JPS61178032A - Reaction tower - Google Patents

Reaction tower

Info

Publication number
JPS61178032A
JPS61178032A JP1904385A JP1904385A JPS61178032A JP S61178032 A JPS61178032 A JP S61178032A JP 1904385 A JP1904385 A JP 1904385A JP 1904385 A JP1904385 A JP 1904385A JP S61178032 A JPS61178032 A JP S61178032A
Authority
JP
Japan
Prior art keywords
gas
pipe
reaction
reaction tower
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1904385A
Other languages
Japanese (ja)
Inventor
Tetsuo Matsumura
哲夫 松村
Kaizaburou Saitou
斉藤 海三郎
Osamu Okuma
大隈 修
Yasuo Sugino
杉野 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1904385A priority Critical patent/JPS61178032A/en
Publication of JPS61178032A publication Critical patent/JPS61178032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To enhance the efficiency of gas-liquid contact reaction such as hydro- refining reaction, by allowing a reaction solution discharge pipe to open to the upper side wall of a reaction tower main body and connecting a gaseous substance exhaust pipe to said upper side wall at a position above said discharge pipe. CONSTITUTION:The stock mixture supplied from a stock material supply pipe B receives hydrocracking while rises through a reaction tower A and successively sent to the hydrogenation reaction tower in the downstream side from a withdrawal pipe E. In this hydrocracking process, heated hydrogen-containing gas is blown in from a stripping gas blow-in pipe C and the low b.p. component in the stock mixture rapidly rises through the reaction tower A by the stripping effect by said hydrogen-containing gas to reach a gas-liquid separation part G and a gaseous component is successively withdrawn from a withdrawal pipe F. In this case, if barrier plates H for separating foam are provided in the gas-liquid separation part G, it is pref. because no heavy oil component with a high MW is mixed in the gaseous component withdrawn from the withdrawal pipe F.

Description

【発明の詳細な説明】 本発明は反応塔に関し、詳細には、化学反応より生じる
気体状物質と液体状物質を反応塔内で分離できる反応塔
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reaction tower, and more particularly, to a reaction tower capable of separating gaseous substances and liquid substances generated from a chemical reaction within the reaction tower.

例えば原料油を精製して有用な潤清油を得る方法の一つ
として水素化精製方法がある。この方法は、原料油を反
応塔へ送り、水素ガス加圧下に高温で石炭を水添分解す
る方法であり1代表的な方法は第1図に示す通りである
。即ち第1図において、原料油は水素ガスと共にポンプ
Pによって予熱器1へ送られ、所定の温度まで昇温され
る。この場合、高圧水素は通常予熱器1の直前で原料油
送給管内へ吹込まれる。予熱された原料油及び水素ガス
は気・液の二相混合物となって、第1反応塔2a、第2
反応塔2b、第3反応塔2Cを通過しつつ順次水添分解
反応を受けた後、最下流側の第3反応塔2Cから気液分
離器3へ送られる。尚図では3(Ilの反応塔2a〜2
cを直列に配置したものを示したが1反応塔は1個であ
る場合もあるし、或は4個以上を直列に配置したものも
ある。
For example, a hydrorefining method is one of the methods for refining raw oil to obtain useful lubricating oil. In this method, feedstock oil is sent to a reaction tower and coal is hydrogenolyzed at high temperature under pressure of hydrogen gas. A typical method is shown in FIG. 1. That is, in FIG. 1, raw material oil is sent to a preheater 1 together with hydrogen gas by a pump P, and is heated to a predetermined temperature. In this case, high-pressure hydrogen is normally blown into the raw oil feed pipe immediately before the preheater 1. The preheated raw material oil and hydrogen gas become a gas-liquid two-phase mixture, and are passed through the first reaction tower 2a and the second reaction tower 2a.
After passing through the reaction tower 2b and the third reaction tower 2C and sequentially subjected to a hydrogenolysis reaction, it is sent to the gas-liquid separator 3 from the third reaction tower 2C on the most downstream side. In the figure, 3 (Il reaction towers 2a to 2
Although the example in which the reaction towers c are arranged in series is shown, one reaction column may be one, or four or more may be arranged in series.

気液分離器3では灰分(触媒を含む)を有する重質油分
がボトム分として排出され、ガス成分の一部はオフガス
として排出され、精製油分や水や軽質炭化水素ガス及び
未反応水素ガス等を含むガス化成分は凝縮器4で水及び
軽質油分を凝縮させた後脱水器5で脱水し精製油を製品
として回収する一方、凝縮器4で分離されたガス成分は
系外へ排出される。この系外へ排出されるガスの中には
水添分解工程で未消費の水素を多量含んでいる(水素含
量は80%程度以上)ので、Co、CO2。
In the gas-liquid separator 3, heavy oil containing ash (including catalyst) is discharged as a bottom fraction, and a part of the gas component is discharged as off-gas, which contains refined oil, water, light hydrocarbon gas, unreacted hydrogen gas, etc. The gasified components including water and light oil are condensed in the condenser 4, and then dehydrated in the dehydrator 5 to recover refined oil as a product, while the gas components separated in the condenser 4 are discharged outside the system. . The gas discharged to the outside of the system contains a large amount of unconsumed hydrogen in the hydrogen cracking process (hydrogen content is about 80% or more), so it contains Co and CO2.

01〜C3の炭化水素等を除去した後、水添分解用の水
素として循環使用することも考えられている。また反応
塔2a〜2C内における分解反応は発熱反応であり、反
応温度が異常に高くなることもあるので、上記排出ガス
の一部を各反応塔2a〜2cの側壁から冷却用ガスとし
て吹込む場合もある。
It is also considered that after removing 01 to C3 hydrocarbons, etc., the hydrogen can be recycled and used as hydrogen for hydrogenolysis. In addition, since the decomposition reaction in the reaction towers 2a to 2C is an exothermic reaction and the reaction temperature may become abnormally high, a portion of the above exhaust gas is blown into the side wall of each reaction tower 2a to 2c as a cooling gas. In some cases.

ところで上記の様な従来の水素化精製プロセスが使用さ
れるのは、既に溶剤抽出などにより粘度指数を改善され
た潤滑油につき、わずかに残った不安定物質の除去を目
的とした水素化仕上げであり(hydrofinish
ing)温和な圧力及び温度で且つ水素消費量をできる
だけ抑えた条件で運転を行なっている。しかし近年この
プロセスは粘度指数の向上も合わせて行なうべく水素化
処理(h7drotreating ) (7)方法と
しても採用されだし、この為には、温度及び圧力を高め
ると共に触媒量を増大する等により反応条件を厳しくす
る必要があるが、そうすると水添分解時の発熱が著しく
なって温度制御が困難となり操業安定性及び安全性に問
題が生じる他、軽質油分の分解も著しくなって低炭素の
ガス成分量が増大し、精製油分全体としての回収率はそ
れほど向上しないという問題点がある。
By the way, the conventional hydrorefining process described above is used for hydrofinishing for the purpose of removing the slightest remaining unstable substances from lubricating oils whose viscosity index has already been improved by solvent extraction etc. Yes (hydrofinish
ing) The plant is operated at mild pressure and temperature and under conditions that suppress hydrogen consumption as much as possible. However, in recent years, this process has also been adopted as a hydrotreating (7) method to improve the viscosity index, and for this purpose, the reaction conditions are changed by increasing the temperature and pressure as well as the amount of catalyst. However, if this is done, heat generation during hydrogen cracking will become significant, making temperature control difficult and causing problems with operational stability and safety.In addition, the decomposition of light oil will also become significant, reducing the amount of low-carbon gas components. There is a problem in that the recovery rate of the refined oil as a whole does not improve much.

この様に従来の水素化精製法には、精製油分の回収率を
満足のいく程度まで高めることはできなかった。
As described above, conventional hydrorefining methods have not been able to increase the recovery rate of refined oil components to a satisfactory degree.

これを解決する手法として水素化精製方法において、各
反応塔の反応物排出ラインに気液分離部を設け、該分離
部で分離されたガス状成分から軽質油分及び水分を除い
て得られる水素含有ガスを、反応塔の底部よりストリッ
ピングガスとして吹込み、反応塔内の軽質油分をすみや
かに塔外へ排出させ、それ以上の分解を抑制しつつ重質
油分の水添効率を向上させる方法を採用すれば、優れた
ハンドリング性のもとで油分の回収率を大幅に高めるこ
とが考えられる。
As a method to solve this problem, in the hydrorefining method, a gas-liquid separation section is provided in the reactant discharge line of each reaction column, and the hydrogen-containing product obtained by removing light oil and water from the gaseous components separated in the separation section. A method for improving the hydrogenation efficiency of heavy oil while suppressing further decomposition by injecting gas from the bottom of the reaction tower as a stripping gas to quickly discharge the light oil inside the reaction tower to the outside of the tower. If adopted, it is thought that the oil recovery rate will be significantly increased with excellent handling properties.

ところが実際にこのような水素ガスリサイクルを採用し
ようとすると、各反応塔の反応物排出ラインに気液分離
器を設けなければならないので、設備全体が嵩高くなり
設計及び建設作業が複雑になることは否めない、そこで
こうした問題についても改善すべく、設備の簡略化を期
して更に研究を進めた結果、水添分解反応塔の頂部に気
液分離部を一体に形成しておけば上記の目的が簡単に達
成されるという知見を得るに至り、この知見を基に更に
研究の結果本発明に到達した。
However, when attempting to actually adopt such hydrogen gas recycling, a gas-liquid separator must be installed in the reactant discharge line of each reaction tower, which increases the bulk of the entire facility and complicates the design and construction work. Therefore, in order to improve this problem, we conducted further research with the aim of simplifying the equipment.We found that if a gas-liquid separation section was integrally formed at the top of the hydrogenolysis reaction tower, the above objective could be achieved. We have come to the knowledge that this can be easily achieved, and based on this knowledge, we have conducted further research and arrived at the present invention.

即ち本発明に係る反応塔の構成は、縦長に形成された耐
圧反応塔本体の底部に、原料供給管及びストリッピング
ガス吹込管が接続される共に、上方部側壁には反応液排
出管が開口され、且つ該排出管の開口部よりも上方には
ガス状物抜出管が接続されてなるところに要旨を有する
ものである。
That is, the structure of the reaction tower according to the present invention is such that a raw material supply pipe and a stripping gas blowing pipe are connected to the bottom of the pressure-resistant reaction tower main body formed vertically, and a reaction liquid discharge pipe is opened in the upper side wall. The main feature is that a gaseous substance extraction pipe is connected above the opening of the exhaust pipe.

以下実施例図面を参照しながら本発明の構成及び作用効
果を詳細に説明する。第2図は本発明の反応塔を例示す
る概略縦断面図であり、縦長に構成された塔本体Aの底
部には、水素ガス及び原料油の供給管BJ及び循環ガス
よりなるストリッピングガスの吹込管Cが接続されると
共に、必要によりスラッジ抜出管りを設けることがある
。一方塔本体Aの上方部側壁には反応液排出管Eが設け
られると共に、該排出管Eの開口部よりも上方には適当
な間隔をおいてガス状物抜出管Fが開口されており、こ
の排出管Eと抜出管Fの間を気液分離部Gとして構成す
る。尚この気液分離部Gは単なる空間であってもよいが
、例えば第2図に示した様に多数の邪魔板Hを交差して
設け、泡沫の分離効果を高める様に構成したものが推奨
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and effects of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a schematic longitudinal cross-sectional view illustrating the reaction tower of the present invention. At the bottom of the vertically structured tower body A, there is a supply pipe BJ for hydrogen gas and feedstock oil, and a stripping gas supply pipe consisting of circulating gas. A blowing pipe C is connected, and a sludge extraction pipe may be provided if necessary. On the other hand, a reaction liquid discharge pipe E is provided on the upper side wall of the column main body A, and a gaseous material discharge pipe F is opened above the opening of the discharge pipe E at an appropriate interval. A gas-liquid separation section G is configured between the discharge pipe E and the extraction pipe F. This gas-liquid separation section G may be a simple space, but it is recommended that it be configured with a number of intersecting baffle plates H, as shown in Fig. 2, to enhance the foam separation effect. be done.

図中Iは所望により設けられる温度調節用ガスの吹込管
を示す。
In the figure, I indicates a temperature control gas blowing pipe provided as required.

この様な反応塔において、原料供給管Bから供給される
原料混合物は反応塔A内を上昇しなから水添分解を受け
、抜出し管Eから下流側の水添反応塔へ順次送られるが
、この反応塔を用いる水添分解工程では、加熱された水
素含有ガス(循環ガス)をストリッピングガス吹込管C
から吹込むものであり、このガスのストリッピング効果
により原料混合物中の低沸点成分は反応塔A内をすみや
かに上昇して気液分離部Gに至り、ガス状成分は抜出し
管Fから順次抜き出される。この場合、気液分離部Gに
図示した様な泡沫分離用の邪魔板Hを設けておけば、抜
出し管Fから抜出されるガス状成分中に高分子量の重質
油分や固形成分が混入しないので好ましい、尚気液分離
部Gに泡沫分離用として設けられる邪魔板Hの代用物と
しては。
In such a reaction tower, the raw material mixture supplied from the raw material supply pipe B rises in the reaction tower A, undergoes hydrogenolysis, and is sequentially sent from the extraction pipe E to the hydrogenation reaction tower on the downstream side. In the hydrogen cracking process using this reaction tower, the heated hydrogen-containing gas (circulating gas) is passed through the stripping gas blowing pipe C
Due to the stripping effect of this gas, the low boiling point components in the raw material mixture quickly rise inside the reaction tower A and reach the gas-liquid separation section G, and the gaseous components are sequentially extracted from the extraction pipe F. Served. In this case, if a baffle plate H for foam separation as shown in the diagram is provided in the gas-liquid separation section G, high molecular weight heavy oil and solid components will not be mixed into the gaseous components extracted from the extraction pipe F. Therefore, it is preferable as a substitute for the baffle plate H provided in the gas-liquid separation section G for foam separation.

例えば精留塔等で用いられる棚段或はラシーヒリングや
くら等の充填物の充填層が示されるが、この分離部Gは
単に気合液を分離し得るものであればよいからそれほど
高性能のものである必要はなく、該分離部Gを十分に長
くとっておけば邪魔板等を全く設けない空洞のままとし
たものであってもよい、この様な気液分離部付反応塔を
使用すれば、前述の様な水素化精製処理を極めて円滑に
効率良〈実施することができる。
For example, a tray used in a rectification column or a bed packed with packing such as a Raschich ring or a rack is shown, but this separation section G only needs to be capable of separating gaseous liquid, so it is not necessary to have such a high performance. It is not necessary to use a reaction tower with a gas-liquid separation part, and if the separation part G is made long enough, it may be left as a cavity without any baffle plate etc. Then, the hydrorefining treatment as described above can be carried out extremely smoothly and efficiently.

第3図は本発明の他の実施例を示したもので、反応液排
出管Eの他の取付構造を示す一部断面図である。即ちこ
の例では、反応塔本体Aの上方部側壁に、フランジ付の
排出管取付用短管部Jを形成し、この短管部JにL字管
状の排出vE′を着脱可能に接合できる様に構成してい
る。この例であれば、排出管E′を構成するL字状管の
一辺E1の長さ立を調整することによって反応塔A内の
液面位置を自由に設定することができ、ひいては分離部
Gの長さを任意に決めることができるので好都合である
FIG. 3 shows another embodiment of the present invention, and is a partial sectional view showing another mounting structure for the reaction liquid discharge pipe E. That is, in this example, a flanged short pipe part J for attaching a discharge pipe is formed on the upper side wall of the reaction column main body A, and an L-shaped discharge pipe vE' can be removably connected to this short pipe part J. It is composed of In this example, by adjusting the length of one side E1 of the L-shaped tube constituting the discharge pipe E', the liquid level position in the reaction tower A can be freely set, and as a result, the liquid level position in the separation section G can be set freely. This is convenient because the length can be arbitrarily determined.

この他の原料供給管Bやストリッピングガス吹込管C,
スラッジ抜出管りの取付位置や取付構造等も必要に応じ
て任意に変更することができ、更には必要により塔A内
に温度計を取付けをことも勿論可能である。
Other raw material supply pipes B, stripping gas blowing pipes C,
The mounting position, mounting structure, etc. of the sludge extraction pipe can be arbitrarily changed as required, and it is also of course possible to install a thermometer inside the tower A if necessary.

本発明は概略以上の様に構成されるが、要は反応塔の塔
頂部に気液分離部が一体に形成されているので、ストリ
ッピングガスと共に上昇してきた低沸点のガス状成分を
反応塔頂部で反応液から分離して抜出すことができ、水
素化精製反応をはじめとする種々の気液接触反応を効率
良〈実施し得ることになった。しかも本発明の反応塔を
使用すれば第1図に示した様な設備における気液分離器
を省略することができ、設備の設計、施工を簡略化し得
ると共に設備全体をコンパクトにすることが可能となる
等、実用に即した諸種の効果を享受し得ることになった
The present invention is generally constructed as described above, but the point is that the gas-liquid separation section is integrally formed at the top of the reaction tower, so that the low boiling point gaseous components that have risen together with the stripping gas are removed from the reaction tower. It can be separated from the reaction liquid at the top and extracted, making it possible to efficiently carry out various gas-liquid contact reactions, including hydrorefining reactions. Moreover, by using the reaction column of the present invention, the gas-liquid separator in equipment shown in Figure 1 can be omitted, simplifying the design and construction of the equipment, and making the entire equipment more compact. It has become possible to enjoy various practical effects, such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素化精製法を示す概略フロー図、第2
図は本発明の実施例を示す概略縦断面図、第3図は本発
明の他の実施例を示す一部縦断面図である。 1・・・予熱器    2a、2b、2c・・・反応塔
3・・・気液分離器  4・・・avM器5・・・脱水
器    A・・・反応塔本体B・・・原料供給管 C・・・ストリッピングガス吹込管 D・・・スラッジ抜出し管 E・・・反応液排出管F・
・・ガス状物抜出管  G・・・気液分離部H・・・邪
魔板
Figure 1 is a schematic flow diagram showing the conventional hydrorefining method, Figure 2
The figure is a schematic longitudinal sectional view showing an embodiment of the present invention, and FIG. 3 is a partial longitudinal sectional view showing another embodiment of the invention. 1... Preheater 2a, 2b, 2c... Reaction tower 3... Gas-liquid separator 4... avM device 5... Dehydrator A... Reaction tower main body B... Raw material supply pipe C... Stripping gas blowing pipe D... Sludge removal pipe E... Reaction liquid discharge pipe F.
...Gaseous material extraction pipe G...Gas-liquid separation section H...Baffle plate

Claims (1)

【特許請求の範囲】[Claims] 縦長に形成された耐圧反応塔本体の底部には、原料供給
管及びストリッピングガス吹込管が接続されると共に、
上方部側壁には反応液排出管が開口され、且つ該排出管
の開口部よりも上方にはガス状物抜出管が接続されてな
ることを特徴とする反応塔。
A raw material supply pipe and a stripping gas blowing pipe are connected to the bottom of the vertically formed pressure-resistant reaction tower main body, and
A reaction column characterized in that a reaction liquid discharge pipe is opened in an upper side wall, and a gaseous substance discharge pipe is connected above the opening of the discharge pipe.
JP1904385A 1985-02-01 1985-02-01 Reaction tower Pending JPS61178032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1904385A JPS61178032A (en) 1985-02-01 1985-02-01 Reaction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1904385A JPS61178032A (en) 1985-02-01 1985-02-01 Reaction tower

Publications (1)

Publication Number Publication Date
JPS61178032A true JPS61178032A (en) 1986-08-09

Family

ID=11988392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1904385A Pending JPS61178032A (en) 1985-02-01 1985-02-01 Reaction tower

Country Status (1)

Country Link
JP (1) JPS61178032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243287A (en) * 1988-04-15 1990-02-13 Petro Canada Inc Use of antifoaming agent to obtain high degree of conversion in hydrogenation of heavy oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120903A (en) * 1974-08-16 1976-02-19 Hitachi Ltd Sekitanoyobi sekyukeijushitsuyuno tenkahoho
JPS5322501A (en) * 1976-06-25 1978-03-02 Occidental Res Corp Process and apparatus for thermal decomposition of solid carbonaceous substances
JPS543161A (en) * 1977-06-09 1979-01-11 Nissei Plastics Ind Co Core for injection blast molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120903A (en) * 1974-08-16 1976-02-19 Hitachi Ltd Sekitanoyobi sekyukeijushitsuyuno tenkahoho
JPS5322501A (en) * 1976-06-25 1978-03-02 Occidental Res Corp Process and apparatus for thermal decomposition of solid carbonaceous substances
JPS543161A (en) * 1977-06-09 1979-01-11 Nissei Plastics Ind Co Core for injection blast molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243287A (en) * 1988-04-15 1990-02-13 Petro Canada Inc Use of antifoaming agent to obtain high degree of conversion in hydrogenation of heavy oil

Similar Documents

Publication Publication Date Title
US3817856A (en) Method for contacting liquid and solid particles
US8025790B2 (en) Process to upgrade heavy oil by hot pressurized water and ultrasonic wave generating pre-mixer
US4233137A (en) Method of heat recovering from high temperature thermally cracked hydrocarbons
KR950032588A (en) Method for hydroprocessing petroleum feedstock and hydrogenation converter
US20080199373A1 (en) Method and device for the production of alkylates
CN1961060B (en) Apparatus and process for extracting sulfur compounds from a hydrocarbon stream
CN102380262A (en) High-pressure separator and method for high-pressure separation
JPS61261391A (en) Production of thermal cracking modified oil
US4822480A (en) Hydrocarbon product stripping
EP2952555A1 (en) Method and apparatus for improving hydrogen utilization rate of hydrogenation apparatus
CN102325859B (en) Method for purifying hydrocarbon compound and apparatus for separating hydrocarbon compound by distillation
KR19980032505A (en) Improved Urea Synthesis Method and Apparatus
CN102165045A (en) Method for starting naphtha fraction hydrotreating reactor
US20040040892A1 (en) Gas/liquid separation system used in a hydrocarbonconversion process
US3630887A (en) Residual oil hydrogen treating process
US6720358B2 (en) Water stripping and catalyst/liquid product separation system
JPS61167402A (en) Distillation method
EP2372320A1 (en) Quick-cooling device for organic or inorganic vapours
US3444072A (en) Method for minimizing hydrogen losses in high pressure processes
JPS61178032A (en) Reaction tower
JP2004511622A (en) Two-stage hydrogen treatment and stripping in a single reactor
US2618535A (en) Apparatus for treating hydrocarbon oils
CN213680542U (en) Up-flow combined hydrogenation reactor and reactor system
RU2310678C1 (en) Process of vacuum distillation of raw material, preferably petroleum stock, and plant for carrying out the process (options)
US1995324A (en) Oxidizing petroleum and the products thereof