JPS61174612A - Manufacture of iron core - Google Patents

Manufacture of iron core

Info

Publication number
JPS61174612A
JPS61174612A JP1468685A JP1468685A JPS61174612A JP S61174612 A JPS61174612 A JP S61174612A JP 1468685 A JP1468685 A JP 1468685A JP 1468685 A JP1468685 A JP 1468685A JP S61174612 A JPS61174612 A JP S61174612A
Authority
JP
Japan
Prior art keywords
wound
core
iron core
thin plate
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1468685A
Other languages
Japanese (ja)
Inventor
Kazuo Yamada
一夫 山田
Eiji Shimomura
英二 霜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1468685A priority Critical patent/JPS61174612A/en
Publication of JPS61174612A publication Critical patent/JPS61174612A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make uniform the temperature distribution of each part of an iron core by a method wherein the generated heat corresponding to the quantity of radiant heat coming from the surface part of the iron core is added by increasing the generated loss of the surface part of the iron core. CONSTITUTION:Each of magnetic material bodies 13 is wound around between wound layers of the amorphous magnetic alloy thin plate 12 on the outer circumferential surface of a wound core 11 and the wound core 11 located adjoining to the outer circumferential surface of the wound core 11. The magnetic material body 13 has a large loss generating value, and a silicon steel plate (Curie point of approximately 700-800 deg.C, average thickness of approximately 0.35mm), which has the Curie point higher than that of the amorphous magnetic alloy thin plate 12 (Curie point of approximately 500-550 deg.C), can be used for said magnetic material body 13. Then, two wound cores 11 are arranged, and an exciting coil 14 is wound (temporary winding) on the leg part located outside each wound cores 11 in such a manner that their winding direction is reversed each other. When an annealing is performed for the purpose of removing the distortion of the wound cores 11, the exciting coil 14 is connected to a high frequency AC power source 16 using a change-over switch 15, and a high frequency AC current is applied to the exciting coil 14 by adjusting voltage using a voltage adjuster 18. When an AC current is applied to the exciting coil 14, heat is generated on the amorphous magnetic alloy thin plate 12 and the magnetic material body 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は変圧器などに用いられる非晶質磁性合金薄板か
らなる鉄心に歪取り焼鈍を行な5鉄心の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a five-iron core, which is used in transformers and the like, by subjecting an iron core made of an amorphous magnetic alloy thin plate to stress relief annealing.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、変圧器などに用いる巻鉄心および積層鉄心におい
ては、鉄心材料として非晶質磁性合金薄板を用いること
が検討されつつある。非晶質磁性合金薄板は磁性合金の
溶湯を超急冷して製造したもので、従来からの鉄心材料
であるけい素鋼板に比して鉄損(損失)が大幅に小さく
磁気特性に優れている。
Recently, the use of amorphous magnetic alloy thin plates as the core material for wound cores and laminated cores used in transformers and the like is being considered. Amorphous magnetic alloy thin sheets are manufactured by ultra-quenching molten magnetic alloy, and have significantly lower core loss than silicon steel sheets, the traditional core material, and have excellent magnetic properties. .

しかし、非晶質磁性合金薄板は、超急冷法により製造す
るために1急冷時の歪により鉄損の増大など磁気特性が
極端に低下しており、本来の優れた磁気特性が得られな
い、とのため、非晶質磁性合金薄板からなる鉄心は、鉄
心組立後に歪取り焼鈍を行なって非晶質磁性合金薄板の
歪を除去し、鉄損の減少などの非晶質磁性合金本来の磁
気特性の回復を図っている。この焼鈍は、鉄心を磁場中
に置いて磁気異方性を与えて磁気特性の改善を図る方法
である。
However, since amorphous magnetic alloy thin plates are manufactured using an ultra-quenching method, their magnetic properties are extremely degraded due to strain during the first quenching, including an increase in iron loss, making it impossible to obtain the original excellent magnetic properties. For this reason, iron cores made of amorphous magnetic alloy thin plates are subjected to strain relief annealing after core assembly to remove the strain on the amorphous magnetic alloy thin plates, thereby improving the original magnetic properties of the amorphous magnetic alloy, such as reducing iron loss. Efforts are being made to restore the characteristics. This annealing is a method for improving magnetic properties by placing an iron core in a magnetic field to impart magnetic anisotropy.

非晶質磁性合金材料の焼鈍温度は、その種類によりても
異なるが、現在変圧器用鉄心材料として最も適切とされ
ているア2イド社製METGLAS 2605 S 2
では、390〜410℃程度が適切である。
The annealing temperature of the amorphous magnetic alloy material varies depending on the type, but METGLAS 2605 S2 manufactured by A2ID Co., Ltd. is currently considered the most suitable material for transformer core materials.
In this case, a temperature of about 390 to 410°C is appropriate.

しかして、この焼鈍を行なう場合には、次の点が重要で
ある。非晶質磁性合金薄板は焼鈍温度条件が狭く、鉄心
の各部分を温度分布が均一になるように適正な焼鈍温度
範囲に昇温しないと、熱応力により磁気特性が低下して
、その本来の優れた磁気特性の回復を図ることができな
い。
However, when performing this annealing, the following points are important. Amorphous magnetic alloy thin plates have narrow annealing temperature conditions, and if the temperature is not raised to an appropriate annealing temperature range so that the temperature distribution is uniform in each part of the core, the magnetic properties will deteriorate due to thermal stress and the original properties will be lost. It is not possible to recover excellent magnetic properties.

従来、非晶質磁性合金薄板からなる鉄心の焼鈍は、外部
熱源により鉄心を加熱する方式が採用されている。すな
わち、第5図で示すように非晶質磁性合金薄板2からな
る鉄心1、例えば非晶質磁性合金薄板2を巻回してなる
巻鉄心に磁界印加用のコイル3を巻回し、この鉄心If
屯熟熱ヒータ図示せず)を熱源とする恒温槽4の内部に
収容する。そして、直流電源5によりコイル3に直流電
流を通電して鉄心1に磁界を印加するとともに、電熱ヒ
ータの加熱により恒温槽4内部を所定の焼鈍温度に上昇
させて鉄心1を加熱することにより焼鈍を行なう・しか
しながら、このような焼鈍方法においては、鉄心lは熱
源である電熱ヒータの輻射熱により外部から加熱される
ので、鉄心内部まで良好に加熱されず、鉄心1表面と内
部の温度分布が不均一になる。このため、鉄心1の非晶
質磁性合金薄板2は熱応力により磁気特性が低下して、
本来の磁気特性を回復することが困難である。また、電
熱ヒータにより鉄心lを所定の焼鈍温度すなわち400
℃程度まで加熱するために、恒温槽4内部も同温度まで
昇温するので、仮りに変圧器コイルを巻回した鉄心1を
恒温槽4の内部に入れて焼鈍を行なうと、変圧器コイル
も一緒に外部から400’Cまで加熱される。
Conventionally, for annealing an iron core made of an amorphous magnetic alloy thin plate, a method has been adopted in which the iron core is heated using an external heat source. That is, as shown in FIG. 5, a coil 3 for applying a magnetic field is wound around an iron core 1 made of an amorphous magnetic alloy thin plate 2, for example, a wound iron core made by winding the amorphous magnetic alloy thin plate 2, and this iron core If
It is housed inside a constant temperature bath 4 whose heat source is a heat source (not shown). Then, a direct current is passed through the coil 3 by the DC power source 5 to apply a magnetic field to the iron core 1, and the inside of the constant temperature bath 4 is raised to a predetermined annealing temperature by heating with an electric heater to heat the iron core 1, thereby annealing it. However, in such an annealing method, the iron core 1 is heated from the outside by the radiant heat of the electric heater that is the heat source, so the inside of the iron core is not properly heated, and the temperature distribution between the surface and inside of the iron core 1 is uneven. It becomes uniform. Therefore, the magnetic properties of the amorphous magnetic alloy thin plate 2 of the iron core 1 deteriorate due to thermal stress.
It is difficult to restore the original magnetic properties. In addition, the iron core l was heated to a predetermined annealing temperature of 400°C using an electric heater.
℃, the temperature inside thermostatic oven 4 is also raised to the same temperature, so if the iron core 1 with the transformer coil wound thereon is placed inside thermostatic oven 4 for annealing, the transformer coil will also heat up to the same temperature. Together they are heated externally to 400'C.

しかるく、一般に変圧器コイルの絶縁被覆に用いる絶縁
物は、耐熱性の限度が低く、400℃の温度まで加熱さ
れると、絶縁物が損傷して実用性がなくなる。このため
、焼鈍前の工程で鉄心1に変圧器フィルを巻回して、そ
の後に焼鈍を行なうことは、変圧器コイルの破損を伴5
ので困難であり、焼鈍後の工程で鉄心Jに変圧器コイル
を巻回することになる。しかし、焼鈍後の鉄心1は非晶
質磁性合金薄板2の脆化現象を伴うので、焼鈍後に鉄心
1にコイルを巻回する組立作業を行なうと、非晶質磁性
合金薄板2が外力により破損する機会が増大して、鉄心
lの品質を低下させることになる。
However, the insulators used for the insulation coating of transformer coils generally have a low limit of heat resistance, and when heated to a temperature of 400° C., the insulators are damaged and become impractical. For this reason, winding the transformer fill around the core 1 in the process before annealing and then annealing it will cause damage to the transformer coil.
Therefore, it is difficult to wind the transformer coil around the iron core J in the process after annealing. However, since the iron core 1 after annealing is accompanied by the embrittlement phenomenon of the amorphous magnetic alloy thin plate 2, when assembling work to wind a coil around the iron core 1 after annealing is performed, the amorphous magnetic alloy thin plate 2 is damaged by external force. This increases the chance that the quality of the iron core will deteriorate.

しかして、最近非晶質磁性合金薄板からなる鉄心に巻回
したコイルに励磁用高周波電流を通して鉄心を励磁し、
この励磁により鉄心に生ずる損失で鉄心自身を発熱昇温
させて焼鈍する方法が開発されている。(特願昭59−
39506号)この方法は変圧器コイルの巻回作業や変
圧器中身の組立作業の大部分を焼鈍の前工程として行な
うことができ、焼鈍により非晶質磁性合金薄板が脆化し
た後の鉄心の取扱いを極力少なくして非晶質磁性合金薄
板に外力が加わる機会を少なくできる利点がある。
Recently, however, a high frequency current for excitation is passed through a coil wound around an iron core made of an amorphous magnetic alloy thin plate to excite the iron core.
A method has been developed in which the iron core itself is annealed by generating heat and increasing its temperature by the loss that occurs in the iron core due to this excitation. (Special application 1982-
(No. 39506) This method allows most of the work of winding the transformer coil and assembling the transformer contents to be performed as a pre-annealing process, and it is possible to perform most of the work of winding the transformer coil and assembling the transformer contents as a pre-annealing process. This has the advantage of minimizing handling and reducing the chances of external force being applied to the amorphous magnetic alloy thin plate.

しかしながらこの高周波焼鈍方法は、高周波励磁により
鉄心自身に発生する損失が鉄心の温度上昇が300℃程
度まではほとんど変化しないが、300℃を越えると鉄
心の飽和磁束密度の低下および透磁率の低下によって鉄
心の鉄損が低下する現象が生じる。このため鉄心の温度
上昇速度が低下する。そして鉄心温度が高くなると鉄心
表面からの放熱量が増大するので、鉄心表面部の温度上
昇が遅くなり、鉄心表面部の温度が鉄心内部の温度に対
して約30〜50℃程低くなって、鉄心の非晶質磁性合
金薄板積厚方向の温度差が生じる。このため鉄心の各部
分の温度分布が不均一になり、適正な焼鈍温度範囲を外
れて非晶質磁性合金薄板本来の優れた磁気特性を回復し
た鉄心を得ることがむづかしいという問題があった。
However, with this high-frequency annealing method, the loss generated in the core itself due to high-frequency excitation does not change much until the temperature of the core rises to about 300℃, but when it exceeds 300℃, the saturation magnetic flux density and magnetic permeability of the core decrease. A phenomenon occurs in which the iron loss of the iron core decreases. Therefore, the rate of temperature rise of the iron core decreases. As the core temperature increases, the amount of heat dissipated from the core surface increases, so the temperature rise on the core surface slows down, and the temperature on the core surface becomes about 30 to 50 degrees Celsius lower than the temperature inside the core. A temperature difference occurs in the thickness direction of the amorphous magnetic alloy thin plates of the iron core. As a result, the temperature distribution in each part of the iron core becomes nonuniform, and there is a problem in that it is difficult to obtain an iron core that recovers the excellent magnetic properties inherent to the amorphous magnetic alloy thin plate when the temperature is outside the appropriate annealing temperature range.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたもので、非晶質磁
性合金薄板からなる鉄心に対して良好な焼鈍を効率良く
行なうことができ、以て非晶質磁性合金本来の優れた磁
気特性を充分発揮して品質の良い鉄心を得ることができ
る鉄心の製造方法を提供することを目的とするものであ
る。
The present invention has been made based on the above-mentioned circumstances, and it is possible to efficiently perform good annealing on an iron core made of an amorphous magnetic alloy thin plate, thereby maintaining the excellent magnetic properties inherent to the amorphous magnetic alloy. It is an object of the present invention to provide a method for manufacturing an iron core that can produce iron cores with sufficient performance and high quality.

〔発明の概要〕[Summary of the invention]

本発明の鉄心の製造方法は、非晶質磁性合金薄板からな
る鉄心の薄板積厚方向両側の各表面部およびこれら各表
面近傍の心内部に、非晶質磁性合金薄板に比して損失発
生値が大きく且つキューリ点が高い磁性材料体、例えば
けい素鋼板を配置し、鉄心を高周波励磁して、その発生
損失により鉄心自身を発熱させて焼鈍を行なうものであ
り、鉄心表面部の発生損失を増大させて鉄心表面部から
の放熱量に見合った発生熱を加えることKより、鉄心各
部の温度分布を均一化したものである。
The manufacturing method of the iron core of the present invention is characterized in that loss occurs in each surface portion of the iron core made of amorphous magnetic alloy thin plates on both sides in the thickness direction of the thin plates and inside the core in the vicinity of these surfaces, compared to the amorphous magnetic alloy thin plates. Annealing is performed by arranging a magnetic material with a high Curie point, such as a silicon steel plate, and exciting the core with high frequency to generate heat in the core itself due to the generated loss.The generated loss on the surface of the core is By increasing the temperature and adding generated heat commensurate with the amount of heat dissipated from the surface of the core, the temperature distribution in each part of the core is made uniform.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する。 Embodiments of the present invention illustrated in the drawings will be described below.

第1図ないし第3図は本発明方法の一実施例を示すもの
で、この実施例は巻鉄心f:2組並べて歪取り焼鈍する
場合を対象忙している。
FIGS. 1 to 3 show an embodiment of the method of the present invention, and this embodiment deals with the case where two sets of wound cores f are lined up and subjected to strain relief annealing.

まず、帯状をなす非晶質磁性合金薄板12を矩形状に巻
回して巻鉄心11を形成する・この巻鉄心11f:形成
するに際して、第2図およびH3図で示すように巻鉄心
11の薄板積厚方向両側の各表面および巻鉄心11内部
の前記各表面に近接する箇所に各々帯板状をなす磁性材
料体13を配置する。すなわち、巻鉄心11の内周表面
およびこの内周表面に近接する巻鉄心1ノ内部における
非晶質磁性合金薄板120巻回層間に各々磁性材料体1
3f:巻回し、また巻鉄心1ノの外周表面およびこの外
周表面に近接する巻鉄心1ノ内部におゆる非晶質磁性合
金薄板12の巻回層間に各々磁性材料体13を巻回する
First, the band-shaped amorphous magnetic alloy thin plate 12 is wound into a rectangular shape to form the wound core 11. When forming this wound core 11f, as shown in FIGS. 2 and H3, the thin plate of the wound iron core 11 is Magnetic material bodies 13 in the form of strips are disposed on each surface on both sides in the stacking thickness direction and at locations close to each surface inside the wound core 11. That is, each magnetic material body 1 is placed between the winding layers of the amorphous magnetic alloy thin plate 120 on the inner circumferential surface of the wound core 11 and inside the wound core 1 adjacent to this inner circumferential surface.
3f: Winding, and the magnetic material 13 is wound between the wound layers of the amorphous magnetic alloy thin plate 12 on the outer peripheral surface of the wound core 1 and inside the wound core 1 adjacent to this outer peripheral surface.

なお、各磁性材料体13の巻回数は1〜数回である。磁
性材料体13は非晶質磁性合金薄板12に比して損失発
生値が大きく、且つ非晶質磁性合金薄板12のキューり
点(約500〜550℃)よりも高いキューリ点を有す
るものを用いる。これは後述するように巻鉄心11にお
いて磁性材料体13t−配置した部分の温度上昇を助成
するとともに1温度上昇による飽和磁束密度の低下およ
び透磁率の低下を防止するためである。また磁性材料体
13の厚さは非晶質磁性合金薄板12の厚さく約30μ
)に比して厚肉のものを用いて損失発生値を大きくする
ことが望ましい。このような磁性材料体13としては、
例えばけい素鋼板(キューリ魚釣700〜800℃、平
均厚さ約0.35■)を用いることができる。このよう
にして表面部に磁性材料体J3を配置した非晶質磁性合
金薄板J2かうなる巻鉄心11を形成する・ 次いで、2個の巻鉄心11を並べて各巻鉄心11の外側
の脚部に励磁コイル14を巻回方向を互いに逆向きにし
て各々巻回(仮巻)する。
Note that the number of turns of each magnetic material body 13 is one to several times. The magnetic material body 13 has a higher loss generation value than the amorphous magnetic alloy thin plate 12 and has a Curie point higher than that of the amorphous magnetic alloy thin plate 12 (approximately 500 to 550°C). use This is to help increase the temperature of the portion of the wound core 11 where the magnetic material 13t is arranged, as will be described later, and to prevent a decrease in saturation magnetic flux density and magnetic permeability due to a single temperature increase. Further, the thickness of the magnetic material body 13 is approximately 30μ, which is the thickness of the amorphous magnetic alloy thin plate 12.
) It is desirable to use a thicker one to increase the loss occurrence value. As such a magnetic material body 13,
For example, a silicon steel plate (700 to 800° C., average thickness of about 0.35 mm) can be used. In this way, the wound core 11 is formed of the amorphous magnetic alloy thin plate J2 with the magnetic material J3 arranged on the surface. Next, the two wound cores 11 are arranged side by side, and the outer leg of each wound core 11 is energized. The coils 14 are each wound (tentatively wound) in opposite winding directions.

励磁コイル14の巻回数は適宜設定する。励磁コイル1
4は切換スイッチ15を介して高周波交流電源16と直
流電源17とに接続する。図中18は高周波交流電源1
6の電圧を調整する電圧調整器である。
The number of turns of the excitation coil 14 is set appropriately. Excitation coil 1
4 is connected to a high frequency AC power source 16 and a DC power source 17 via a changeover switch 15. 18 in the figure is high frequency AC power supply 1
This is a voltage regulator that adjusts the voltage of 6.

なお、各巻鉄心11の内側の脚部には共通に変圧器コイ
ル19を巻回する。
Note that a transformer coil 19 is commonly wound around the inner leg portion of each winding core 11.

そしズ、巻鉄心11の歪取り焼鈍を行なう場合には、切
換スイッチ15により励磁コイル14を高周波交流電源
16へ接続し、電圧調整器18により電圧を調整して励
磁コイル14に高周波交流電流を流す・この交流電流の
周波数は1−以上、例えば2〜4 kHz K選定する
。励磁コイル14に交流電流を流すと磁束の発生により
巻鉄心11における非晶質磁性合金薄板12および磁性
材料体13にうず電流が流れ、この5ず電流に伴う電力
損失により非晶質磁性合金薄板12および磁性材料体1
31C熱が発生する。すなわち、巻鉄心1ノの内部は非
晶質磁性合金薄板12の発熱により温度上昇し、また巻
鉄心11の表面部は非晶質磁性合金薄板120発熱と磁
性材料体13の発熱とKよって温度上昇する。
When performing strain relief annealing on the wound core 11, the excitation coil 14 is connected to the high frequency AC power supply 16 by the changeover switch 15, the voltage is adjusted by the voltage regulator 18, and the high frequency AC current is applied to the excitation coil 14. The frequency of this alternating current is selected to be 1- or higher, for example, 2 to 4 kHz. When an alternating current is passed through the excitation coil 14, magnetic flux is generated and eddy currents flow through the amorphous magnetic alloy thin plate 12 and the magnetic material body 13 in the wound core 11, and the power loss accompanying this current causes the amorphous magnetic alloy thin plate to 12 and magnetic material body 1
31C fever occurs. That is, the temperature inside the wound core 1 rises due to the heat generated by the amorphous magnetic alloy thin plate 12, and the temperature of the surface portion of the wound core 11 increases due to the heat generated by the amorphous magnetic alloy thin plate 120 and the heat generated by the magnetic material 13. Rise.

巻鉄心11の温度が非晶質磁性合金薄板12の適正焼鈍
温度の400℃まで上昇すれば、電圧調整器111Vc
より交流電流の電圧を調整して温度400℃を一定時間
例えば約30分間保持すを励磁した時に、巻鉄心11の
中央側脚部における磁束の方向が互いに逆向きになり、
この中央側脚部に巻回した変圧器コイル13には磁束に
よる誘起電圧が生じない。また、仮巻コイルJ4を互い
に逆直列に接続しても同じ効果が得られる。
When the temperature of the wound core 11 rises to 400°C, which is the appropriate annealing temperature of the amorphous magnetic alloy thin plate 12, the voltage regulator 111Vc
When the voltage of the alternating current is adjusted and the temperature is maintained at 400° C. for a certain period of time, for example, about 30 minutes, the magnetic flux directions in the central leg of the wound core 11 become opposite to each other.
No induced voltage due to magnetic flux is generated in the transformer coil 13 wound around this central leg. Moreover, the same effect can be obtained even if the temporary winding coils J4 are connected in anti-series with each other.

その後に1切換スイツチ18の操作で励磁コイル14を
交流電源16から直流電源77に切換え接続する。これ
により、巻鉄心11は交流による励磁が停止され冷却を
始める。同時に直流電源17から励磁コイル14に直流
電流が流れ、巻鉄心11に対して磁場を形成する。この
ようにして巻鉄心11を磁場中にて冷却する。
Thereafter, the excitation coil 14 is switched and connected from the AC power source 16 to the DC power source 77 by operating the 1 changeover switch 18. As a result, the wound core 11 is stopped from being excited by alternating current and starts cooling. At the same time, a DC current flows from the DC power supply 17 to the excitation coil 14, forming a magnetic field with respect to the wound core 11. In this way, the wound core 11 is cooled in the magnetic field.

なお、巻鉄心11に巻回した磁性材料体13は、その巻
回数が少なく巻鉄心11の非晶質磁性合金薄板12に与
える影蕃が少ないために巻鉄心111c巻回したままで
も良く、この場合には巻鉄心11の剛性を高めることが
できる11また巻鉄心11に巻回した励磁コイルJ4は
焼鈍終了後に巻鉄心2ノから取外す。
Note that the magnetic material 13 wound around the wound core 11 has a small number of windings and has little influence on the amorphous magnetic alloy thin plate 12 of the wound core 11, so it may be left wound on the wound core 111c. In this case, the rigidity of the wound core 11 can be increased.In addition, the excitation coil J4 wound around the wound core 11 is removed from the wound core 2 after annealing is completed.

しかして、このような方法で巻鉄心11に歪取り焼鈍を
行なうと、巻鉄心11が温度上昇する時に、非晶質磁性
合金薄板12より損失発生値が大なる磁性材料体13が
、巻鉄心11の内周表面部および外周表面部の発生損失
を増大させて鉄心表面からの放熱による温度上昇の低下
に見合った熱量を加えるので、鉄心表面部を鉄心内部と
同様に温度上昇させて巻鉄心11の薄板積厚方向の温度
分布を均一にし、巻鉄心11の各部を均一に加熱するこ
とができる。
Therefore, when strain relief annealing is performed on the wound core 11 in this manner, when the temperature of the wound iron core 11 rises, the magnetic material 13, which has a larger loss generation value than the amorphous magnetic alloy thin plate 12, is removed from the wound core 11. In order to increase the generated loss on the inner circumferential surface and the outer circumferential surface of No. 11 and add an amount of heat commensurate with the reduction in temperature rise due to heat radiation from the core surface, the temperature of the core surface is increased in the same way as the inside of the core, and the wound core is The temperature distribution in the thickness direction of the thin plates 11 can be made uniform, and each part of the wound core 11 can be heated uniformly.

第4図は、巻鉄心に対し磁性材料体を組込んだ本発明方
法と磁性材料体を組込まない方法により各々高周波焼鈍
を行なった場合における巻鉄心の薄板積厚方向の温度分
布を示している。
Figure 4 shows the temperature distribution in the thickness direction of the thin plate of the wound core when induction annealing is performed by the method of the present invention in which a magnetic material body is incorporated into the wound core and the method in which a magnetic material body is not incorporated. .

なお、高周波焼鈍は交流電流の周波数6 kHz s磁
束密度0.8テスラの条件で行なった。第4図において
、実線Aは本発明方法による場合の温度分布を、破線B
は従来方法による温度分布を示している。この線図忙よ
れば本発明方法では従来方法に比較して巻鉄心の内周表
面部と外周表面部の温度が高くなり、薄板積厚方向の温
度分布が均一化されていることが認められる。
The high-frequency annealing was performed under the conditions of an alternating current frequency of 6 kHz, a magnetic flux density of 0.8 Tesla. In FIG. 4, the solid line A represents the temperature distribution according to the method of the present invention, and the broken line B
shows the temperature distribution according to the conventional method. According to this diagram, it can be seen that in the method of the present invention, the temperature at the inner and outer peripheral surfaces of the wound core is higher than in the conventional method, and the temperature distribution in the thickness direction of the thin plate is made more uniform. .

さらに1磁性材料体13は非晶質磁性合金薄板12に比
して損失発生値が大きく且つキューリ点が高い材料を用
いているので、非晶質磁性合金薄板12の適正焼鈍温度
400C″&で温度上昇しても飽和磁束密度の低下およ
び透磁率の低下はほとんど認められず、温度上昇速度の
遅れが大変少ない。このため巻鉄心11の温度上昇速度
の遅れを改善できる。
Furthermore, since the first magnetic material body 13 is made of a material with a larger loss generation value and a higher Curie point than the amorphous magnetic alloy thin plate 12, the appropriate annealing temperature of the amorphous magnetic alloy thin plate 12 is 400C''& Even when the temperature rises, there is hardly any decrease in the saturation magnetic flux density or magnetic permeability, and there is very little delay in the temperature rise rate.Therefore, the delay in the temperature rise rate of the wound core 11 can be improved.

なお、前述した実施例では巻鉄心を高周波励磁するため
に、巻鉄心に仮巻した励磁コイルを用いているが、これ
に限定されず巻鉄心に巻回した変圧器コイルを利用して
も良り、但し、この場合高圧用では変圧器コイルの絶縁
の問題が生じるので、低圧用の変圧器に採用することが
可能である。
In addition, in the above-mentioned embodiment, an excitation coil temporarily wound around the wound iron core is used in order to excite the wound iron core at high frequency, but the present invention is not limited to this, and a transformer coil wound around the wound iron core may also be used. However, in this case, there will be problems with the insulation of the transformer coil in high-voltage applications, so it can be used in low-voltage transformers.

また、巻鉄心を冷却する時に巻鉄心に直流磁界を付与す
るためには励磁コイルを利用する方法の他に、変圧器フ
ィルを利用することも可能であり、さらに巻鉄心を加熱
させる過程から巻鉄心に直流磁界を付与することも可能
である。
In addition to the method of using an excitation coil, it is also possible to use a transformer fill in order to apply a DC magnetic field to the winding core when cooling the winding core. It is also possible to apply a DC magnetic field to the iron core.

焼鈍を行なう鉄心は巻鉄心に限定されず、非晶質磁性合
金薄板を積層してなる積層鉄心も対象忙して同等の効果
を得ることができる。
The core to be annealed is not limited to a wound core, and a laminated core made of laminated amorphous magnetic alloy thin plates can also be used to obtain the same effect.

焼鈍を行なう場合には、鉄心に変圧器コイルを巻回して
おくことが晶質上および製造上有利である。しかし必ず
しもこれに限らず、鉄心に変圧器コイルを巻回しないで
焼鈍することも可能である。
When annealing is performed, it is advantageous in terms of crystallinity and manufacturing to wind the transformer coil around the iron core. However, the present invention is not limited to this, and it is also possible to perform annealing without winding the transformer coil around the iron core.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ5に本発明の鉄心の製造方法によれば、
非晶質磁性合金薄板からなる鉄心を均一な温度分布で効
率良く温度上昇させて高周波励磁による焼鈍を行なうこ
とができ、磁気特性に優れた鉄心を得ることができる。
According to the method for manufacturing the iron core of the present invention as explained above,
An iron core made of an amorphous magnetic alloy thin plate can be annealed by high-frequency excitation by efficiently raising the temperature with a uniform temperature distribution, and an iron core with excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一実施例を示す説明図、第
2図は同実施例における巻鉄心を拡大して示す正面図、
第3図は第2図■−■線に泊5断面図、第4図は高周波
焼鈍を行なった場合における巻鉄心の温度分布を示す線
図、第5図は従来の鉄心焼鈍方法を示す説明図である。 1ノ・・・巻鉄心、J2・・・非晶質磁性合金薄板、1
3・・・磁性材料体、14・・・励磁コイル、16・・
・交流電源、77・・・直流電源。 出願人代理人 弁理士 鈴 江 武 彦第 1 図 第2図 第4図 第5図
FIG. 1 is an explanatory diagram showing an embodiment of the manufacturing method of the present invention, FIG. 2 is an enlarged front view of the wound core in the same embodiment,
Figure 3 is a sectional view taken along the line ■-■ in Figure 2, Figure 4 is a diagram showing the temperature distribution of the wound core when induction annealing is performed, and Figure 5 is an explanation showing the conventional core annealing method. It is a diagram. 1 No.: Wound core, J2: Amorphous magnetic alloy thin plate, 1
3... Magnetic material body, 14... Excitation coil, 16...
・AC power supply, 77...DC power supply. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質磁性合金薄板からなる鉄心における薄板積
厚方向両側の各表面およびこれら各表面近傍の鉄心内部
に、前記非晶質磁性合金薄板に比して損失発生値が大き
く且つキューリ点が高い磁性材料体を配置し、前記鉄心
に巻回したコイルに高周波電流を通して前記鉄心を励磁
し、この励磁に伴い前記鉄心に生ずる損失により前記鉄
心自身を発熱させて焼鈍を行なうことを特徴とする鉄心
の製造方法。
(1) In the iron core made of the amorphous magnetic alloy thin plate, each surface on both sides in the thickness direction of the thin plate and inside the core near each of these surfaces has a larger loss generation value than the amorphous magnetic alloy thin plate and has a Curie point. The iron core is characterized by arranging a magnetic material having a high magnetic material, passing a high frequency current through a coil wound around the iron core to excite the iron core, and generating heat in the iron core itself due to the loss generated in the iron core due to this excitation to perform annealing. A manufacturing method for iron cores.
(2)磁性材料体はけい素鋼板である特許請求の範囲第
1項に記載の鉄心の製造方法。
(2) The method for manufacturing an iron core according to claim 1, wherein the magnetic material is a silicon steel plate.
JP1468685A 1985-01-29 1985-01-29 Manufacture of iron core Pending JPS61174612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1468685A JPS61174612A (en) 1985-01-29 1985-01-29 Manufacture of iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1468685A JPS61174612A (en) 1985-01-29 1985-01-29 Manufacture of iron core

Publications (1)

Publication Number Publication Date
JPS61174612A true JPS61174612A (en) 1986-08-06

Family

ID=11868085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1468685A Pending JPS61174612A (en) 1985-01-29 1985-01-29 Manufacture of iron core

Country Status (1)

Country Link
JP (1) JPS61174612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256211A (en) * 1991-12-19 1993-10-26 Allied Signal Rapid annealing method using shorted secondary technique
US10879777B2 (en) 2017-12-11 2020-12-29 Ford Global Technologies, Llc Rapid stress relief annealing of a stator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256211A (en) * 1991-12-19 1993-10-26 Allied Signal Rapid annealing method using shorted secondary technique
US10879777B2 (en) 2017-12-11 2020-12-29 Ford Global Technologies, Llc Rapid stress relief annealing of a stator

Similar Documents

Publication Publication Date Title
US20060096427A1 (en) Bulk stamped amorphous metal magnetic component
US1857215A (en) Electrical induction apparatus
JPS61174612A (en) Manufacture of iron core
JPH0552652B2 (en)
JPS61179507A (en) Manufacture of iron core
JPH06346219A (en) Magnetic material using amorphous magnetic alloy, method for producing the same and device therefor
JPS6159812A (en) Manufacture of core
JPS61181116A (en) Manufacture of rolled iron core
JPS6174315A (en) Manufacture of iron core
JPS62210609A (en) Manufacture of wound core
JPS61174613A (en) Manufacture of iron core
JPS6137925A (en) Heat treatment of iron core
JPS6154612A (en) Manufacture of core
JPS61292907A (en) Manufacture of wound core
JPS61181115A (en) Manufacture of rolled iron core
JPH03263309A (en) Manufacture of static electrical equipment provided with wound iron core
JPS6252912A (en) Annealing method for iron core
JPS61179519A (en) Manufacture of iron core
JPS6265312A (en) Method for annealing iron core
JPS61180410A (en) Manufacture of iron core
JPS61180413A (en) Manufacture of iron core
JPS6140016A (en) Manufacture of core
JPS61292906A (en) Manufacture of wound core
JPS636822A (en) Manufacture of mound core
JPS62226611A (en) Annealing of iron core