JPS61179537A - X-ray exposure equipment - Google Patents

X-ray exposure equipment

Info

Publication number
JPS61179537A
JPS61179537A JP60019570A JP1957085A JPS61179537A JP S61179537 A JPS61179537 A JP S61179537A JP 60019570 A JP60019570 A JP 60019570A JP 1957085 A JP1957085 A JP 1957085A JP S61179537 A JPS61179537 A JP S61179537A
Authority
JP
Japan
Prior art keywords
synchrotron radiation
ray
synchrotron
parallel
orbital plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60019570A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60019570A priority Critical patent/JPS61179537A/en
Publication of JPS61179537A publication Critical patent/JPS61179537A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain the uniform intensity region of synchrotron radiant ray on the window to take out the radiant ray, by installing in front of the X-ray mask the optical system of which can detect the polarized component in a specified direction of the synchrotron radiant ray. CONSTITUTION:Inside the beam line 4, the optical systems 7 and 8 containing the analyzer are installed. The analyzer passes only the electric field vector in the specified direction which is, in this case, the vector parallel to the orbital plane. Hence, the optical systems 7 and 8 containing the analyzers detect the electric field vectors 9 and 10 parallel to the orbital plane on which the analyzers are installed. Thus, the transmission region of the radiant ray 3 in the vertical direction is controlled by the optical systems 7 and 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1μm以下の微細パターンの複写に威力を発
揮するX線リングラフィの分野における、特にシンクロ
トロン放射線源を用いたX線露光装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an X-ray exposure apparatus using a synchrotron radiation source, in the field of X-ray phosphorography, which is effective in copying fine patterns of 1 μm or less. Regarding.

〔従来の技術〕[Conventional technology]

X線露光技術は、サブミクロン幅)4ターンの確実な高
解像性の故に将来の極めて有望な複写技術として期待さ
れ、現在各所で精力的な研究、開発が行われている。と
ころで、同技術における最大の問題はスルーグツトの向
上であシ、特に従来から用いられてきた電子ビーム励起
X線源では、極めて高感度なX線しジス) (<10 
mJ/cya2の感度)が開発されないと、スループ、
トの向上は望めない状況である。一方、最近になって、
高強度X線源として期待されるシンクロトロン放射線源
を用いたX線露光技術の研究、gpi発が、一段と脚光
を浴びて各所で精力的に行われ始めた。シンクロトロン
放射線源を用いたX線露光技術は、例えば、1976年
に発行された刊行物ジャーナル・オブ・アプライド−7
4ジイクス(Journal of AppliedP
hyslcg ) 47巻12号、5450〜5459
頁に、あるいは1979年に発行された刊行物アイトリ
プルイー・トランプクシ1ンズ・オン・エレクトロン・
デパイシイズ(I)JE TRANSACTIONS 
ON ILECTRONDEVICES ) ED−2
6巻4号、693〜698頁に初期の頃の成果が示され
ている。第3図(、) 、 Cb>に、従来〜行われて
いるシンクロトロン放射線源を用いたX線露光装置の基
本的概念図を示す。第3図(a)において、電子蓄積リ
ング1におけるシンクロトロン放射光源2から、放射光
3が放射される。第3図(b)において、ビームライン
4と称される光学系を通過した放射光3は、放射光取出
し窓5を通してX線マスク6及びX線しジストRを塗布
した被加工物Wとから成るX線露光系に導かれる。X線
マスク6上に照射された放射光3によって、X線マスク
6上の/?ターンが、X線しジストR上に転写される。
X-ray exposure technology is expected to be an extremely promising copying technology in the future due to its reliable high resolution of four turns (submicron width), and active research and development is currently being carried out in various places. By the way, the biggest problem with this technology is to improve the throughput, especially with the conventionally used electron beam excitation X-ray source, which has extremely high sensitivity (<10
mJ/cya2 sensitivity) is not developed, the sloop,
The situation is such that no improvement in performance can be expected. On the other hand, recently,
Research on X-ray exposure technology using a synchrotron radiation source, which is expected to be a high-intensity X-ray source, has attracted even more attention and has begun to be actively carried out in various places. X-ray exposure techniques using synchrotron radiation sources are described, for example, in the publication Journal of Applied-7 published in 1976.
4Jix (Journal of AppliedP
hyslcg) Volume 47, No. 12, 5450-5459
page, or the publication published in 1979.
Departies (I)JE TRANSACTIONS
ON ILECTRON DEVICES) ED-2
Early results are shown in Vol. 6, No. 4, pp. 693-698. FIG. 3(, ), Cb> shows a basic conceptual diagram of a conventional X-ray exposure apparatus using a synchrotron radiation source. In FIG. 3(a), synchrotron radiation light source 2 in electron storage ring 1 emits synchrotron radiation 3. In FIG. In FIG. 3(b), synchrotron radiation 3 that has passed through an optical system called a beam line 4 passes through a synchrotron radiation extraction window 5 to an X-ray mask 6 and a workpiece W coated with an X-ray resist R. The beam is guided to an X-ray exposure system consisting of: The /? on the X-ray mask 6 is caused by the synchrotron radiation 3 irradiated onto the X-ray mask 6. The turns are transferred onto the resist R using X-rays.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

シンクロトロン放射光源を用いたX線露光技術は、実用
を月相した研究開発が途についたばかシであり、解決さ
れねばならない問題点は山積している。特に、電子蓄積
リング1及びビームライン4等からなるシンクロトロン
放射線源2の系自体における課題が多数残されている。
X-ray exposure technology using a synchrotron radiation light source is far from being researched and developed for practical use, and there are many problems that need to be solved. In particular, many problems remain in the system itself of the synchrotron radiation source 2, which includes the electron storage ring 1, the beam line 4, and the like.

リングラフィの観点からみた場合、シンクロトロン放射
光の強度の安定性さらには均一性が最大の要請課題であ
る。電子蓄積リング1内を周回する高速電子ビーム束の
運動の安定性、特に運動の軌道の安定性が第一に懸念さ
れる。次にシンクロトロン放射光として取出された放射
光3がビームライン4内を通過する場合、ビームライン
4内での放射光3の軌道の安定性、すなわち安定した強
度で照射される領域の安定性が懸念される。特にビーム
ライン4の終端における放射光取出し窓5の領域に常に
一様な強度分布の放射光が照射される必要がある。
From the viewpoint of phosphorography, the most important issue is the stability and uniformity of the synchrotron radiation intensity. The primary concern is the stability of the motion of the high-speed electron beam flux circulating within the electron storage ring 1, particularly the stability of the trajectory of the motion. Next, when the synchrotron radiation 3 extracted as synchrotron radiation passes through the beam line 4, the stability of the trajectory of the synchrotron radiation 3 within the beam line 4, that is, the stability of the area irradiated with stable intensity. There are concerns. In particular, it is necessary that the area of the radiation extraction window 5 at the end of the beam line 4 is always irradiated with radiation with a uniform intensity distribution.

電子蓄積リング1内での電子ビーム束運動の不安定性及
び一般に長い(〜Iom)ビームライン4等の機構系の
複雑さ等より、従来のシステムにおいては上記のりソグ
ラフィ的観点からの要請は解決されていない。
Due to the instability of the electron beam flux movement within the electron storage ring 1 and the complexity of the mechanical system such as the generally long (~Iom) beam line 4, the above-mentioned requirements from the lithography perspective cannot be solved in conventional systems. Not yet.

本発明の目的は、このような従来の問題点を除去せしめ
て、一様なシンクロトロン放射光強度領域が放射光取出
し窓上において得られるような新たな構造を取シ入れた
X線露光装置を提供することにある。
The object of the present invention is to eliminate such conventional problems and to provide an X-ray exposure apparatus incorporating a new structure that allows a uniform synchrotron radiation intensity region to be obtained on the radiation extraction window. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、シンクロトロン放射光源から放射される放射
光を、X線マスクを通してX線レジストが塗布された被
加工物に照射する構造を有するX線露光装置において、
前記X線マスクの前段に、シンクロトロン放射光の特定
方向の偏光成分を検知でhる光学系を備えたことを特徴
とするX線露光装置である。
The present invention provides an X-ray exposure apparatus having a structure in which a workpiece coated with an X-ray resist is irradiated with synchrotron radiation light emitted from a synchrotron radiation light source through an X-ray mask.
The X-ray exposure apparatus is characterized in that an optical system is provided upstream of the X-ray mask to detect a polarized component of synchrotron radiation in a specific direction.

〔実施例〕〔Example〕

以下本発明の構成について、図面を参照しながら説明す
る。
The configuration of the present invention will be explained below with reference to the drawings.

第3図(a) 、 (b)に示すようにシンクロトロン
放射光源2より放射された放射光3は、ビームライン4
内を通して放射光取出し窓の領域に導かれる点は従来と
同じである。本発明は第1図に示すようにビームライン
4の内側に検光子を含む光学系7.8を設置したもので
ある。シンクロトロン放射光が高度の偏光性を有してい
ることはよく知られている。第2図に、放射光の電場ベ
クトルの軌道面に平行な偏光成分及び垂直偏光成分の角
度分布を示す。ここで、軌道面とは、電子蓄積リング1
の設置されている平面方向(第3図(b)に示されてい
る鉛直方向に垂直方向)を意味している。図から分るよ
うに、平行成分は軌道面上(角度0)で鋭いピークをも
ち、垂直成分は軌道面上で零、その上下の角で小さなピ
ークをもっている。軌道面に平行な放射光だけをみれば
、完全な直線偏光であり、軌道面から傾いた上下の方向
では、回転方向が上下で反対向きの楕円偏光である。放
射光全体の量から言うと、軌道面に平行な電場ベクトル
をもつ光が圧倒的に多い。以上の説明のように、シンク
ロトロン放射光は高度の偏光性を有することが大きな特
徴であるが、この偏光性を有効に利用することが、本発
明の原理的要点である。第1図に戻ると、検光子を含む
光学系7,8には、一定方向の電場ベクトル、この場合
は軌道面内に平行なベクトルのみを通す検光子が取り付
けである。
As shown in FIGS. 3(a) and 3(b), synchrotron radiation light 3 emitted from synchrotron radiation light source 2 is transmitted to beam line 4.
The point that the emitted light is guided through the inside to the area of the radiation extraction window is the same as in the conventional case. In the present invention, as shown in FIG. 1, an optical system 7.8 including an analyzer is installed inside the beam line 4. It is well known that synchrotron radiation light has a high degree of polarization. FIG. 2 shows the angular distribution of the polarization component parallel to the orbital plane and the perpendicular polarization component of the electric field vector of the synchrotron radiation. Here, the orbital plane refers to the electron storage ring 1
It means the plane direction in which the is installed (perpendicular to the vertical direction shown in FIG. 3(b)). As can be seen from the figure, the parallel component has a sharp peak on the orbital plane (angle 0), and the perpendicular component has zero on the orbital plane and small peaks at the corners above and below it. If we look only at the emitted light parallel to the orbital plane, it is completely linearly polarized light, but in the up and down directions tilted from the orbital plane, it is elliptically polarized light whose rotation direction is up and down and in the opposite direction. In terms of the total amount of synchrotron radiation, the overwhelming majority is light with an electric field vector parallel to the orbital plane. As explained above, a major feature of synchrotron radiation light is that it has a high degree of polarization, and the principle point of the present invention is to effectively utilize this polarization. Returning to FIG. 1, the optical systems 7 and 8 including analyzers are equipped with analyzers that pass only electric field vectors in a certain direction, in this case vectors parallel to the orbital plane.

9.10が軌道面に平行な電場ベクトルを示しであるが
、検光子を含む光学系7,8において、この平行な電場
ベクトルのみが検知される。検光子を含む光学系7は、
鉛直方向でビームライン内側の上方に、また同光学系6
は、鉛直方向でビームライン内側の下方に設置されてい
る。検光子を含む光学系7,8によって、放射光3の鉛
直方向における通過領域の制御が行われる。すなわち、
放射光束が鉛直方向上向きとなれば、光学系8での検出
出力が弱くなり、鉛直方向下向きとなれば、光学系7で
の検出出力が弱くなる。このような方法によって、放射
光が放射光取シ出し窓に照射される領域を一様かつ安定
にすることが出来る。又軌道面内に平行な電場ベクトル
の検出であるから、光学系に設置される検光子に対する
仕様の許容度は大きい。
9.10 indicates an electric field vector parallel to the orbital plane, but only this parallel electric field vector is detected in the optical systems 7 and 8 including the analyzer. The optical system 7 including an analyzer is
Above the inside of the beam line in the vertical direction, and the optical system 6
is installed vertically below the inside of the beamline. Optical systems 7 and 8 including analyzers control the passage area of the emitted light 3 in the vertical direction. That is,
If the emitted light flux is directed upward in the vertical direction, the detection output of the optical system 8 becomes weak, and if the emitted light flux is directed downward in the vertical direction, the detection output of the optical system 7 becomes weak. By such a method, it is possible to make the area where the radiation light is irradiated onto the radiation extraction window uniform and stable. Furthermore, since the detection is of an electric field vector parallel to the orbital plane, there is a large degree of tolerance in the specifications for the analyzer installed in the optical system.

第1図において、鉛直方向の上下位置にのみ検光子を含
む光学系が描かれているが上と同様の考え方で軌道面に
平行な方向での設置ももちろん有効である。ただし、シ
ンクロトロン放射光の放射原理からは、軌道面に平行な
方向では均一な強度分布の放射光が得られるはずである
から、前に検光子からなる光学系設置に対する要求度は
少いかもしれない。
In FIG. 1, the optical system including the analyzer is shown only at the upper and lower positions in the vertical direction, but it is of course also effective to install it in the direction parallel to the orbital surface using the same concept as above. However, according to the radiation principle of synchrotron synchrotron radiation, it should be possible to obtain synchrotron radiation with a uniform intensity distribution in the direction parallel to the orbital plane, so there may be little requirement to install an optical system consisting of an analyzer in front. unknown.

以上述べたように本発明の効果は明らかであ)、本発明
の目的は達成される。なお、特定方向の偏光成分を検知
出来る検光子から成る光学系の設置位置は、X線マスク
の前方、ビームラインの内側であれば特に制限はない。
As described above, the effects of the present invention are clear), and the objects of the present invention are achieved. Note that the installation position of the optical system including an analyzer capable of detecting polarized light components in a specific direction is not particularly limited as long as it is in front of the X-ray mask and inside the beam line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、シンクロトロン放
射光を通過させて露光部に導くビームラインの設計に許
容度を与えることができ、シンクロトロン放射光自体の
ビーム強度のチェック及び軌道面内からの傾き具合等の
モニターが可能となり、シンクロトロン放射光を用いた
X1m露光装置の実用化に大きく寄与できる効果を有す
る。
As explained above, according to the present invention, it is possible to give tolerance to the design of the beam line that allows synchrotron radiation to pass through and guide it to the exposure section, and it is possible to check the beam intensity of the synchrotron radiation itself and to This makes it possible to monitor the degree of inclination, etc., and has the effect of greatly contributing to the practical application of X1m exposure equipment using synchrotron radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すビームライン露光系の
断面図、第2図は放射光の電場ベクトルにおける平行及
び垂直偏光成分の角度分布を1示す図、第3図(、)は
シンクロトロン放射線源の要部斜視図、伽)は従来のビ
ームライン露光系の断面図である。 1・・・電子蓄積リング、2・・・シンクロトロン放射
線源、3・・・放射光、4・・・ビームライン、5・・
・放射光取出し窓、6・・・X線マスク、7,8・・・
検光子を含む光学系、R・・・X線レジスト、W・・・
被加工物特許出願人  日本電気株式会社 代理人 弁理士   内  原     −1゛□目゛
、; 第2図 角度(m−)
Figure 1 is a cross-sectional view of a beam line exposure system showing an embodiment of the present invention, Figure 2 is a diagram showing the angular distribution of parallel and perpendicular polarization components in the electric field vector of synchrotron radiation, and Figure 3 (, ) is a diagram showing the angular distribution of parallel and perpendicular polarization components in the electric field vector of synchrotron radiation. A perspective view of the main parts of a synchrotron radiation source, (2) is a sectional view of a conventional beam line exposure system. DESCRIPTION OF SYMBOLS 1... Electron storage ring, 2... Synchrotron radiation source, 3... Synchrotron radiation, 4... Beam line, 5...
・Radiation light extraction window, 6...X-ray mask, 7, 8...
Optical system including analyzer, R...X-ray resist, W...
Workpiece patent applicant NEC Co., Ltd. agent Patent attorney Hara Uchi -1゛□゛゛; Fig. 2 Angle (m-)

Claims (1)

【特許請求の範囲】[Claims] (1)シンクロトロン放射光源から放射される放射光を
、X線マスクを通してX線レジストが塗布された被加工
物に照射する構造を有するX線露光装置において、前記
X線マスクの前段に、シンクロトロン放射光の特定方向
の偏光成分を検知できる光学系を備えたことを特徴とす
るX線露光装置。
(1) In an X-ray exposure apparatus having a structure in which a workpiece coated with an X-ray resist is irradiated with synchrotron radiation light emitted from a synchrotron radiation light source through an X-ray mask, a synchrotron radiation light source is provided in front of the X-ray mask. An X-ray exposure apparatus characterized by being equipped with an optical system capable of detecting a polarized component of tron radiation in a specific direction.
JP60019570A 1985-02-04 1985-02-04 X-ray exposure equipment Pending JPS61179537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019570A JPS61179537A (en) 1985-02-04 1985-02-04 X-ray exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019570A JPS61179537A (en) 1985-02-04 1985-02-04 X-ray exposure equipment

Publications (1)

Publication Number Publication Date
JPS61179537A true JPS61179537A (en) 1986-08-12

Family

ID=12002944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019570A Pending JPS61179537A (en) 1985-02-04 1985-02-04 X-ray exposure equipment

Country Status (1)

Country Link
JP (1) JPS61179537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181420A (en) * 1988-01-08 1989-07-19 Dainippon Screen Mfg Co Ltd Proximity exposure apparatus
JPH03200317A (en) * 1989-12-27 1991-09-02 Rohm Co Ltd Mask alignment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181420A (en) * 1988-01-08 1989-07-19 Dainippon Screen Mfg Co Ltd Proximity exposure apparatus
JPH03200317A (en) * 1989-12-27 1991-09-02 Rohm Co Ltd Mask alignment device

Similar Documents

Publication Publication Date Title
JPH0394417A (en) X-ray aligner
JP2012177688A (en) X-ray diffraction device
Nakatani et al. Construction of the JAERI soft X-ray beamline for actinide material sciences
EP0109193B1 (en) X-ray lithographic system
JP5339325B2 (en) X-ray generator and X-ray generation method
JPS61179537A (en) X-ray exposure equipment
Buckley et al. Soft‐x‐ray imaging with the 35 period undulator at the NSLS
JPS61179536A (en) X-ray exposure equipment
So et al. The effect of beam emittances on x‐ray lithography exposure line resolution
Hasan Bent silicon crystals for the LHC collimation: studies with an ultrarelativistic proton beam
Silverman et al. Performance of a wide‐field flux delivery system for synchrotron x‐ray lithography
Löschner et al. Projection ion beam lithography
Chen et al. Replication of very small periodic gratings with proximity x-ray lithography
JPH0527080B2 (en)
Ishikawa Beamlines for Materials Science
Yang STATE OF THE ART XBPM FOR NEXT GENERATION STORAGE RING LIGHT SOURCES
JPS6212657B2 (en)
Rush A New and Generic Two-Dimensional Model for Studying Channeling Radiation with Relativistic Electron Beams
Xu et al. Estimation of the radiation backgrounds in the CEPC vertex detector
JPS58158925A (en) X-ray exposing system
Okada et al. Development of highly reliable synchrotron radiation lithography beamline
JPH0373093B2 (en)
Sytov New schemes and experiments for high efficiency beam steering through coherent effects in bent crystals
Kikuchi et al. Analysis of Sub-0.15 µm Pattern Replicationin Synchrotron Radiation Lithography
White A study of small angle radiative Bhabha scattering and measurement of the luminosity at SLD