JPS61177409A - Objective lens for recording and reproducing of optical information recording medium - Google Patents

Objective lens for recording and reproducing of optical information recording medium

Info

Publication number
JPS61177409A
JPS61177409A JP1893285A JP1893285A JPS61177409A JP S61177409 A JPS61177409 A JP S61177409A JP 1893285 A JP1893285 A JP 1893285A JP 1893285 A JP1893285 A JP 1893285A JP S61177409 A JPS61177409 A JP S61177409A
Authority
JP
Japan
Prior art keywords
light source
source side
aspherical
lens
single lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1893285A
Other languages
Japanese (ja)
Inventor
Norikazu Arai
則一 荒井
Nobuyoshi Mori
伸芳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1893285A priority Critical patent/JPS61177409A/en
Publication of JPS61177409A publication Critical patent/JPS61177409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain an objective lens having a high image-forming magnification as a single lens whose only one surface is aspherical, by forming the surface in the light source side to the aspherical surface in the single lens which has the convex directed to the light source side and has a positive refracting power and satisfying specific conditions. CONSTITUTION:In the single lens which has the convex directed to the light source and has a positive refracting power, the surface in the light source side is aspherical, and conditions of formulas are satisfied (in formulas, DELTA1 is the difference in the direction of the optical axis between the aspherical surface in the outermost part of the effective diameter of the surface in the light source side and a reference spherical surface surface whose radius of curvature in the apex is r1, and this difference is positive if the aspherical surface is displaced to the light source side according as going away from the optical axis.). It is necessary to convert a divergent light having a large numerical aperture to a convergent light only with the single lens whose only surface in the light source side is aspherical. Though spherical aberration can be corrected by the aspherical. Though spherical aberration can be corrected by the aspherical surface, it is necessary that the stage of the single lens is determined not to degrade the sine condition fundamentally. A condition (1) is given therefore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光デイスク用対物レンズ、特に光源と情報
記録面との距離が比較的小さい場合に用いるに適した単
レンズで構成された対物レンズに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an objective lens for optical disks, particularly an objective composed of a single lens suitable for use when the distance between a light source and an information recording surface is relatively small. Regarding lenses.

〔従来の技術〕[Conventional technology]

光ディスク等の情報記録媒体への記録再生装置に用いら
れる光学系で、近年最も一般的なものは、第6図に示す
ように、光源4を出た光をコリメータレンズ3で平行光
にし、対物レンズ2によって情報記録面1に集光させる
ものである。この光学系では、光ディスク等の面振れに
対しては対物レンズ2を光軸方向に動かすことによって
7オーカシングな行っている。
The most common optical system used in recording and reproducing devices for information recording media such as optical disks in recent years is as shown in Fig. 6, in which the light emitted from a light source 4 is made into parallel light by a collimator lens 3, and then The lens 2 focuses the light onto the information recording surface 1. In this optical system, seven focusing is performed by moving the objective lens 2 in the optical axis direction in order to deal with surface wobbling of an optical disk or the like.

この方式は、対物レンズ2を動かしても光学系の性能が
不変であるという長所を持っている反面、対物レンズ2
とコリメータレンズ3と2つのレンズを必要とするため
光学系が高価になるという問題がある。
This method has the advantage that the performance of the optical system remains unchanged even if the objective lens 2 is moved;
Since two lenses, including the collimator lens 3 and the collimator lens 3, are required, there is a problem that the optical system becomes expensive.

これに対して、第7図に示すようにコリメータレンズを
用いず、光源4からの光を対物レンズ2で直接に情報記
録面1に集光する方式も知られている。
On the other hand, as shown in FIG. 7, a method is also known in which the light from the light source 4 is directly focused onto the information recording surface 1 by the objective lens 2 without using a collimator lens.

第7図に示すものは、7オーカシングは対物レンズ2の
みの移動で行うが、移動によって対物レンズ2の開口数
、性能が変化するため、あまり結像倍率を大きくするこ
とが出来ず、基準結像倍率は−1740〜−178程度
であった。
In the case shown in Fig. 7, 7 orcasing is performed by moving only the objective lens 2, but since the numerical aperture and performance of the objective lens 2 change due to the movement, the imaging magnification cannot be increased too much, and the reference The image magnification was about -1740 to -178.

近年コンパクト・ディスク再生用光学系においては、 (1)光学系のコンパクト化が要求されること。In recent years, optical systems for compact disc playback have (1) The optical system must be made more compact.

(2)コンパクト・ディスクの品質向上により7オーカ
シング可能範囲が狭くても実用上問題がなくなってきた
(2) Due to the improvement in the quality of compact discs, even if the possible range of 7-orcasing is narrow, it is no longer a practical problem.

などの理由により、光学系を見直した結果、第7図に示
す光学系を基準結像倍率−178〜−174程度で使用
することが可能であることが明らかとなってきた。
As a result of reviewing the optical system for these reasons, it has become clear that the optical system shown in FIG. 7 can be used at a standard imaging magnification of about -178 to -174.

これらの光学系でコストダウンを計るには、第6図に示
すものでは対物レンズ2、コリメータレンズ3のそれぞ
れを単レンズで構成することによって限界にきている。
In order to reduce the cost of these optical systems, the one shown in FIG. 6 reaches its limit by constructing each of the objective lens 2 and collimator lens 3 with a single lens.

第7図の光学系において、対物レンズ2が2枚構成にな
ると、レンズの組込み、調整に工数ががかり、かえって
第6図示の光学系の方が低コストとなるので、単レンズ
で構成しなければならない。
In the optical system shown in Fig. 7, if the objective lens 2 is composed of two lenses, it will take a lot of man-hours to assemble and adjust the lenses, and the optical system shown in Fig. 6 will have a lower cost, so it must be composed of a single lens. Must be.

さらにこのような単レンズにおいて、一方の屈折面を球
面とすれば、加工上、測定上、非常に有利である。
Furthermore, in such a single lens, if one of the refractive surfaces is a spherical surface, it is very advantageous in terms of processing and measurement.

このような対物レンズとしては、特開昭58−1740
9号が知られているが、結像倍率としてθ〜−1/10
と小さく、光源と情報記録面との距離が長くなり、光学
系全体を小型化するためには、光源と対物レンズの間に
ミラーやプリズムを配置して光路を折り曲げなければな
らず、逆に光学系のコストアップを招くという問題があ
った。
As such an objective lens, Japanese Patent Application Laid-Open No. 58-1740
No. 9 is known, but the imaging magnification is θ~-1/10
The distance between the light source and the information recording surface becomes long, and in order to miniaturize the entire optical system, it is necessary to bend the optical path by placing a mirror or prism between the light source and the objective lens. There was a problem in that the cost of the optical system increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、第7図のような光学系の対物レンズとして
用いるのに適した結像倍率の大きい対物レンズを一面だ
けを非球面化した単レンズとして実現しようとするもの
である。
This invention aims to realize an objective lens with a large imaging magnification suitable for use as an objective lens in an optical system as shown in FIG. 7, as a single lens with only one surface made aspherical.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、光源側に凸面を向けた正の屈折力を有する
単レンズにおいて、光源側の面が非球面であり、下記の
条件 0.48 < −< 0.7    (1)f 但し f:レンズの合成焦点距離 n:レンズの屈折率 rll先光源側面の頂点曲率半径 N^:像側の開口数 Δ1:光源側の面の有効径最周辺(上記N^の周縁光線
が入射する光源側の面上 の位置)における非球面と頂点曲率 半径r1を有する基準球面との光軸方 向の差で、光軸がら遠ざかるほど該 非球面が光源側へ変位している場合 を正とする。
In the present invention, in a single lens having positive refractive power with a convex surface facing the light source side, the surface on the light source side is an aspheric surface, and the following condition 0.48 < - < 0.7 (1) f However, f: Synthetic focal length of the lens n: Refractive index of the lens rll Vertex radius of curvature on the side of the light source N^: Numerical aperture on the image side Δ1: Effective diameter of the surface on the light source side Most peripheral (light source side where the marginal rays of N^ above are incident) The difference in the optical axis direction between the aspherical surface and the reference spherical surface having the apex radius of curvature r1 at the position on the surface of the aspherical surface is positive if the aspherical surface is displaced toward the light source as the distance from the optical axis increases.

を満足することを特徴とする光情報記録媒体の記録再生
用対物レンズを提供するものである。
The present invention provides an objective lens for recording and reproducing an optical information recording medium, which satisfies the following.

〔作用〕[Effect]

この発明の対物レンズにおいては、光源側の面だけが非
球面化された単レンズだけで、開口数の大きい発散光を
収れん光に変える必要がある0球面収差は非球面によっ
て補正が可能であるが正弦条件が基本的に悪化しないよ
うに単レンズの形状を決める必要がある。
In the objective lens of this invention, 0-spherical aberration, which requires converting diverging light with a large numerical aperture into convergent light, can be corrected by the aspheric surface using only a single lens in which only the surface on the light source side is aspheric. However, it is necessary to determine the shape of the single lens so that the sine condition basically does not deteriorate.

条件(1)はこのための条件で、上限を超えて大となる
と正弦条件がオーバーとなる。逆に下限を超えて小とな
ると正弦条件がアンダーになる。
Condition (1) is a condition for this purpose, and when it becomes larger than the upper limit, the sine condition becomes over. On the other hand, if the value becomes smaller than the lower limit, the sine condition becomes under.

条件(2)は条件(1)のらとに球面収差量を良好に補
正するための非球面量に関する条件である。
Condition (2) is a condition regarding the amount of aspherical surface for better correcting the amount of spherical aberration in addition to condition (1).

収差量から明らかなように、3次の球面収差は波面収差
で考えると開口の4乗に比例する。
As is clear from the amount of aberration, third-order spherical aberration is proportional to the fourth power of the aperture when considered in terms of wavefront aberration.

このため、非球面量は開口数の4乗で正規化する必要が
ある。またレンズの屈折率が高い程、球面収差補正のた
めの非球面量は小さくなる。光源側の面の軸上物点に関
する周縁光線に対する弁球する効果が大である。
Therefore, the aspherical amount needs to be normalized by the fourth power of the numerical aperture. Furthermore, the higher the refractive index of the lens, the smaller the amount of aspherical surface for correcting spherical aberration. This has a great effect on the peripheral rays related to the on-axis object point on the light source side surface.

よってこの量はある範囲内にあることが必要である。上
限を超えて大となると球面収差がオーバーとなり、逆に
下限を超えて小となると球面収差はアンダーとなる。
Therefore, this amount needs to be within a certain range. If it exceeds the upper limit and becomes large, the spherical aberration becomes over, and conversely, when it exceeds the lower limit and becomes small, the spherical aberration becomes under.

さらに正弦条件を良好に保つには、レンズの屈折率nが
次の範囲内にあることが望ましい。
Furthermore, in order to maintain good sine conditions, it is desirable that the refractive index n of the lens be within the following range.

n  <  1.65     (3)下限を超えて小
となると正弦条件が中間輪帯でアンダー側に大きくふく
らむ。
n < 1.65 (3) When the value becomes smaller than the lower limit, the sine condition swells significantly toward the under side in the middle ring zone.

この発明の実施にあたって、具体的な基準設計倍率輸を
与えたときに条件(2)′ として以下のような範囲で
あることがさらに望ましい。
In implementing the present invention, it is more desirable that condition (2)' falls within the following range when a specific standard design magnification factor is given.

但し、a(m)は結像倍率mの関数であり、a(輸)=
 2.51  糟1 2+0.11    (4)で表
わされる。
However, a(m) is a function of the imaging magnification m, and a(m)=
It is expressed as 2.51 Kasu1 2+0.11 (4).

結像倍率の変化が波面収差に及ぼす影響は、像側の開口
数を一定とすると光源側の開口数の自乗に比例する。こ
のため、補正すべき球面収差量は結像倍率が零のときの
補正すべき球面収差量と結像倍率の自乗に比例した量の
和と考えることが出来る。従って、結像倍率の変化を考
慮して定数項と結像倍率の自乗に比例する項の和からな
る関数にある必要がある。
The effect of a change in imaging magnification on wavefront aberration is proportional to the square of the numerical aperture on the light source side, assuming that the numerical aperture on the image side is constant. Therefore, the amount of spherical aberration to be corrected can be considered as the sum of the amount of spherical aberration to be corrected when the imaging magnification is zero and the amount proportional to the square of the imaging magnification. Therefore, in consideration of changes in the imaging magnification, it is necessary to form a function consisting of the sum of a constant term and a term proportional to the square of the imaging magnification.

条件は(2)′はこの範囲を規定するもので、上限をこ
えると球面収差が補正過剰となり、下限をこえると球面
収差が補正不足となる。
Condition (2)' defines this range; if the upper limit is exceeded, the spherical aberration will be over-corrected, and if the lower limit is exceeded, the spherical aberration will be under-corrected.

〔実施例〕〔Example〕

以下この発明の対物レンズの実施例を示す。 Examples of the objective lens of this invention will be shown below.

表中の記号は、 ri:光f1mから第1番目のレンズ面の頂点曲率半径 di:光源側から第1番目のレンズ面間隔ni:光源側
から第1番目のレンズ材料の屈折率 シミ:光源側から第1番目のレンズ材料のd線に対する
アツベ数 また、非球面形状は面の頂点を原点とし、光軸方向をX
輪とした直交座標系において、頂点曲率をC1円錐定数
をK、非球面係数をAi、Piを非球面のべき数(Pi
>2.0)とするときで表わされる。
The symbols in the table are: ri: radius of apex curvature of the first lens surface from the light f1m di: distance between the first lens surfaces from the light source side ni: refractive index of the first lens material from the light source side Spot: light source The Abbe number for the d-line of the first lens material from the side. Also, for an aspherical shape, the origin is the vertex of the surface, and the optical axis direction is
In the orthogonal coordinate system as a ring, the apex curvature is C1, the conic constant is K, the aspheric coefficient is Ai, and Pi is the power of the aspheric surface (Pi
>2.0).

なお、表中にはカバーガラスGの値も示してあH3は光
源側の面における周縁光線の高さである。非球面量Δ1
は非球面形状を上記のように表わした場合には、 Δ’ ” XAs −Xsl’ ただし C3=− に、:第1面の円錐定数 ^i:第1面の非球面係数 実施例1 「=I   NA 0.45  鴎=−178ri  
   di    ni    y il   0.8
9707 0,6765 1.73814 27.52
 −2.83210 0.5771 非球面係数・べき数 第1面 K = −1,02627D+ G。
In addition, the value of the cover glass G is also shown in the table, and H3 is the height of the peripheral ray on the surface on the light source side. Aspherical amount Δ1
When the aspherical shape is expressed as above, Δ' ” I NA 0.45 Ugu=-178ri
di ni y ill 0.8
9707 0,6765 1.73814 27.52
-2.83210 0.5771 Aspheric coefficient/power number 1st surface K = -1,02627D+G.

^1=−4,25080D−03P1=  4.000
0^2=  −7,943フ8D−02P2=   6
.0000^3=−2,58292D−02P3=  
8,0000^4=−1,081900−02P4= 
 10,0000H,=0.508 実施例2 「=I    NA 〇、45    m= −1/8
ri     di    ni    I/i1  
0.93642 0,6765 1,82484 23
.82 −4.66207 0.5708 非球面係数・べき数 第1面 K = −5,95933D+ 01 ^1=−4,778100−02P1=   4.00
00^2=−5,401450−02P2=  6,0
000^3=−2,080100−02P3=  8.
0000^4=−9,439860−03P4=10,
0000H,= o、sos 実施例3 f=I     NA 0.45   論=−1/8r
i     di    ni    M il   
  0.97フ91   0.6765   1.91
180   27.92 −9.03744 0.56
74 非球面係数・べき数 第1面 K =−3,89882D卆01 ^1=−5.680550−02  P1=  4.0
000^2=−4,680220−02P2=  6.
0000^3=−2,063970−02P3=  8
.0000^4=−1,001850−02P4=10
,0000〆\) H,=0.507 実施例4 f−I   NA O,45ta= −1/62 −2
.99940 0.5646 非球面係数・べき数 第1面 K =−7,617030−01 −=0.5514 f H,=0.531 〔発明の効果〕 この発明の対物レンズは、第2図ないし第5図の諸収差
図に示すように、結像倍率が従来のものに比して大きい
にもかかわらず、カバーガラスGを含めて球面収差は殆
ど完全に補正され、しかも正弦条件も良好である。
^1=-4,25080D-03P1= 4.000
0^2=-7,943fu8D-02P2=6
.. 0000^3=-2,58292D-02P3=
8,0000^4=-1,081900-02P4=
10,0000H,=0.508 Example 2 "=I NA 〇, 45 m=-1/8
ri di ni I/i1
0.93642 0,6765 1,82484 23
.. 82 -4.66207 0.5708 Aspheric coefficient/power number 1st surface K = -5,95933D+ 01 ^1=-4,778100-02P1= 4.00
00^2=-5,401450-02P2=6,0
000^3=-2,080100-02P3=8.
0000^4=-9,439860-03P4=10,
0000H, = o, sos Example 3 f = I NA 0.45 Theory = -1/8r
I di ni M il
0.97fu91 0.6765 1.91
180 27.92 -9.03744 0.56
74 Aspherical coefficient/power number 1st surface K = -3,89882D 01 ^1 = -5.680550-02 P1 = 4.0
000^2=-4,680220-02P2=6.
0000^3=-2,063970-02P3=8
.. 0000^4=-1,001850-02P4=10
,0000〆\) H,=0.507 Example 4 f-I NA O,45ta= -1/62 -2
.. 99940 0.5646 Aspherical coefficient/power number 1st surface K = -7,617030-01 -=0.5514 f H, = 0.531 [Effects of the Invention] The objective lens of this invention is shown in Figs. As shown in the various aberration diagrams in Figure 5, even though the imaging magnification is larger than conventional ones, spherical aberrations, including the cover glass G, are almost completely corrected, and the sine condition is also good. .

このことによって光デイスク用光学系を最も簡単な形式
とすることが可能となり、大巾なコストダウンが可能に
なった。
This has made it possible to make the optical system for optical discs into the simplest format, making it possible to significantly reduce costs.

光デイスク用光学系においては、対物レンズの光源側に
偏光ビームスプリフタ等の光学素子を配置することが多
いが、上記実施例の若干の設計変更によって対応が可能
である。
In optical systems for optical discs, an optical element such as a polarizing beam splitter is often placed on the light source side of the objective lens, but this can be accommodated by making some design changes to the above embodiments.

更に、回折限界性能を有するレンズにおいては、非球面
の面精度を波長の1/10以内の精度で測定する必要が
ある。しかし、このような正弦条件が良好に補正され、
回折限界性能を有し、しかも1面だけが非球面化された
単レンズにおいては、球面で構成される面の面精度およ
び曲率半径、レンズの軸上、厚、屈折率は容易に測定出
来る。そして、これら諸元が公差内にあるとすると、干
渉計等で測定されたレンズの軸上性能から非球面の面精
度を必要な精度で推定できる。このため、高価な非球面
測定器が不要となる等の顕著な効果を奏する。
Furthermore, in a lens having diffraction-limited performance, it is necessary to measure the surface precision of the aspheric surface within 1/10 of the wavelength. However, such a sine condition is well corrected and
In a single lens with diffraction-limited performance and only one aspheric surface, the surface precision and radius of curvature of the spherical surface, the axis of the lens, the thickness, and the refractive index can be easily measured. Assuming that these specifications are within tolerances, the surface accuracy of the aspheric surface can be estimated with the necessary accuracy from the axial performance of the lens measured with an interferometer or the like. Therefore, significant effects such as eliminating the need for an expensive aspherical surface measuring instrument are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の対物レンズ断面図。 第2図、第3図、第4図、第5図はそれぞれこの発明の
実施例1ないし4に対する諸収差図。 第6図は従来の光デイスク光学系の配置図。 第7図はこの発明の対物レンズを用いる光学系の光学配
置図。 1:光ディスク(光情報記録媒体) 2:対物レンズ 3:コリメータレンズ  4:光源 出願人 小西六写真工業株式会社 抹′面補又差、      T−罪、矛l牛     
 縛P源、ぺ又」(第2図 ■収面収見   正S、#升   非、札JIJtL第
3図 1に面収基      正aそイ牛     4F#、
収差−第4図
FIG. 1 is a sectional view of an objective lens according to an embodiment of the present invention. FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are various aberration diagrams for Examples 1 to 4 of the present invention, respectively. FIG. 6 is a layout diagram of a conventional optical disk optical system. FIG. 7 is an optical layout diagram of an optical system using the objective lens of the present invention. 1: Optical disk (optical information recording medium) 2: Objective lens 3: Collimator lens 4: Light source applicant Konishiroku Photo Industry Co., Ltd.
Bind P source, Pemata'' (Fig. 2■ Convergence convergence Sei S, #masu non, tag JIJtL Fig. 3 Masu A Soigyu 4F#,
Aberrations - Figure 4

Claims (1)

【特許請求の範囲】 光源側に凸面を向けた正の屈折力を有する単レンズにお
いて、光源側の面が非球面であり、下記の条件 0.48<r_1/nf<0.7(1) 0.08<((n−1)^3)/((NA)^4)Δ_
1/f<0.3(2)但しf:レンズの合成焦点距離 n:レンズの屈折率 r_1:光源側の面の頂点曲率半径 NA:像側の開口数 Δ_1:光源側の面の有効径最周辺(上記NAの周縁光
線が入射する光源側の面上 の位置)における非球面と頂点曲率 半径r_1を有する基準球面との光軸方 向の差で、光軸から遠ざかるほど該 非球面が光源側へ変位している場合 を正とする。 を満足することを特徴とする光情報記録媒体の記録再生
用対物レンズ。
[Claims] In a single lens having positive refractive power with a convex surface facing the light source side, the surface on the light source side is an aspherical surface, and the following condition 0.48<r_1/nf<0.7 (1) 0.08<((n-1)^3)/((NA)^4)Δ_
1/f<0.3 (2) where f: Composite focal length of the lens n: Refractive index of the lens r_1: Radius of curvature of the vertex of the surface on the light source side NA: Numerical aperture on the image side Δ_1: Effective diameter of the surface on the light source side The difference in the optical axis direction between the aspherical surface at the outermost periphery (the position on the light source side surface where the peripheral rays of NA enter) and the reference spherical surface having the apex radius of curvature r_1, the farther from the optical axis the more the aspherical surface is on the light source side. It is positive if the displacement is to . An objective lens for recording and reproducing an optical information recording medium, which satisfies the following.
JP1893285A 1985-02-01 1985-02-01 Objective lens for recording and reproducing of optical information recording medium Pending JPS61177409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1893285A JPS61177409A (en) 1985-02-01 1985-02-01 Objective lens for recording and reproducing of optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1893285A JPS61177409A (en) 1985-02-01 1985-02-01 Objective lens for recording and reproducing of optical information recording medium

Publications (1)

Publication Number Publication Date
JPS61177409A true JPS61177409A (en) 1986-08-09

Family

ID=11985408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1893285A Pending JPS61177409A (en) 1985-02-01 1985-02-01 Objective lens for recording and reproducing of optical information recording medium

Country Status (1)

Country Link
JP (1) JPS61177409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223906A (en) * 1989-02-24 1990-09-06 Hoya Corp Finite system large-diameter aspherical lens
US6922289B2 (en) * 2002-05-17 2005-07-26 Minolta Co., Ltd. Objective lens system for optical pickups

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223906A (en) * 1989-02-24 1990-09-06 Hoya Corp Finite system large-diameter aspherical lens
US6922289B2 (en) * 2002-05-17 2005-07-26 Minolta Co., Ltd. Objective lens system for optical pickups

Similar Documents

Publication Publication Date Title
JPH087329B2 (en) Optical system for recording and reproducing optical information
JPH06331887A (en) Compound lens
JPH0614135B2 (en) Single lens and optical information reading and / or writing device
JPS62119512A (en) Lens for optical disc
JP2902435B2 (en) Objective lens system for optical information recording / reproducing device
JPH0314324B2 (en)
US4029398A (en) Objective for video disks
US4130350A (en) Medium magnification objective for video disks
JPS61215512A (en) Objective for optical information reader
JPH0428282B2 (en)
JPH09185836A (en) Optical system for recording and reproducing optical information recording medium
JPS61177409A (en) Objective lens for recording and reproducing of optical information recording medium
JP4364328B2 (en) Objective lens for high-density optical recording media
JPS61200518A (en) Objective for recording and reproduction of optical information recording medium
US4668055A (en) Lens for an optical recording/reproducing apparatus and optical recording/reproducing apparatus using same
EP0156453B1 (en) Lens for an optical recording/reproducing apparatus
JPH0359407B2 (en)
JP2613761B2 (en) Condensing optical system for optical information recording media
US4240704A (en) Objective for video disks
US4101204A (en) Medium magnification objective for video disks
JP2004251924A (en) Beam expander and optical head using the same
JPH02153310A (en) Lens for optical recording and reproducing device
JPS61177408A (en) Objective lens for recording and reproducing of optical information recording medium
JPS6214109A (en) Objective lens for recording/reproducing optical information recording medium
JP2511275B2 (en) Optical system for recording / reproducing optical information media