JPS61180217A - Sun tracking device - Google Patents

Sun tracking device

Info

Publication number
JPS61180217A
JPS61180217A JP60020605A JP2060585A JPS61180217A JP S61180217 A JPS61180217 A JP S61180217A JP 60020605 A JP60020605 A JP 60020605A JP 2060585 A JP2060585 A JP 2060585A JP S61180217 A JPS61180217 A JP S61180217A
Authority
JP
Japan
Prior art keywords
prism
tracking
plates
sun
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020605A
Other languages
Japanese (ja)
Inventor
Isao Oshida
押田 勇雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNISHIRO KANAGATA KOGYO KK
Original Assignee
KUNISHIRO KANAGATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUNISHIRO KANAGATA KOGYO KK filed Critical KUNISHIRO KANAGATA KOGYO KK
Priority to JP60020605A priority Critical patent/JPS61180217A/en
Publication of JPS61180217A publication Critical patent/JPS61180217A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To send the rays from the moving sun to an utilizing device at any time by rotating one group of prism plates on their planes respectively. CONSTITUTION:Transparent plates which have fine projections and recesses on a surface for prism operation, i.e. prism plates (or Fresnel prism) P1 and P2 are stacked and at least one prism plate P1 (or P2) is rotated on a plane. The device itself is fixed and a couple of circular prism plates fitted on the front surface of the device is only rotated to obtain the same tracking effect with tracking which uses mechanical rotation. Further, a tracking part is simplified extremely and designed easily, and the cost is reduced greatly, thereby reducing, specially, the energy required for the tracking greatly.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は太陽エネルギーの利用目的による太陽光線を
集光するための太陽追尾装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solar tracking device for concentrating sunlight for the purpose of utilizing solar energy.

(従来の技術) 通常、太陽エネルギーを利用する場合、レンズや凹面鏡
によって太陽光線を集光することが必要、または有利と
なることは当然であ石が、集光をすれば天空上の太陽は
時々刻々、また李(第 2 頁) 節によりその位置を変えるために、それを追って回動す
る装置、すなわち追尾装置が必要となる。
(Prior art) Normally, when using solar energy, it is necessary or advantageous to condense the sun's rays with a lens or concave mirror. In order to change its position from moment to moment, a tracking device is required to follow and rotate the object.

従来の追尾装置は源を大型望遠鏡のそれに発し、機械的
に装置全体を回転させ、常に太陽に正対させる式のもの
と、回転する平面鏡により太陽光線を装置の方に誘導す
る形式のものとがある。
Conventional tracking devices emit a source from a large telescope and mechanically rotate the entire device so that it always faces the sun, while others use a rotating plane mirror to guide sunlight toward the device. There is.

(発明が解決しようとする問題点) しかしかから、上記の前者の構成では、機械的強度もあ
る程度必要なため1く、まだ追尾の精度も可成り高度の
ものが要求され、精巧高価となり、太陽エネルギーの利
用に大きな障害となっている。一方、後者の構成では入
射光線の方向と反対光線の方向が相反するため、装置の
正面又はその近くに太陽がある場合、不都合となり、ま
た、平面鏡の面積も可成り大きくしておく必要があり、
余り普及されていない等の問題点があった。
(Problem to be Solved by the Invention) However, the former configuration described above requires a certain degree of mechanical strength, and still requires a fairly high level of tracking accuracy, making it sophisticated and expensive. This is a major obstacle to the use of solar energy. On the other hand, in the latter configuration, the direction of the incident ray and the direction of the opposite ray are contradictory, which is inconvenient if the sun is in front of or near the device, and the area of the plane mirror must also be quite large. ,
There were problems such as it not being widely used.

(問題点を解決するための手段) (第 3 頁) この発明は前記問題点を解決するもので、次面にプリズ
ム作用を行う細かい凹凸をつけた透明板、いわゆるプリ
ズム板又はフレネルプリズムを2枚重ねた状態とし、こ
のプリズム板をそれぞれの平面内で回転させるようにし
たものである。
(Means for Solving the Problems) (Page 3) This invention solves the above-mentioned problems by using two transparent plates, so-called prism plates or Fresnel prisms, which have fine irregularities on the next surface that act as a prism. The prism plates are stacked one on top of the other, and the prism plates are rotated within their respective planes.

(作 用) このように1組のプリズム板をそれぞれの平面内で回転
させるのみで移動する太陽の光線を常に利用装置の方向
に送り出すことができ追尾の目的が達成できる。
(Function) In this way, by simply rotating one set of prism plates within their respective planes, the moving sun's rays can always be sent out in the direction of the usage device, and the purpose of tracking can be achieved.

(実施例) 第2図は本発明太陽追尾装置の原理説明図で、第2図(
A)に示すように2枚のプリズムA、Bを、方向を同じ
にして重ねた場合、大きな偏角(光線のプリズムへの入
射方向と出射方向とのなす角)が得られるが、第2図(
B)に示すように互に逆方向に重ねて用いると偏角は零
となる。
(Example) Figure 2 is a diagram explaining the principle of the solar tracking device of the present invention.
If two prisms A and B are stacked in the same direction as shown in A), a large deflection angle (the angle between the direction of incidence of the light rays on the prism and the direction of emission) can be obtained, but the second figure(
If they are stacked in opposite directions as shown in B), the deflection angle becomes zero.

いま、第2図(A)において、プリズムA、Bの頂角を
それぞれα、材質の屈折率をηとし、プリズムBから出
る光線が真下の方向に出ていくものとすると幾何光学の
教えるところによりその偏角δmは δm−〇−α 但し、θ−βin”’Jη5in(2α−ψ))tp 
= 5in−” (λeina]η によって計算できる。
Now, in Fig. 2 (A), let the apex angles of prisms A and B be α, the refractive index of the material be η, and assume that the light ray coming out of prism B goes directly downward.What geometric optics teaches Therefore, the argument angle δm is δm−〇−α However, θ−βin”'Jη5in(2α−ψ))tp
= 5in-” (λeina]η.

例えば材料にアクリル樹脂(η−1,491)を使い、
プリズムの頂角αを加変とするとam=45.1゜ となる。
For example, using acrylic resin (η-1,491) as the material,
If the apex angle α of the prism is varied, am=45.1°.

次に、下のプリズムBを固定し、上のプリズムAのみを
C軸のまわりに2βなる角度だけ回転させたとする。
Next, assume that the lower prism B is fixed and only the upper prism A is rotated by an angle of 2β around the C axis.

このとき、両プリズムA、Bを合せて1つのプリズムと
みなすと、その頂角が α’ = ain”” (sin (x 、 cosβ
)なる1枚のプリズムに相当する。そして角度βが零度
(第1図(A)の位置)から180度(第1図(第 5
 頁) (B)の位置)まで回転するに伴って相当する頂角dけ
αから零まで変化し、偏角もδmから零まで変化する。
At this time, if both prisms A and B are considered as one prism, the apex angle is α' = ain"" (sin (x, cosβ
) corresponds to one prism. Then, the angle β changes from 0 degrees (position in Figure 1 (A)) to 180 degrees (Figure 1 (Figure 5)
Page) As it rotates to the position (B)), the corresponding apex angle d changes from α to zero, and the declination angle also changes from δm to zero.

したがって、頂角α′がその中間の値の場合、入射光線
の方向は両プリズムA、Bの方゛向の2等分線の方向、
すなわち第2図(Alの位置から角度βだけ回転した方
向となる。
Therefore, when the apex angle α' is an intermediate value, the direction of the incident ray is the direction of the bisector of the directions of both prisms A and B,
That is, the direction shown in FIG. 2 is rotated by an angle β from the position of Al.

そこで2枚のプリズムA、Bを□両方ともに回転するこ
とを許せば結局、C軸を中心として、最大偏角δmまで
の角度の方向からであればどの方向から来る光線も、C
軸の方向に送り出すことができる。
Therefore, if both prisms A and B are allowed to rotate, light rays coming from any direction with the C axis as the center and up to the maximum declination angle δm will be
It can be sent out in the direction of the axis.

上記の例で、45度の角度といえば太陽の日周運動の約
3時間分に該当し、従って正午を中心として、その前後
金せて6時間の間、プリズムA、Bをそれぞれ回転させ
ることによって追尾と丙様の効果を挙げ゛ることか可能
である。
In the above example, an angle of 45 degrees corresponds to about 3 hours of the sun's diurnal movement, so prisms A and B should be rotated around noon for a total of 6 hours before and after that. It is possible to achieve tracking and similar effects.

もちろん、より屈折率の高い材料で、かつより頂角の大
きなプリズムを組み合せれば、もつと広い範囲の太陽の
位置に対しても、追尾効果を持たせることができるが、
朝夕の日光は弱く、(第 6 頁) かつプリズム面に斜めに当るため余弦法則による光量の
減少もあり、前記の数値例の程度が実施上は適当である
と考えられる。
Of course, by combining a prism made of a material with a higher refractive index and a larger apex angle, it is possible to have a tracking effect over a wider range of sun positions.
Sunlight in the morning and evening is weak (page 6), and because it hits the prism surface obliquely, the amount of light decreases due to the law of cosines, and the above numerical examples are considered appropriate in practice.

第1図(Alは、この原理を用いた本発明太陽追尾装置
の一実施例を示す斜視図、第1図(B)は、同じくその
正面図で、表面に第2図におけるプリズム作用を行う細
かい凹凸をつけた透明板、いわゆるプリズム板(又はフ
レネルプリズム)Pl r Paを重ねたもので、少な
くとも一方のプリズム板Pi (又けPg )を平面内
で、回転させることで、前記原理に基づき追尾と同様の
効果が挙げられる。
Fig. 1 (Al is a perspective view showing an embodiment of the solar tracking device of the present invention using this principle, Fig. 1 (B) is a front view of the same, and the prism effect shown in Fig. 2 is applied to the surface. It is a stack of transparent plates with fine irregularities, so-called prism plates (or Fresnel prisms) Pl r Pa, and by rotating at least one prism plate Pi (straddle Pg) within a plane, based on the above principle. It has the same effect as tracking.

このようにすると、製造全体は@量となり、価格も相当
引き下げられる。同時に分散(光線の波長によって偏角
が異なること)も小さくなる。なお凹凸のない面を図の
ように上向きにした方が斜入射に繭して光の損失が少な
くなる。
In this way, the entire production will be @ quantity and the price will be reduced considerably. At the same time, dispersion (the difference in polarization angle depending on the wavelength of the light beam) is also reduced. Note that if the smooth surface faces upward as shown in the figure, light loss will be reduced due to oblique incidence.

次に、本発明の応用例について述べる。Next, an application example of the present invention will be described.

第3図は太陽熱炊事器の集光に応用した例で、Llは円
形の点集光型フレネルレンズ、Pl、Paはこ(第7 
頁) のレンズL工と同じ大きさの本発明による1対のプリズ
ム板で、太陽の高度と方位角に応じて自動的又は手動的
に回転させる。このようにすると太陽の直射光線は常に
太陽熱炊事器1の開口部1aを経て内部に送り仏壇れ、
これを加熱する。なお、このフレネルレンズL1、プリ
ズム板Pl + P’aよりなる集光部は水平とその土
地の緯度の余角(東京ならば54.3°)をなして南向
きに固定する。したがってプリズムの屈折率をη=1.
491(アクリル樹脂の場合)とし、頂角が(資)度の
場合、春、秋分においては正午の前後各3時間、合せて
6時間の追尾が可能、また太陽が中心線から最も外れる
冬至と夏至においても正午の前後各2時間40分、合計
5時間20分の追尾が可能である。
Figure 3 shows an example where it is applied to concentrating light in a solar cooker, where Ll is a circular point concentrating Fresnel lens, Pl, Pa are (7th
A pair of prism plates according to the present invention having the same size as the lens L (page), and are rotated automatically or manually according to the altitude and azimuth of the sun. In this way, the direct rays of the sun will always be sent inside through the opening 1a of the solar cooker 1 and into the Buddhist altar.
Heat this. The light condensing section consisting of the Fresnel lens L1 and the prism plate Pl + P'a is fixed facing south, making a complementary angle to the horizontal and the latitude of the land (54.3° in the case of Tokyo). Therefore, the refractive index of the prism is η=1.
491 (for acrylic resin), and if the apex angle is (equal) degrees, tracking is possible for 3 hours before and after noon at the spring and autumn equinox, for a total of 6 hours, and at the winter solstice, when the sun is farthest from the center line. Even during the summer solstice, tracking is possible for 2 hours and 40 minutes each before and after noon, for a total of 5 hours and 20 minutes.

第4図は建築物のライトウェル(光井戸)に応用した例
で、2は円筒状の鉛直に立つライトウェルで、上端には
本発明による1対のプリズム板”l + ”2が取付け
られ名。この応用例では第3図の応用例と異々す、点集
光型フレネルレンズを崩せず、またプリズム板pl、 
p2を含む切り口x 、 x’で示される上部の部分は
、C軸を中心として回転しうる構成になっている。そし
てこの部分の回転により太陽の方位角に合わせ、プリズ
ム板Pl z Pilは太陽の仰角に合わせて直射日光
をライトウェル2内の鉛直下方に送り出すようにしたも
のである。なお、ライトウェル2の室内部分3は透明な
材料で作られ、天空からの散乱光並びに直射日光の一部
(迷光)を室内に送り出す。また最下底の明るい部分4
(地面)においては植物を栽培することが可能となる。
Figure 4 shows an example of the application to a light well in a building, where 2 is a cylindrical light well that stands vertically, and a pair of prism plates ``l + '' 2 according to the present invention are attached to the upper end. given name. This application example differs from the application example in Figure 3 in that the point condensing Fresnel lens cannot be broken, and the prism plate pl,
The upper portion indicated by cuts x and x' including p2 is configured to be rotatable about the C axis. By rotating this part, the prism plate Pl z Pil sends direct sunlight vertically downward in the light well 2 in accordance with the azimuth angle of the sun. Note that the indoor portion 3 of the light well 2 is made of a transparent material, and sends scattered light from the sky and a portion of direct sunlight (stray light) into the room. Also, the bright part 4 at the bottom
(on the ground) it becomes possible to grow plants.

このようにすると、採光・パッシブ暖房、室内緑化(内
庭や家庭菜園等)のいずれの而においても在来の無指向
型のライトウェルよりもはるかに強力な働きを持たせる
ことができる。また、夏に熱が集壕り過ぎる点に対して
は上下に開口部5(但し冬には閉じる)を設け、室内の
通風冷房の役に立てることができる。この場合、方位角
の追尾を機械的回転に任せ、プリズム板Pl + ”2
の相互回転は太陽高度に合わせるだけと(第 9 頁) しただめ、追尾の可能な範囲は非常に広くなる。
In this way, it can have a much more powerful effect than conventional non-directional light wells in terms of daylighting, passive heating, and indoor greening (inner gardens, home gardens, etc.). In addition, openings 5 are provided above and below (but closed in winter) at points where too much heat collects in the summer, which can be used to ventilate and cool the room. In this case, azimuth tracking is left to mechanical rotation, and the prism plate Pl + "2
By simply adjusting the mutual rotation of the two to match the altitude of the sun (page 9), the possible range of tracking becomes extremely wide.

例えば東京において、プリズム板の面が水平と々す角を
緯度(35,7i )に吟しくとった場合、太陽の仰角
が9.2度以上あるすべての時刻に追尾可能で、その時
間は春秋外で10.5時間、冬至で約8時間、夏至で1
3時間と、はぼ昼間の全部を占めるものとなる。
For example, in Tokyo, if the angle at which the surface of the prism plate hits the horizontal plane is precisely set to the latitude (35,7i), tracking is possible at all times when the angle of elevation of the sun is 9.2 degrees or more, and those times are spring, autumn, and spring. 10.5 hours outside, about 8 hours at the winter solstice, 1 hour at the summer solstice
It lasts 3 hours, which takes up almost the entire daytime.

第5図は建築物の天窓に応用した例をボしたもので、天
窓6の支持部分は第4図におけるx−x’線より上部と
同じ構造で、C軸を中心として水平に太陽の方向を追っ
て回転できるようにし、太陽の高度の変化に対]7てけ
1対のプリズム板”l + ”Qの相互回転をC′軸を
中心にして追随する。従って太陽の直射日光は常に鉛直
下方に送られる。そこで天窓5の下部にフレネル凹レン
ズL2を設ければ、フレネル凹レンズL2は通常の凹レ
ンズと同様、光線を分散きせる作用を鳴するので、光線
を点線にて示すように室内の広い範囲に分散させること
ができる。このため日光が直接当らない部屋や地下室を
晴天日には(第1Q頁) 十分な明るさに取り入れ、無天日にも通常の天窓として
の機能を失わない天窓を構成することができる。
Figure 5 shows an example of application to a skylight in a building.The support part of the skylight 6 has the same structure as above the line It follows the mutual rotation of a pair of prism plates "l + "Q around the C' axis in response to changes in the altitude of the sun. Therefore, direct sunlight is always directed vertically downward. Therefore, if a Fresnel concave lens L2 is provided at the bottom of the skylight 5, the Fresnel concave lens L2 has the effect of dispersing the light rays like a normal concave lens, so the light rays can be dispersed over a wide area in the room as shown by the dotted line. I can do it. Therefore, it is possible to provide a room or basement that is not directly exposed to sunlight with sufficient brightness on a sunny day (page 1Q), and to construct a skylight that does not lose its function as a normal skylight even on a no-sky day.

(発明の効果) 以上詳細に説明したように、本発明は従来性われてきた
太陽エネルギー利用装置の追尾機構に見られるように、
装置全体を1つの軸或は2つの軸、例えば水平軸と鉛直
軸の回りに機械的に回転させることなく、装置自体は不
動のま壕とし、単にその前面に付した1対の円形プリズ
ム板を回転させるのみで、機械的回転による追尾と同様
の追尾効果が得られる。その上、追尾部分は極めて簡単
化され、設計を容易となり、経費も大幅に低減でき人混
な応用が期待できる。
(Effects of the Invention) As explained in detail above, the present invention has the following features as seen in the tracking mechanism of conventional solar energy utilization devices:
Rather than mechanically rotating the entire device around one or two axes, e.g. horizontal and vertical axes, the device itself is an immovable trench and simply consists of a pair of circular prism plates attached to its front surface. By simply rotating the , a tracking effect similar to that achieved by mechanical rotation can be obtained. Moreover, the tracking part is extremely simplified, making design easier, and costs can be significantly reduced, making it possible to expect applications in large numbers of people.

特に、追尾に要するエネルギーを大幅に減らすことがで
きることは従来、太陽エネルギー利用装置の1つの欠点
を補う大きな効果である。また、本発明による太陽光&
1取得部分は建物本体より可成り上方に配置できるので
日照問題の一部解決、或は太陽炉、太陽電池への集光な
どに(第11頁) も適用が可能になる。
In particular, being able to significantly reduce the energy required for tracking is a major effect that compensates for one of the drawbacks of conventional solar energy utilization devices. In addition, sunlight &
Since the 1 acquisition part can be placed considerably above the main body of the building, it can be applied to partially solve the sunlight problem or to concentrate light on solar furnaces and solar cells (page 11).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明太陽追尾装置の一実施を示し、(Alは
その斜視図、(B)は正面図、第2図(A) 、 (B
lは本発明の詳細な説明図、第3図、紀4図、第5図は
不発ゆ」の応用例を示す図である。 Pよ、P2・・・プリズム板 特許出願人 国城金型工業株式会社 回     押   1)  勇   雄−へ
FIG. 1 shows an implementation of the solar tracking device of the present invention, (Al is a perspective view, (B) is a front view, and FIGS. 2 (A), (B)
1 is a detailed explanatory diagram of the present invention, and FIGS. 3, 4, and 5 are diagrams showing application examples of the invention. P, P2...Prism plate patent applicant Kunishiro Mold Industry Co., Ltd. 1) To Isao.

Claims (1)

【特許請求の範囲】[Claims] 表面にプリズム作用を行う細かい凹凸をつけた透明板、
いわゆるプリズム板又はフレネルプリズムを2枚重ねた
状態において、少なくとも一方のプリズム板を回転させ
ることによつて太陽からの直射光線を太陽の位置にかか
わらず一定方向に送り出すようにしたことを特徴とする
太陽追尾装置。
A transparent plate with fine irregularities on its surface that acts as a prism.
It is characterized by having two so-called prism plates or Fresnel prisms stacked one on top of the other, and by rotating at least one of the prism plates, direct rays from the sun are sent out in a fixed direction regardless of the position of the sun. Sun tracking device.
JP60020605A 1985-02-05 1985-02-05 Sun tracking device Pending JPS61180217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020605A JPS61180217A (en) 1985-02-05 1985-02-05 Sun tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020605A JPS61180217A (en) 1985-02-05 1985-02-05 Sun tracking device

Publications (1)

Publication Number Publication Date
JPS61180217A true JPS61180217A (en) 1986-08-12

Family

ID=12031896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020605A Pending JPS61180217A (en) 1985-02-05 1985-02-05 Sun tracking device

Country Status (1)

Country Link
JP (1) JPS61180217A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685681A2 (en) 1994-05-31 1995-12-06 SANYO ELECTRIC Co., Ltd. Solar lighting apparatus and controller for said apparatus
WO2001059361A1 (en) * 2000-02-14 2001-08-16 The University Of British Columbia Concentrating heliostat for solar lighting applications
JP2006528820A (en) * 2003-07-24 2006-12-21 ユンゲル−シュミッド、ヨハネス Interior lighting system
NL1031544C2 (en) * 2006-04-07 2007-10-09 Suncycle B V Device for converting solar energy.
WO2016149677A1 (en) * 2015-03-18 2016-09-22 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
US9816675B2 (en) 2015-03-18 2017-11-14 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
US9921397B2 (en) 2012-12-11 2018-03-20 Solatube International, Inc. Daylight collectors with thermal control
US11668926B2 (en) 2020-07-30 2023-06-06 Wei-Yuan PAO Light guide mirror assembly and applications thereof
EP3516129B1 (en) * 2016-09-21 2024-07-10 Solatube International, Inc. Daylight collectors with diffuse and direct light collection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685681A2 (en) 1994-05-31 1995-12-06 SANYO ELECTRIC Co., Ltd. Solar lighting apparatus and controller for said apparatus
EP0685681A3 (en) * 1994-05-31 1997-08-27 Sanyo Electric Co Solar lighting apparatus and controller for said apparatus.
AU689873B2 (en) * 1994-05-31 1998-04-09 Sanyo Electric Co., Ltd. Solar lighting apparatus and controller for controlling the solar lighting apparatus
WO2001059361A1 (en) * 2000-02-14 2001-08-16 The University Of British Columbia Concentrating heliostat for solar lighting applications
JP2006528820A (en) * 2003-07-24 2006-12-21 ユンゲル−シュミッド、ヨハネス Interior lighting system
US8944047B2 (en) 2006-04-07 2015-02-03 Suncycle International Gmbh Device for converting solar energy
WO2007117136A1 (en) * 2006-04-07 2007-10-18 Suncycle International Gmbh Device for converting solar energy
EP2416085A1 (en) * 2006-04-07 2012-02-08 Suncycle B.V. Device for converting solar energy
NL1031544C2 (en) * 2006-04-07 2007-10-09 Suncycle B V Device for converting solar energy.
US9921397B2 (en) 2012-12-11 2018-03-20 Solatube International, Inc. Daylight collectors with thermal control
WO2016149677A1 (en) * 2015-03-18 2016-09-22 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
US9816675B2 (en) 2015-03-18 2017-11-14 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
US9816676B2 (en) 2015-03-18 2017-11-14 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
AU2018250535B2 (en) * 2015-03-18 2019-11-07 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
EP3516129B1 (en) * 2016-09-21 2024-07-10 Solatube International, Inc. Daylight collectors with diffuse and direct light collection
US11668926B2 (en) 2020-07-30 2023-06-06 Wei-Yuan PAO Light guide mirror assembly and applications thereof

Similar Documents

Publication Publication Date Title
Tabor Stationary mirror systems for solar collectors
JP2566129B2 (en) Panel using prism
US4357074A (en) Method and device for dousing sunlight with a seasonal effect
Chong et al. General formula for on-axis sun-tracking system
JPS5928616A (en) Directional photosensor
CN103077990B (en) Wide-angle concentrated photovoltaic power generating system with wavelength selectivity and method thereof
JPS61180217A (en) Sun tracking device
US20110197968A1 (en) Solar collector panel
CN103208947B (en) A kind of roof solar concentrating generating system
Müller Application of holographic optical elements in buildings for various purposes like daylighting, solar shading and photovoltaic power generation
JPS58501518A (en) sunshade device
Christoffers Seasonal shading of vertical south-facades with prismatic panes
CN101625432A (en) Fixed-point condensing reflector
JP2828368B2 (en) Skylight structure
JP3051982B2 (en) All sky light condensing system
TWI575182B (en) Trajectory chasing method
CN204576277U (en) A kind of day for building optical transmission system
JPH046705A (en) Light collecting device
JPH0432647Y2 (en)
CN105988482A (en) Sunlight transmission system for building
Garcia Hansen et al. Improving daylighting performance of mirrored light pipes
JPH02122159A (en) Sunray-collecting device and sunray terminal projecting device
JPH0436496Y2 (en)
US20160170003A1 (en) Sun light optical aligning apparatus
JPH0142885Y2 (en)