaction product forms a layer on the inner wall of the anti-core tube l. As a result, reaction products are deposited on the inner wall of the reaction tube 1 when the growth substrate 4 is pushed into the MOCVD furnace and during the crystal growth process, deteriorating the growth surface and causing crystallization. There is a problem in that sex deteriorates.

また、成長表面が良好でも、ホトルミネッセンスの強健
の低下等を招ねくという問題点がある。
Further, even if the growth surface is good, there is a problem in that the robustness of photoluminescence is deteriorated.

(発明の目的) 本発明の目的は反応管の内部に反応管と同心の多重の仕
切壁を設は仕切壁間に気体を流通せしめることにより、
成長用基板が位置する近傍及びその上流において反応管
内部に反管生成物を付着せしめず結晶成長性のよい反応
管を提供する事にあるO (発明の構成) 本発明の反応管は、反応管の中心軸に同心に複数重に間
隔をおいて仕切壁を設け、前記間隔に気体を流すように
し、前記中心軸に対して外側になる仕切壁になればなる
ほど前記仕切壁の終端が前記気体の流れの下流側にある
ように設定して構成される。
(Objective of the Invention) The object of the present invention is to provide multiple partition walls concentric with the reaction tube inside the reaction tube and to allow gas to flow between the partition walls.
An object of the present invention is to provide a reaction tube with good crystal growth properties without adhering anti-tube products to the inside of the reaction tube in the vicinity of where the growth substrate is located and upstream thereof. A plurality of partition walls are provided at intervals concentrically around the central axis of the pipe, and gas is allowed to flow through the intervals. Configured and configured to be located on the downstream side of the gas flow.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例の置部断面図である。FIG. 1 is a cross-sectional view of an embodiment of the present invention.

反応管1の内部に、反応管の中心軸に同心に複数1に間
隔をおいて内挿管20(20a、20b。
Inside the reaction tube 1, a plurality of inner tubes 20 (20a, 20b) are arranged concentrically with the central axis of the reaction tube and spaced apart from each other.

・・・・・・20n)を設ける。この内挿管と内挿管と
の間の間隔に図の圧から右に矢印の方向に気体を流す。
...20n) is provided. Gas is allowed to flow from the pressure shown in the figure to the right in the direction of the arrow in the space between the inner intubations.

内挿管20a、20b、20c、・−・・・・20nは
、反応管1の中心軸から外側に位置する内挿管になれば
なる程その終端が気体の流れの下流側にあるように設定
される。
The inner tubes 20a, 20b, 20c, . Ru.

第1図において、石英管10は反応管1の中央に位置し
、原料を供給する。石英管10内をキャリアガスによっ
て送られてきた原料はサセプタ2からの熱にz5分解さ
れ外側に拡散し反応管1の管壁に付着しようとするが、
不実施例の構造にしておくと、外側に向って拡散する原
料は内挿管の間を流れている気体により管壁に到達する
前に下流へ送られる。原料は更に、よシ外側の内挿管の
間から流れている気体により管壁に到達する前に更に下
流に送られる。詳細に説明すると内挿管20bに付着し
ようとした原料は内挿管20aと内挿管20bとの間を
流れる気体によプ下流に送られる。次いで原料は拡散し
て内挿管20cに付着しようとするが内挿管20bと内
挿管20Cとの間を流れる気禄により、内挿管2^付着
する前に、よプ下流に送られる。これらの作用の株返し
により、結局管壁にむかって拡散した原料は成内壁に反
応生成物の付層が生じない。よって、結晶成長表面及び
結晶性は結晶成長t−繰返しても初期状態を常に維持す
る事ができる0 次に、この実施例のilL値例及び便用例について説明
する。作製した反応管は、原料を送る石英管lOの直径
t−10φ、II&内部にある内挿管20aO直径f:
20φ、以下外側へ向うに従って34φ。
In FIG. 1, a quartz tube 10 is located at the center of the reaction tube 1 and supplies raw materials. The raw material sent through the quartz tube 10 by the carrier gas is decomposed by the heat from the susceptor 2, diffuses to the outside, and tries to adhere to the wall of the reaction tube 1.
In the non-embodied configuration, the outwardly diffusing material is forced downstream by the gas flowing between the inner tubes before reaching the tube wall. The material is further transported further downstream before reaching the tube wall by gas flowing between the outer tubes. To explain in detail, the raw material that is about to adhere to the inner tube 20b is sent downstream by the gas flowing between the inner tube 20a and the inner tube 20b. Next, the raw material diffuses and tries to attach to the inner tube 20c, but due to the air flowing between the inner tube 20b and the inner tube 20C, it is sent downstream before it can attach to the inner tube 2^. Due to the reversal of these effects, the raw materials that have diffused toward the tube wall do not form a layer of reaction products on the inner wall. Therefore, the crystal growth surface and crystallinity can always maintain the initial state even after crystal growth is repeated. The prepared reaction tube has a diameter t-10φ of the quartz tube lO for feeding raw materials, and a diameter f of the inner tube 20aO inside II.
20φ, 34φ as it goes outward.

48φ、62φ、76φの直径を有する5重内挿管を有
する構造とした。各内挿管の内厚は20とした。石4’
1lPUの内部からトリエチルインジウム(TEI)、
)リエチルガリウム(TEG)をH雪tキャリアガスと
して送シ、また、石英管lOと最内部にある内挿管20
aとの間よfiPH,とH8と金送った。また、5Nの
内挿管の間にはH2をようなガスの供給を行ない、Ga
InPの結晶成長をG a A s基板上に行った。結
晶表面は結晶成長回mrxねても良好であった。
The structure had five internal tubes with diameters of 48φ, 62φ, and 76φ. The inner thickness of each internal cannula was 20 mm. stone 4'
Triethylindium (TEI) from inside 1lPU,
) ethyl gallium (TEG) is sent as a carrier gas, and the quartz tube lO and the innermost tube 20 are
Between a and fiPH, I sent money to H8. In addition, a gas such as H2 was supplied between the 5N inner tube, and Ga
InP crystal growth was performed on a GaAs substrate. The crystal surface was good even after multiple crystal growth cycles.

第3図にホトルミネッセンスの測定結果を従来方式のも
のと比較して示す。
FIG. 3 shows the photoluminescence measurement results compared with those of the conventional method.

本発明の反応管では成長回数を夏ねてもホトルミネッセ
ンス強度の低下はほとんどなかった。このように、不実
施例の反応管を使用すると、特性の優れた結晶を成長さ
せることができる。
In the reaction tube of the present invention, there was almost no decrease in photoluminescence intensity even after increasing the number of growth cycles. In this way, by using the non-example reaction tube, it is possible to grow crystals with excellent properties.

上記実施例では、反応管の内部空間を仕切るものとして
反応管とは別個の内挿管を多重に設けたが、不発明はこ
れに限定されるものではなく反応管と反応管の内部空間
を仕切るものとを一体構造とした同心の多電管壁を有す
る反応管でも同一目的を達成することは明かである。
In the above embodiment, multiple inner tubes separate from the reaction tube were provided to partition the internal space of the reaction tube, but the invention is not limited to this, and the internal space of the reaction tube and the internal space of the reaction tube may be partitioned. It is clear that a reaction tube having a concentric multi-tube wall with a monolithic structure can also achieve the same purpose.

(発明の効果) 本発明には反応管の内部空間を同心多重に仕切りこれら
の空隙に気体を流通せしめることにより気相成長装置用
反厄管内部でかつ結晶成長基板が
(Effects of the Invention) The present invention is characterized in that the internal space of the reaction tube is partitioned concentrically into multiple layers and gas is allowed to flow through these gaps, thereby allowing the crystal growth substrate to be grown inside the anti-nuisance tube for the vapor phase growth apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施例の要部断面図、第2図は促米
の気相成長装置の反応管の成長用基板がある位置近傍の
断面図、第3図は不発明及び従来例における成長累積回
数とホトルミネッセンス強度との関係を示す特性曲線図
である。
Fig. 1 is a sectional view of a main part of an embodiment of the invention, Fig. 2 is a sectional view of the vicinity of the growth substrate of the reaction tube of the vapor phase growth apparatus of Nakamai, and Fig. 3 is a sectional view of the noninvention and the conventional method. It is a characteristic curve diagram showing the relationship between the cumulative number of growth and photoluminescence intensity in an example.

Claims (3)

【特許請求の範囲】[Claims] (1)反応管の中心軸に同心に複数重に間隔をおいて仕
切壁を設け、前記間隔に気体を流すようにし、前記中心
軸に対して外側になる仕切壁になればなる程前記仕切壁
の終端が前記気体の流れの下流側にあるように設定した
ことを特徴とする気相成長装置用反応管。
(1) Partition walls are provided at multiple intervals concentrically around the central axis of the reaction tube, and gas is allowed to flow through the intervals. 1. A reaction tube for a vapor phase growth apparatus, characterized in that the end of the wall is set on the downstream side of the gas flow.
(2)仕切壁は反応管とは独立して内挿された内挿管に
より構成されることを特徴とする特許請求の範囲第(1
)項記載の気相成長装置用反応管。
(2) Claim No. 1, characterized in that the partition wall is constituted by an inner tube inserted independently of the reaction tube.
) A reaction tube for a vapor phase growth apparatus as described in item 2.
(3)仕切壁は反応管と一体構造の多重管壁により構成
されることを特徴とする特許請求の範囲第(1)項記載
の気相成長装置用反応管。
(3) A reaction tube for a vapor phase growth apparatus according to claim (1), wherein the partition wall is constituted by a multi-wall wall integrally constructed with the reaction tube.
JP2114385A 1985-02-06 1985-02-06 Reaction tube for vapor growth apparatus Pending JPS61181122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114385A JPS61181122A (en) 1985-02-06 1985-02-06 Reaction tube for vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114385A JPS61181122A (en) 1985-02-06 1985-02-06 Reaction tube for vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS61181122A true JPS61181122A (en) 1986-08-13

Family

ID=12046670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114385A Pending JPS61181122A (en) 1985-02-06 1985-02-06 Reaction tube for vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS61181122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907534A (en) * 1988-12-09 1990-03-13 Siemens Aktiengesellschaft Gas distributor for OMVPE Growth
US4989541A (en) * 1989-02-23 1991-02-05 Nobuo Mikoshiba Thin film forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907534A (en) * 1988-12-09 1990-03-13 Siemens Aktiengesellschaft Gas distributor for OMVPE Growth
US4989541A (en) * 1989-02-23 1991-02-05 Nobuo Mikoshiba Thin film forming apparatus

Similar Documents

Publication Publication Date Title
US3338209A (en) Epitaxial deposition apparatus
JPS62152171A (en) Thin-film transistor
JPS6054919B2 (en) low pressure reactor
JPS61181122A (en) Reaction tube for vapor growth apparatus
US20190085454A1 (en) Vertical deposition system
JP2001250783A (en) Vapor growth device and method
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JP2001284269A (en) Vapor phase growth apparatus and method
JPS62113419A (en) Vapor phase epitaxial growth equipment
JPS6168393A (en) Hot wall type epitaxial growth device
JPS5973496A (en) Vapor-phase growth apparatus
JPS6240720A (en) Vapor phase epitaxial growing device
JPH046825A (en) Semiconductor growth apparatus
JPH03273616A (en) Cvd apparatus
JPS6276516A (en) Chemical vapor growth equipment
JPH0437901Y2 (en)
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPH0322524A (en) Vapor growth device
JPS62171115A (en) Reaction tube of vapor growth device
JPH0727868B2 (en) Vapor phase growth equipment
JPS632435Y2 (en)
JPS63313826A (en) Vapor phase epitaxy method
JPS62105417A (en) Vapor growth equipment
JPS6369794A (en) Vapor phase epitaxy device
JPS61242012A (en) Vapor-phase growth device