JPS61176858A - Automatic chemical analysis instrument - Google Patents

Automatic chemical analysis instrument

Info

Publication number
JPS61176858A
JPS61176858A JP1741785A JP1741785A JPS61176858A JP S61176858 A JPS61176858 A JP S61176858A JP 1741785 A JP1741785 A JP 1741785A JP 1741785 A JP1741785 A JP 1741785A JP S61176858 A JPS61176858 A JP S61176858A
Authority
JP
Japan
Prior art keywords
reagent
pump
metering pump
tube
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1741785A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1741785A priority Critical patent/JPS61176858A/en
Publication of JPS61176858A publication Critical patent/JPS61176858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To make possible the exact metering of a reagent by providing a deaerating part to a reagent dispersing line and removing preliminarily the gaseous component dissolved in the reagent before sucking the reagent into a reagent metering pump. CONSTITUTION:A vacuum pump 23 is operated and the piston of the metering pump 11 is sucked and moved where a rotor 15 of a three-way solenoid valve 7 is rotated 180 deg. toward the right after the confirmation that a reduced pressure chamber 18 attains the intended 100mmHg pressure. The reagent 22 in a reagent vessel 21 enters first a liquid feed tube 20 and in succession, the reagent enters a synthetic resin film tube 17 where the foam generated in the reagent and the gaseous component dissolved in the reagent are separated through the porous wall of the tube 17. The carry over of the foam into the pump 11 is thus prevented. The rotor of the three-way solenoid valve is rotated 180 deg. to the right when the reagent is exactly metered. The piston of the pump 11 is thereby moved to the discharge side to disperse the reagent into a reaction tube 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、液体試料についての自動分析装置に関し、待
に、血漿、血清、尿、その他体液、分泌液等の検体につ
いての自動分析装置に関する。また、本発明は、自動分
析装置における試薬の脱気装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an automatic analyzer for liquid samples, and firstly, an automatic analyzer for analyzing samples such as plasma, serum, urine, other body fluids, secretions, etc. Regarding. The present invention also relates to a reagent degassing device in an automatic analyzer.

(ロ) 従来の技術 自動化学分析装置は、血漿、血清、尿、その他体液、分
析液等の検体について、各成分分析や妨害成分分析等に
使用されている。そして、その分析値は、例えば、診断
、治療指針等に利用される関係上、常に正確度が要求さ
れる。
(b) Conventional technology Automated chemical analyzers are used for component analysis and interfering component analysis of samples such as plasma, serum, urine, other body fluids, and analytical solutions. The analytical values are always required to be accurate because they are used for diagnosis, treatment guidelines, etc., for example.

他方、検体必要量は、殊に血液については、採血上の制
限もあり、分析技術の進展に伴い微量化しており、試薬
分注量その他分析操作上の精密さが要求されるに至って
いる。
On the other hand, the amount of specimen required, especially for blood, has become smaller as analysis technology advances, due to limitations in blood collection, and precision in the amount of reagent dispensed and other analytical procedures is now required.

ところで、酵素がその基質を特異的に活性化して反応さ
せるので、酵素試薬は、生化学的成分の特異的検出又は
測定に使用されているが、失活し易いために、例えば0
〜4℃の低温下に保存して使用される。しかし、このよ
うに低温下に保存されると、窒素、酸素、空気その他の
雰囲気がスが試薬に吸収されて、試薬分注時における試
薬加温の際、或は計量ポンプの試薬吸引の際に、気泡を
発生して、試薬分注量を不正確にし、延いては分tr鶴
111F t−t< TJL aシ1(ハ) 発明が解
決しようとする問題点本発明は、従来の自動化学分析装
置における試薬分注時の試薬計量ポンプによる試薬吸引
の際の試薬中の気泡発生による試薬計量の不正確さを解
消するものであり、板金、低温に保存された試薬を使用
する場合でも、試薬計量ポンプにより、正確な量の試薬
分注を行うことができ、高い分析精度で分析を行うこと
ができる自動分析装置を提供するものである。
By the way, enzyme reagents are used for specific detection or measurement of biochemical components because enzymes specifically activate their substrates to cause a reaction.
It is stored and used at a low temperature of ~4°C. However, when stored at low temperatures, nitrogen, oxygen, air, and other atmospheres may be absorbed by the reagents, causing gas to be absorbed by the reagents during reagent dispensing, or during reagent suction with a metering pump. In this case, air bubbles are generated, which makes the reagent dispensing amount inaccurate, and furthermore, the problem to be solved by the invention is that the present invention solves the problems that the conventional automatic This eliminates the inaccuracy of reagent measurement caused by the generation of air bubbles in reagents when suctioning reagents with reagent measuring pumps when dispensing reagents in chemical analyzers, even when using sheet metal or reagents stored at low temperatures. The present invention provides an automatic analyzer that can dispense an accurate amount of reagent using a reagent metering pump and can perform analysis with high analytical accuracy.

(ニ)  問題点を解決するための手段本発明は、試薬
分注ラインに脱気部を設けて、試薬に溶存する1人分を
、試薬を試薬計量ポンプに吸引する前に予め脱気するこ
とにより、試薬の計量を正確に行うものである。
(d) Means for solving the problem The present invention provides a degassing section in the reagent dispensing line to degas the amount dissolved in the reagent for one person before sucking the reagent into the reagent metering pump. This allows accurate measurement of reagents.

すなわち、本発明は、検体分注部、試薬分注部及び測光
部を有する自動化学分析装置において、試薬分注部には
、試薬計量ポンプ、真空源に連通する減圧室及び試薬容
器が設けられており、そして、該減圧室の内部には、壁
体の少くとも一部が気体透過性多孔材料で形成されてい
て、その一方の開口部が試薬計量ポンプに連通し、他方
の開口部が試薬容器に連通する気体分離室が配置されて
いることを特徴とする自動化学分析装置にある。
That is, the present invention provides an automatic chemical analyzer having a sample dispensing section, a reagent dispensing section, and a photometry section, in which the reagent dispensing section is provided with a reagent metering pump, a reduced pressure chamber communicating with a vacuum source, and a reagent container. and within the vacuum chamber, at least a portion of the wall is formed of a gas permeable porous material, one opening communicating with the reagent metering pump and the other opening communicating with the reagent metering pump. An automatic chemical analyzer characterized in that a gas separation chamber communicating with a reagent container is disposed.

本発明において、自動化学分析装置は、例えば、反応管
が移動する反応ライン上に、少くとも、検体分注部、試
薬分注部及び測光部を有するものであり、従来多(に使
用される形式のものを包含する。
In the present invention, the automatic chemical analyzer has, for example, at least a sample dispensing section, a reagent dispensing section, and a photometry section on a reaction line along which reaction tubes move, Includes formats.

本発明において、気体分離室は、試薬分注部における試
薬分注ラインに設けられ、それを囲んで配置される減圧
室と共に脱気部を構成する。したがって、分離室は、減
圧室内に配置され、その一方の開口部を、計量ポンプ、
特にその吸込側に、導管を介して或は介さずに接続し、
また、他方の開口部を、試薬容器に導管を介して或は介
さずに接続している。気体分離室の形状は、断面角形か
ら円形に至る任意の形状をとることができる。また、大
きさは、少くともその一部が減圧室内に配置されれば足
り、導管と接続し易いように、はぼ同様の形状寸法に形
成し、脱気が充分に行われるように減圧室内で蛇行させ
てもよい。
In the present invention, the gas separation chamber is provided in the reagent dispensing line in the reagent dispensing section, and forms a degassing section together with the decompression chamber disposed surrounding the gas separation chamber. Therefore, the separation chamber is placed inside the vacuum chamber, one opening of which is connected to the metering pump.
In particular, the suction side thereof is connected with or without a conduit,
Further, the other opening is connected to the reagent container with or without a conduit. The shape of the gas separation chamber can be any shape ranging from a square cross section to a circular cross section. In addition, as for the size, it is sufficient that at least a part of it is placed inside the decompression chamber, and it is formed to have the same shape and dimensions as the hollow so that it can be easily connected to the conduit. You can also make it meander.

気体分離室は、室内の試薬から気体成分が、室壁を通し
て減圧室内に分離されるように、減圧室内の室壁の少く
とも一部は、気体透過性材料で形成される。この気体透
過性材料は、約2ないし2000オングストローム(A
)の平均孔径の微細孔を多数有する多孔性のものであり
、例えば、平均孔径が約2ないし200OAの微細孔を
有する各種の気体分離膜が使用される。膜厚は、約20
ないし500ミクロン(μ)のものであり、気体分離室
の大きさ及び減圧室の減圧の程度により、適宜選択され
る。
The gas separation chamber is such that at least a portion of the chamber wall within the vacuum chamber is formed of a gas permeable material such that gaseous components from reagents within the chamber are separated into the vacuum chamber through the chamber wall. The gas permeable material has a thickness of about 2 to 2000 angstroms (A
), for example, various gas separation membranes having micropores with an average pore diameter of about 2 to 200 OA are used. The film thickness is approximately 20
to 500 microns (μ), and is appropriately selected depending on the size of the gas separation chamber and the degree of pressure reduction in the pressure reduction chamber.

減圧室の減圧の程度は、気体分離室の大きさ及び気体透
過性材料の種類に応じて適宜決定されるが、0.5気圧
以下の圧力が適用される。
The degree of pressure reduction in the pressure reduction chamber is appropriately determined depending on the size of the gas separation chamber and the type of gas permeable material, but a pressure of 0.5 atmospheres or less is applied.

(ホ)作 用 本発明においては、減圧室内に気体分離室を設けたので
、冷蔵された試薬を、使用温度に加温し、計量ポンプに
吸引する過程で、気泡を発生しても、室壁を通して分離
されるので、計量ポンプ内に気泡が持ち込まれることが
な(なる。しかも、このような気体分離室による気泡成
分の除去は、減圧室内で行うことにより、物理的に迅速
に行われるので画一的にかつ確実に行うことがで終る。
(E) Function In the present invention, since the gas separation chamber is provided in the vacuum chamber, even if air bubbles are generated in the process of warming refrigerated reagents to the operating temperature and suctioning them into the metering pump, the gas separation chamber is Since the gas is separated through the wall, no air bubbles are brought into the metering pump.Furthermore, the removal of air bubbles in the gas separation chamber is physically and quickly performed within the vacuum chamber. Therefore, it ends up being done uniformly and reliably.

(へ)実施例 ′ 以下、添付図面を参照して、本発明の実施の態様の一例
を説明するが、本発明は、この説明により何ら限定的に
解釈されるものではない。
(F) Embodiment' Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings, but the present invention is not to be construed in any way limited by this description.

図は、本発明の自動化学分析装置の試薬分注工程部分を
中心に示す概略の説明図である。
The figure is a schematic explanatory diagram mainly showing the reagent dispensing process portion of the automatic chemical analyzer of the present invention.

本例の自動化学分析装置の反応管ラック1には、複数の
反応管2が反応ライン3に沿って配列して設けられてお
り、夫々の反応管2は、反応ライン1に沿って間歇送り
される0反応ライン1上の試薬分注位置4には、試薬分
注ノズル5が移動可能に設けられており、この試薬分注
ノズル5は、接続具6を介して三方電磁弁7の接続口8
に接続している。三方電磁弁7の残る二個の接続口の中
、11に接続しており、他方の接続口12は接続共13
を介して接続導管14に接続している。三方電磁弁7の
三個接続口8,9及び12は、ロータ15を回動して、
ロータ15に設けられた流路を適宜接続口に合わせて、
適宜の岨合わせで連通させることができる。接続導管1
4は、接続共16を介しで、スパイラル状の合成樹脂膜
チューブ、例えば、スチレン−ブタジェン共重合体、ポ
リ塩化ビニル、ポリ7ツ化エチレン又はポリビニルアセ
7−ト等の合成樹脂製の合成樹脂膜チューブ17の一端
に接続している。この合成樹脂膜チューブ17は、気体
透過性であって、減圧室18内に配設されており、その
他方端の開口は、接続具19を介して送液チューブ20
に接続している。
A plurality of reaction tubes 2 are arranged in a reaction tube rack 1 of the automatic chemical analyzer of this example along a reaction line 3, and each reaction tube 2 is intermittently fed along the reaction line 1. A reagent dispensing nozzle 5 is movably provided at a reagent dispensing position 4 on the zero reaction line 1, and this reagent dispensing nozzle 5 is connected to a three-way solenoid valve 7 via a connector 6. Mouth 8
is connected to. Of the two remaining connection ports of the three-way solenoid valve 7, it is connected to 11, and the other connection port 12 is connected to 13.
It is connected to the connecting conduit 14 via. The three connection ports 8, 9 and 12 of the three-way solenoid valve 7 rotate the rotor 15,
Align the flow path provided in the rotor 15 with the connection port as appropriate,
Communication can be achieved by appropriate alignment. Connection conduit 1
4 is connected via a spiral synthetic resin membrane tube, for example, a synthetic resin made of synthetic resin such as styrene-butadiene copolymer, polyvinyl chloride, poly7tethylene, or polyvinyl acetate. It is connected to one end of the membrane tube 17. This synthetic resin membrane tube 17 is gas permeable and is disposed within the decompression chamber 18 , and the opening at the other end is connected to the liquid feeding tube 20 via a connector 19 .
is connected to.

送液チューブ20は、試薬容器21内に挿入されており
、計量ポンプ11の作動により、その下端開口から試薬
22を吸引する。
The liquid feeding tube 20 is inserted into a reagent container 21, and when the metering pump 11 is operated, a reagent 22 is sucked through the opening at its lower end.

減圧室18には、室内を減圧にするための真空ポンプ2
3と室内の圧力を検出する圧力センサ24とが設けられ
る。圧力センサ24は、信号線25を介して、コントロ
ールボックス26に接続しており、コントロールボック
ス26は、信号線27を介して、真空ポンプ茗二接続し
、これにより真空ポンプ23を制御する。
The decompression chamber 18 includes a vacuum pump 2 for reducing the pressure in the room.
3 and a pressure sensor 24 for detecting the pressure inside the room. The pressure sensor 24 is connected to a control box 26 via a signal line 25, and the control box 26 is connected to a vacuum pump 26 via a signal line 27, thereby controlling the vacuum pump 23.

本例の自動化学分析装置の試薬分注工程部分を作動させ
るには、まず、コントロールボックス26に、減圧室1
8の所望圧力、例えば100m1gの圧力を設定圧力と
して設定して、真空ポンプ23を作動させる。減圧室1
8内の圧力が約100 imHgの圧力に至ったところ
で、コントロールボックス26は、圧力センサ24から
の信号を受けて、真空ポンプ集作動を停止する。
In order to operate the reagent dispensing process part of the automatic chemical analyzer of this example, first, the control box 26 has a vacuum chamber 1
8, for example, a pressure of 100ml/g, is set as the set pressure, and the vacuum pump 23 is operated. Decompression chamber 1
When the pressure within 8 reaches approximately 100 imHg, the control box 26 receives a signal from the pressure sensor 24 and stops the vacuum pump collection operation.

減圧室18が目的の100n〜の圧力に至ったことを確
認して、三方電磁弁7のロータ15を右へ180度回板
回転たところで、計量ポンプ11のピストンを吸引移動
させると、試薬容器21内試薬22は、まず送液チュー
ブ20に入り、続いて合成樹脂膜チューブ17内に入り
、試薬内に発生した気泡及び試薬内に溶存する気体成分
が合成樹脂膜チューブ17の多孔壁を通して分離され、
計量ポンプ11内には気泡が持ち込まれない。したがっ
て、試薬が正確に計量したところで、三方電磁弁のロー
タを右側に180度回板回転て、計量ポンプ11のピス
トンを吐出側へ移動させ、反応管2に試薬を分注する。
After confirming that the pressure in the decompression chamber 18 has reached the target pressure of 100 n~, the rotor 15 of the three-way solenoid valve 7 is rotated 180 degrees to the right, and the piston of the metering pump 11 is moved by suction, and the reagent container is removed. The reagent 22 in 21 first enters the liquid feeding tube 20 and then into the synthetic resin membrane tube 17, and the bubbles generated in the reagent and the gas components dissolved in the reagent are separated through the porous wall of the synthetic resin membrane tube 17. is,
No air bubbles are brought into the metering pump 11. Therefore, when the reagent is accurately measured, the rotor of the three-way solenoid valve is rotated 180 degrees to the right, the piston of the metering pump 11 is moved to the discharge side, and the reagent is dispensed into the reaction tube 2.

(ト)  発明の効果 本発明の自動化学分析装置は、試薬分注部に減圧室と該
室内に気体透過壁を有する気体分離室を設けたので、例
えば冷蔵保存された試薬を、試薬分注に供しても、計量
ポンプに至る間に発生する気泡成分は、試薬が減圧室内
の気体分離室を通過する間に分離されるので計量時の容
積に、気泡の容積が加味されることがなくなり、計量が
正確に行われる。したがって、本発明によると、試薬分
注による検体の希釈の程度は、全検体及び全反応管につ
いて、一様とすることができ、分析精度が向上する。
(G) Effects of the Invention The automatic chemical analyzer of the present invention has a vacuum chamber in the reagent dispensing section and a gas separation chamber having a gas permeable wall in the chamber, so that, for example, refrigerated reagents can be dispensed easily. Even when the reagent is subjected to the measurement, bubbles generated while reaching the metering pump are separated while the reagent passes through the gas separation chamber in the vacuum chamber, so the volume of the bubbles is not added to the volume at the time of measurement. , weighing is performed accurately. Therefore, according to the present invention, the degree of sample dilution by reagent dispensing can be made uniform for all samples and all reaction tubes, improving analysis accuracy.

しかも、このような気泡成分の除去は、減圧室の圧力を
監視するだけで再現性よく、自動的に行われるので、従
来の冷蔵試萎の自動化学分析装置への適用にあたり、そ
の取扱いに特別の注意を払う必要がな(なり、精神的負
担を軽減することができる。
Furthermore, since the removal of such bubble components can be performed automatically and reproducibly by simply monitoring the pressure in the vacuum chamber, special care must be taken to handle the conventional refrigerated sample when it is applied to an automatic chemical analyzer. You don't have to pay attention to things (you can reduce your mental burden).

しかも、このように冷蔵保存試薬における気泡発生に伴
う計量上の問題点が解消されることは、自動化学分析の
試薬としで、酵素試薬の使用を容易にし、酵素試薬の特
異的検出及び測定といった利点を益々活用させることと
なり、今後の自動化学分析技術に及ぼす影響は大きい。
Moreover, the elimination of the measurement problems associated with the generation of air bubbles in refrigerated reagents will facilitate the use of enzyme reagents as reagents for automated chemical analysis, and will facilitate the specific detection and measurement of enzyme reagents. The advantages will be increasingly utilized, and this will have a large impact on future automated chemical analysis technology.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の自動化学分析装置の試薬分注工程部分を
中心に示す概略の説明図である。 図中の符号については、1は反応管ラック、2は反応管
、3は反応ライン、4は試薬分注位置、5は試薬分注ノ
ズル、6は三方電磁弁、11は計量ポンプ、17は合成
樹脂膜チューブ、18は減圧室、21は試薬容器、22
は試薬、23は真空ポンプ、24は圧力センサ、26は
コントロールボックスである。
The figure is a schematic explanatory diagram mainly showing the reagent dispensing process portion of the automatic chemical analyzer of the present invention. Regarding the symbols in the figure, 1 is the reaction tube rack, 2 is the reaction tube, 3 is the reaction line, 4 is the reagent dispensing position, 5 is the reagent dispensing nozzle, 6 is the three-way solenoid valve, 11 is the metering pump, and 17 is the Synthetic resin membrane tube, 18 is a vacuum chamber, 21 is a reagent container, 22
23 is a vacuum pump, 24 is a pressure sensor, and 26 is a control box.

Claims (1)

【特許請求の範囲】[Claims] 検体分注部、試薬分注部及び測光部を有する自動化学分
析装置において、試薬分注部には、試薬計量ポンプ、真
空源に連通する減圧室及び試薬容器が設けられており、
そして、該減圧室の内部には、壁体の少くとも一部が気
体透過性多孔材料で形成されていて、その一方の開口部
が試薬計量ポンプに連通し、他方の開口部が試薬容器に
連通する気体分離室が配置されていることを特徴とする
自動化学分析装置。
In an automatic chemical analyzer having a sample dispensing section, a reagent dispensing section, and a photometry section, the reagent dispensing section is provided with a reagent metering pump, a vacuum chamber communicating with a vacuum source, and a reagent container,
Inside the vacuum chamber, at least a portion of the wall is formed of a gas-permeable porous material, one opening of which communicates with the reagent metering pump, and the other opening of which communicates with the reagent container. An automatic chemical analyzer characterized in that a communicating gas separation chamber is arranged.
JP1741785A 1985-01-31 1985-01-31 Automatic chemical analysis instrument Pending JPS61176858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1741785A JPS61176858A (en) 1985-01-31 1985-01-31 Automatic chemical analysis instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1741785A JPS61176858A (en) 1985-01-31 1985-01-31 Automatic chemical analysis instrument

Publications (1)

Publication Number Publication Date
JPS61176858A true JPS61176858A (en) 1986-08-08

Family

ID=11943429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1741785A Pending JPS61176858A (en) 1985-01-31 1985-01-31 Automatic chemical analysis instrument

Country Status (1)

Country Link
JP (1) JPS61176858A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237374U (en) * 1988-09-05 1990-03-12
EP0598424A2 (en) * 1992-11-16 1994-05-25 Novellus Systems, Inc. Device for removing dissolved gas from a liquid
EP0622475A1 (en) * 1993-04-29 1994-11-02 Applied Materials, Inc. Method and apparatus for degassing semiconductor processing liquids
US6172376B1 (en) 1997-12-17 2001-01-09 American Air Liquide Inc. Method and system for measuring particles in a liquid sample
EP1445010A1 (en) * 2003-02-05 2004-08-11 The Automation Partnership (Cambridge) Limited Degassification of fluids
JP2016176777A (en) * 2015-03-19 2016-10-06 株式会社日立ハイテクノロジーズ Automatic analysis device, automatic analysis method, and automatic analysis system
CN109107227A (en) * 2018-09-04 2019-01-01 迪瑞医疗科技股份有限公司 A kind of depassing unit, degasification method and Biochemical Analyzer
WO2022147370A1 (en) * 2020-12-31 2022-07-07 Beckman Coulter, Inc. Heated degassing dispenser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237374U (en) * 1988-09-05 1990-03-12
EP0598424A2 (en) * 1992-11-16 1994-05-25 Novellus Systems, Inc. Device for removing dissolved gas from a liquid
EP0598424A3 (en) * 1992-11-16 1996-05-15 Novellus Systems Inc Device for removing dissolved gas from a liquid.
US5772736A (en) * 1992-11-16 1998-06-30 Novellus Systems, Inc. Device for removing dissolved gas from a liquid
EP0622475A1 (en) * 1993-04-29 1994-11-02 Applied Materials, Inc. Method and apparatus for degassing semiconductor processing liquids
US6172376B1 (en) 1997-12-17 2001-01-09 American Air Liquide Inc. Method and system for measuring particles in a liquid sample
EP1445010A1 (en) * 2003-02-05 2004-08-11 The Automation Partnership (Cambridge) Limited Degassification of fluids
JP2016176777A (en) * 2015-03-19 2016-10-06 株式会社日立ハイテクノロジーズ Automatic analysis device, automatic analysis method, and automatic analysis system
CN109107227A (en) * 2018-09-04 2019-01-01 迪瑞医疗科技股份有限公司 A kind of depassing unit, degasification method and Biochemical Analyzer
WO2022147370A1 (en) * 2020-12-31 2022-07-07 Beckman Coulter, Inc. Heated degassing dispenser

Similar Documents

Publication Publication Date Title
JP4570120B2 (en) Improved method and apparatus for aspirating and dispensing liquids
JP2790359B2 (en) Dilution and mixing cartridges
US6740240B2 (en) Method and apparatus for directly sampling a fluid for microfiltration
JP2001021572A (en) Method for confirming aspirated volume of fluid
JP2001526394A (en) How to verify the amount of aspirated liquid in an automatic inspection system
JPH03214058A (en) Automatic pipetting and diluting apparatus
JPS62106370A (en) Analyzer
AU2003232170A1 (en) A disposable cartridge for characterizing particles suspended in a liquid
JP2004325462A (en) Chemical analyzer and chemical analysis system
WO2017216339A1 (en) Test system for analyzing a sample of a bodily fluid
CN217410812U (en) Multi-channel thromboelastogram detection chip based on micro-fluidic
JPS61176858A (en) Automatic chemical analysis instrument
CN109959549A (en) Sample testing method and sample analyser
JPH0121467B2 (en)
EP0478048A2 (en) Process and apparatus for the electrochemical determination of PCO2 in blood
AU579339B2 (en) Blood sampler with sample and pippette tube purpose of determining blood sedimentation
JPH10339716A (en) Liquid component measuring instrument
JP2003107080A (en) Blood analyzer and method therefor
Kitagawa et al. A quantitative detector-tube method for breath-alcohol estimation
JPH0643074A (en) Device for selective charging to analyzer
JP3299832B2 (en) Analysis equipment
JPS61200473A (en) Method for analyzing flow of liquid specimen
Siggaard-Andersen et al. Semiautomatic pipetting of ultramicro volumes of sample and reagent
JPS61275659A (en) Automatic chemical analyzing instrument
JPS6050452A (en) Automatic analyzer for blood examination