JPS61174378A - Production of rigid material coated with boron nitride - Google Patents

Production of rigid material coated with boron nitride

Info

Publication number
JPS61174378A
JPS61174378A JP1389585A JP1389585A JPS61174378A JP S61174378 A JPS61174378 A JP S61174378A JP 1389585 A JP1389585 A JP 1389585A JP 1389585 A JP1389585 A JP 1389585A JP S61174378 A JPS61174378 A JP S61174378A
Authority
JP
Japan
Prior art keywords
boron nitride
borazine
substrate
mixed gas
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1389585A
Other languages
Japanese (ja)
Other versions
JPH0582474B2 (en
Inventor
Masaru Yagi
優 八木
Toshinori Horie
堀江 敏則
Yoshitaka Maekawa
前川 善孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP1389585A priority Critical patent/JPS61174378A/en
Publication of JPS61174378A publication Critical patent/JPS61174378A/en
Publication of JPH0582474B2 publication Critical patent/JPH0582474B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a covered layer coated with boron nitride having superior denseness and high hardness by forcing the mixed gas of nitrogen and boron hydride to pass through the inside of a reaction vessel during electric discharge and then by introducing the mixed gas onto the heated surface of a substrate at a specified temperature. CONSTITUTION:The pretreated substrate is placed in the reaction vessel, the air is exhausted from said vessel and the substrate is heated up to 200-1,500 deg.C. Electric discharge is carried within said vessel by a direct current, high-frequency and microwave, and >=1 kinds of the mixed gas selected from hydrogen, boron hydride, borazine or borazine derivatives is forced to pass through during electric discharge. The mixed gas is introduced onto the heated substrate surface and a covered layer coated with boron nitride is formed on the substrate surface. In addition, in this case the internal pressure within said vessel is regulated to about 0.001-300Torr and the thickness of the covered layer coated with boron nitride is regulated to about 0.03-30mu.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相反応法によって基体表面に窒化ホウ素か
らなる被覆層を形成させる硬質窒化ホウ素被覆材料の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a hard boron nitride coating material in which a coating layer made of boron nitride is formed on the surface of a substrate by a gas phase reaction method.

(従来の技術) 窒化ホウ素は、主として3種類の結晶構造のものが存在
し、その1つは常圧で容易に合成される軟質で潤滑性に
すぐれた六方晶型窒化ホウ素であり、他の2つは、高圧
、高温という特殊な条件で合成される硬質で緻密な立方
晶型窒化ホウ素及びウルツ鉱型窒化ホウ素である。これ
らの窒化ホウ素の内、立方晶型窒化ホウ素は、製造方法
が確立されており、又ダイヤモンドに次いで高硬度で、
しかもダイヤモンドは鉄との親和性が高いのに対し立方
晶型窒化ホウ素は鉄との親和性が低いことから、例えば
鉄系材料の切削用工具として注目されている材料である
。このように鉄との親和性が低く、高硬度、高熱伝導性
、高電気絶縁性を有する立方晶型窒化ホウ素を被覆層と
して基体表面に形成する方法が種々追究されている。
(Prior art) Boron nitride mainly has three types of crystal structures, one of which is hexagonal boron nitride, which is soft and has excellent lubricity and is easily synthesized at normal pressure. The two are hard and dense cubic boron nitride and wurtzite boron nitride, which are synthesized under special conditions of high pressure and high temperature. Among these boron nitrides, cubic boron nitride has an established manufacturing method and has the second highest hardness after diamond.
Furthermore, while diamond has a high affinity for iron, cubic boron nitride has a low affinity for iron, so it is a material that is attracting attention as a tool for cutting iron-based materials, for example. Various methods are being investigated to form cubic boron nitride, which has low affinity for iron and has high hardness, high thermal conductivity, and high electrical insulation, as a coating layer on the surface of a substrate.

従来、基体表面に窒化ホウ素からなる被WI層を形成さ
せる方法としては、大別すると化学蒸着法(CVD)と
物理蒸着法(PVD)がある、この内、前者の方法とし
ては、ハロゲン化ホウ素又はシボランの如きホウ化物と
アンモニア又はヒドラジンと水素との反応ガス中で行な
う方法がある。
Conventionally, methods for forming a WI layer made of boron nitride on the surface of a substrate can be roughly divided into chemical vapor deposition (CVD) and physical vapor deposition (PVD). Alternatively, there is a method in which the reaction is carried out in a reaction gas of a boride such as ciborane, ammonia or hydrazine, and hydrogen.

一方後者の方法としては、イオンビームデポジシオン法
、イオン注入法又はイオンビームデポジション法と蒸着
法を組合わせた方法もしくはイオン注入法と蒸着法を組
合わせた方法がある。
On the other hand, the latter method includes ion beam deposition, ion implantation, a combination of ion beam deposition and evaporation, or a combination of ion implantation and evaporation.

(発明が解決しようとする問題点) 従来、基体表面に窒化ホウ素からなる被覆層を形成する
方法の内、化学薄着法による場合は、単なる熱的な気相
反応であるために軟質な六方晶型窒化ホウ素からなる被
覆層しか形成されないという問題がある。物理蒸着法の
内、イオンビームデポジション法による場合は、高真空
高電圧用装置とイオンビーム発生装置及び集束装置が必
要で設備容量に対する処理量も少ないために高価に付き
、しかも形成される被覆層は立方晶型窒化ホウ素本来の
硬さに比べて相当低いという問題があり、イオン注入法
による場合は、処理に要する時間がながく、しかも高硬
度の窒化ホウ素の被覆層が形成され難いという問題があ
る。
(Problems to be Solved by the Invention) Among the conventional methods for forming a coating layer made of boron nitride on the surface of a substrate, the chemical thin coating method is a simple thermal gas phase reaction, so it is difficult to form a soft hexagonal crystal layer. There is a problem in that only a coating layer made of type boron nitride is formed. Of the physical vapor deposition methods, the ion beam deposition method requires high vacuum, high voltage equipment, an ion beam generator, and a focusing device, and the throughput is small relative to the equipment capacity, making it expensive and difficult to form. The problem is that the hardness of the layer is considerably lower than that of cubic boron nitride, and when using the ion implantation method, the processing time is long and it is difficult to form a highly hard boron nitride coating layer. There is.

本発明は、上記のような問題点を解決したもので、特に
基体表面に緻密性、高硬度性及び結晶性にすぐれた窒化
ホウ素の被覆層を低温で容易に形成することができる方
法を提供することを目的とする。
The present invention solves the above-mentioned problems, and particularly provides a method for easily forming a coating layer of boron nitride with excellent density, high hardness, and crystallinity on the surface of a substrate at a low temperature. The purpose is to

(発明を解決するための手段) 本発明者らは、基体表面に高硬度で緻密な膜状の窒化ホ
ウ素からなる被覆層を形成する方法を追究することによ
って本発明を完成するに至ったものである。すなわち、
本発明の硬質窒化ホウ素被覆材料の製造方法は、直流、
高周波又はマイクロ波により放電させた反応容器内で、
窒素と水素化ホウ素、ボラジン又はボラジン誘導体の中
の少なくとも1種を放電中に通過させてなる混合ガス、
もしくは窒粛を放電中に通過させた抜水素化ホウ素、ボ
ラジン又はボラジン誘導体の中の少なくとも1種との混
合ガスを200℃〜1500℃に加熱した基体表面に導
入して、該基体表面に窒化ホウ素からなる被覆層を形成
させる方法である。この本発明の方法を具体的に説明す
ると、全屈9合金、焼結合金、セラミックスを含めた焼
結体又は複合材料からなる基体の表面を必要によっては
研削、研摩又はラッピングなどの加工を施した抜水、中
性洗剤、有機溶剤などで洗浄したり、必要によっては蒸
気洗浄、超音波洗浄又は表面エツチングを行ない、次い
で基体を乾燥後反応容器内に設置する。この反応容器を
真空に排気した後窒素と水素化ホウ素、ボラジン又はボ
ラジン誘導体の中の少なくとも1種とを反応容器内に送
入して直流、高周波又はマイクロ波により発生した放電
中を通過させた混合ガスを200℃〜1500℃に加熱
した基体表面に導入して窒化ホウ素からなる被覆層を基
体表面に形成させることができる。また、反応容器を真
空に排気した後窒素を反応容器内に送入して直流、高周
波又はマイクロ波により発生した放電中を通過させた抜
水素化ホウ素、ボラジン又はボラジン誘導体の中の少な
くとも1種とで混合ガスを200℃〜1500℃に加熱
した基体表面に導入して窒化ホウ素からなる被覆層を基
体表面に形成することもできる。ここで使用す、る水素
化ホウ素とは、化学式がBaHbで表示される例えばB
2 H6のジポラン、BaHI。
(Means for Solving the Invention) The present inventors have completed the present invention by pursuing a method of forming a coating layer made of boron nitride in the form of a highly hard and dense film on the surface of a substrate. It is. That is,
The method for manufacturing the hard boron nitride coating material of the present invention includes direct current,
In a reaction vessel discharged by high frequency or microwave,
A mixed gas formed by passing nitrogen and at least one of boron hydride, borazine or a borazine derivative during discharge,
Alternatively, a mixed gas with at least one of borohydride, borazine, or borazine derivatives, which has been passed through nitrogen gas during discharge, is introduced into the substrate surface heated to 200°C to 1500°C to apply nitriding to the substrate surface. This is a method of forming a coating layer made of boron. To specifically explain the method of the present invention, the surface of a substrate made of a sintered body or a composite material including a full bending 9 alloy, sintered alloy, and ceramics is subjected to processing such as grinding, polishing, or lapping as necessary. The substrate is then washed with a neutral detergent, an organic solvent, etc., steam cleaning, ultrasonic cleaning, or surface etching if necessary, and then dried and placed in a reaction vessel. After the reaction vessel was evacuated, nitrogen and at least one of borohydride, borazine, or a borazine derivative were introduced into the reaction vessel and passed through a discharge generated by direct current, high frequency, or microwave. A coating layer made of boron nitride can be formed on the surface of the substrate by introducing the mixed gas onto the surface of the substrate heated to 200° C. to 1500° C. In addition, at least one of dehydrogenated boron hydride, borazine, or borazine derivatives, in which nitrogen is introduced into the reaction container after the reaction container is evacuated and passed through a discharge generated by direct current, high frequency, or microwave. A coating layer made of boron nitride can also be formed on the surface of the substrate by introducing the mixed gas into the surface of the substrate heated to 200° C. to 1500° C. As used herein, borohydride is represented by the chemical formula BaHb, for example, B
2 H6 Ziporan, BaHI.

のテトラポテン+ B 5 H9のペンタポラン9゜B
s Hllのペンタポラン11.B6HIGのヘキサポ
ラン10.B6H12のヘキサポラン12゜B8 B1
2のオクタポラン12.BaH+sのオクタポラン18
などがあり、ボラジン又はボラジン誘導体とは、化学式
が83N3H6のボラジン又はBxNyHzで表示され
るボラジン誘導体を示し、ボラジン誘導体としては、六
員環構造からなる例えばBs Ns Haのボラゾナフ
タレン。
Tetrapotene + B 5 H9 Pentaporane 9゜B
s Hll's Pentaporan 11. B6HIG Hexaporan 10. B6H12 Hexaporan 12゜B8 B1
2 octaporan 12. BaH+s octaporan 18
Borazine or borazine derivatives refer to borazine having the chemical formula 83N3H6 or borazine derivatives represented by BxNyHz, and examples of borazine derivatives include borazonaphthalene having a six-membered ring structure, such as Bs Ns Ha.

B6N6HIOのボラゾビ7xニル、B3 Ns Hs
の2.4−ジアミノボラジンなどがある。これらの水素
化ホウ素、ボラジン又はボラジン誘導体を反応容器内に
送入するときは、ジポランのように常温常圧で気体のも
のはそのまま気体のジポランを送入したり、窒素又は不
活性ガスと混合して送人することもできる。その他ペン
タポランのような水素化ホウ素、ボラジン又はボラジン
誘導体などのように常温常圧で液体のものは窒素又は不
活性ガスをキャリアガスとして反応容器内に送入するこ
とができる。窒素と水素化ホウ素、ボラジン又はボラジ
ン誘導体の中の少なくとも1種とを直流、高周波又はマ
イクロ波による放電中に通過させてなる混合ガスを基体
表面に導入するときは、反応容器内に設置する基体の位
置は、放電領域内もしくは放電領域外で放電中を通過し
た混合ガスが排出口側に対流している対流領域内であっ
てもよい、また、窒素を直流、高周波又はマイクロ波に
よる放電中に通過させた抜水素化ホウ素、ボラジン又は
ボラジン誘導体の中の少なくとも1種とで混した混合ガ
スを基体表面に導入するときは、反応容器内に設置する
基体の位置は、放電領域内よりもむしろ放電領域外で混
合ガスが排出口側に対流している対流領域内の方が望ま
しい、ここで使用する基体は、加熱温度が200℃〜1
500℃であることからAM、Cu、Fe、Ni 。
B6N6HIO Borazobi7x Nil, B3 Ns Hs
and 2,4-diaminoborazine. When feeding these boron hydrides, borazine or borazine derivatives into the reaction vessel, if they are gaseous at room temperature and pressure, such as diporane, gaseous diporane may be fed as is, or mixed with nitrogen or an inert gas. You can also send it. In addition, borohydride such as pentaporane, borazine or borazine derivatives which are liquid at room temperature and normal pressure can be fed into the reaction vessel using nitrogen or an inert gas as a carrier gas. When introducing a mixed gas formed by passing nitrogen and at least one of boron hydride, borazine, or a borazine derivative into the substrate surface during discharge by direct current, high frequency, or microwave, the substrate is placed in a reaction vessel. The position may be within the discharge area or within the convection area where the mixed gas that has passed through the discharge outside the discharge area is convected to the discharge port side. When introducing a mixed gas mixed with at least one of dehydrogenated borohydride, borazine, or borazine derivatives to the surface of the substrate, the position of the substrate installed in the reaction vessel should be set at a position lower than the inside of the discharge region. Rather, it is preferable to be in a convection area where the mixed gas convects toward the discharge port side outside the discharge area.The substrate used here has a heating temperature of 200℃ to 1
Since the temperature is 500°C, AM, Cu, Fe, and Ni.

Co 、S i 、Mo 、W、Ti 、Taなどの割
合低融点金属のものから、高融点金属のものまで含めた
各種金属、又はA1合金、Cu合金、Si合金、ステン
レス、耐熱合金、工具鋼、鋳物などの各種合金、もしく
は粉末冶金法によって作製される焼結ハイス、超硬合金
、サーメットなどの焼結合金、あるいはAlI303系
セラミツクス。
Various metals ranging from low melting point metals such as Co, Si, Mo, W, Ti, Ta, etc., to high melting point metals, A1 alloy, Cu alloy, Si alloy, stainless steel, heat resistant alloy, tool steel. , various alloys such as castings, or sintered alloys such as sintered high speed steel, cemented carbide, and cermet made by powder metallurgy, or AlI303 ceramics.

Zr0z系セラミツクス、Si3N4系セラミックス、
SiC系セラミックス、 T i C系セラミックス、
TiB2系セラミックス、AiN系セラミックスなどの
酸化物系セラミックスから非酸化物系セラミックスを含
む焼結体やダイヤモンド系高圧焼結体、立方晶型窒化ホ
ウ素系高圧焼結体などの各種焼結体、ざらにはこれらの
金属9合金、焼結合金、焼結体などにメッキ、CVD 
、PVDによって金属1合金又は周期律表4a、5a、
6a族金属の炭化物、窒化物、酸化物、ホウ化物もしく
はこれらの相互固溶体あるいはAl2O3。
Zr0z ceramics, Si3N4 ceramics,
SiC ceramics, T i C ceramics,
Various sintered bodies including oxide ceramics such as TiB2 ceramics and AiN ceramics, sintered bodies including non-oxide ceramics, diamond-based high-pressure sintered bodies, cubic boron nitride-based high-pressure sintered bodies, and rough These metal 9 alloys, sintered alloys, sintered bodies, etc. are plated and CVD
, metal 1 alloy or periodic table 4a, 5a, by PVD
Group 6a metal carbides, nitrides, oxides, borides or mutual solid solutions thereof or Al2O3.

A立Nなどを単層又は多重層で被覆した複合材料並びに
これら金属1合金、焼結合金焼結体などの異種材料を少
なくとも2種以上で積層した複合材料などが使用できる
Composite materials in which A-N is coated in a single layer or in multiple layers, and composite materials in which at least two or more different materials such as these metal 1 alloys and sintered alloy sintered bodies are laminated can be used.

本発明の硬質窒化ホウ素被覆材料の製造方法において緻
密で硬質な窒化ホウ素の被覆層を形成するためには、特
に反応容器内の内圧が大きく影響し、この内圧によって
軟質な六方晶型窒化ホウ素又は非晶質の窒化ホウ素の混
在した被覆層となることから反応容器内の内圧は、0.
001Torr 〜300Torrにすることが望まし
い、これら各種の基体の表面に被覆する窒化ホウ素から
なる被覆層は、用途及び形状によって異なるけれども被
覆層の特性を有効に発揮させるためと被覆層内剥離を防
ぐ必要から0.3終m〜30pm厚さにすることが望ま
しく、特に衝撃が加わるような用途に応用するとき、切
削用工具の中でもドリルのように鋭角な刃先形状のもの
に応用するとき又は耐摩耗用工具の中でもペンポール及
びドツトピンのように極小形のものに応用するときには
被ta層厚さは0.3終TXA〜3JLmと薄くするこ
とが望ましい、被覆層を形成するときの基体の加熱温度
は、基体の材質又は形状によっても異なるけれども基体
と被覆層との密着性、被mRの粒径及び被覆層の析出速
度から500℃〜1100℃が望ましい。
In order to form a dense and hard boron nitride coating layer in the manufacturing method of the hard boron nitride coating material of the present invention, the internal pressure in the reaction vessel has a particularly large influence. Since the coating layer is a mixture of amorphous boron nitride, the internal pressure inside the reaction vessel is 0.
The coating layer made of boron nitride coated on the surface of these various substrates, which is preferably set at 001 Torr to 300 Torr, is necessary to effectively exhibit the characteristics of the coating layer and to prevent peeling within the coating layer, although it varies depending on the application and shape. It is desirable to have a thickness of 0.3 m to 30 pm, especially when applied to applications where impact is applied, when applied to cutting tools with sharp cutting edges such as drills, or when using wear-resistant When applying to extremely small tools such as pen poles and dot pins, it is desirable that the thickness of the coated layer be as thin as 0.3 TXA to 3 JLm.The heating temperature of the substrate when forming the coating layer is Although it varies depending on the material or shape of the substrate, the temperature is preferably 500° C. to 1100° C. in view of the adhesion between the substrate and the coating layer, the particle size of the mR to be subjected to mR, and the deposition rate of the coating layer.

(作用) 本発明の硬質窒化ホウ素被覆材料の製造方法は、実際の
理論的メカニズムについては明らかでないが化学的反応
性に富む水素化ホウ素、ボラジン又はボラジン誘導体と
窒素が放電中を通過して励起状態又は原子状態の高いエ
ネルギー状態となり、この励起されたBとNが加熱した
基体表面でB−Nの構造を形成することによって硬質窒
化ホウ素からなる被覆層になる。又は放電中を通過して
励起状態又は原子状態の高いエネルギー状態の窒素と化
学的反応性に富み分解した状態の水素化ホウ素、ボラジ
ン又はボラジン誘導体がより高いエネルギー状態になっ
て加熱した基体表面でB−Nの構造を形成し、硬質窒化
ホウ素からなる被覆層になるものである。このとき水素
化ホウ素、ボラジン又はボラジン誘導体の内、特にボラ
ジン又はボラジン誘導体のように水素と窒素を含有した
ホウ素化合物が高硬度性、緻密性及び結晶性にすぐれた
被覆層の形成を容易にする傾向がある。この本発明の方
法は、気相反応法によって低温で容易に硬質窒化ホウ素
の被覆層を形成することが可能で、その被覆層は1.0
uLm以下の微細粒子で緻密な膜状の薄層になりやすく
、このために被覆層と基体との密着性もすぐれたものと
なる。
(Function) Although the actual theoretical mechanism is not clear in the manufacturing method of the hard boron nitride coating material of the present invention, chemically reactive boron hydride, borazine or borazine derivative and nitrogen pass through a discharge and are excited. The excited B and N form a B--N structure on the heated substrate surface, resulting in a coating layer made of hard boron nitride. Or, borohydride, borazine or borazine derivatives in a decomposed state that are highly chemically reactive with nitrogen in a high energy state in an excited state or atomic state through a discharge become in a higher energy state and are heated on the heated substrate surface. It forms a BN structure and becomes a coating layer made of hard boron nitride. At this time, among boron hydride, borazine, or borazine derivatives, boron compounds containing hydrogen and nitrogen, such as borazine or borazine derivatives, facilitate the formation of a coating layer with high hardness, density, and crystallinity. Tend. The method of the present invention makes it possible to easily form a hard boron nitride coating layer at a low temperature by a gas phase reaction method, and the coating layer has a thickness of 1.0
The fine particles of less than uLm tend to form a dense film-like thin layer, and therefore the adhesion between the coating layer and the substrate is excellent.

(実施例) 実施例1 反応容器内を真空排気した後窒素200mQ/winを
供給して0.05Torrにした0次いで窒素をキャリ
アガスとしてボラジン30−/層inを反応容器内に供
給し、窒素とボラジンをマイクロ波出力300Wによる
放電中に通過させてなる混合ガスを放電領域内に設置し
て1000℃に加熱した基体表面に導入し、窒化ホウ素
からなる被覆層を形成した。ここで使用した基体は、J
IS規格P30相当の超硬合金の表面に1.0pmのT
 i CN層の内層と0.5鉢mのAfiN暦を外層と
する複合材料であった。得られた被覆材料を走査型電子
顕微鏡、X線回折、オージェ分光法により測定した所、
被覆層は1.5pm厚さで、粒径が1.0pm以下の立
方晶型窒化ホウ素からなる膜状の薄層であることが確認
できた。このようにして得た被覆層の硬さは、4100
 kg/mm2ビッカース硬度であった。
(Example) Example 1 After evacuating the inside of the reaction vessel, 200 mQ/win of nitrogen was supplied to bring the pressure to 0.05 Torr.Next, 30 mQ/layer of borazine was supplied into the reaction vessel using nitrogen as a carrier gas. A mixed gas obtained by passing through and borazine during discharge with a microwave output of 300 W was placed in the discharge region and introduced onto the surface of the substrate heated to 1000° C. to form a coating layer made of boron nitride. The substrate used here is J
1.0pm T on the surface of cemented carbide equivalent to IS standard P30
It was a composite material with an inner layer of i CN layer and an outer layer of AfiN layer of 0.5 pot m. When the obtained coating material was measured using a scanning electron microscope, X-ray diffraction, and Auger spectroscopy,
The coating layer had a thickness of 1.5 pm and was confirmed to be a film-like thin layer made of cubic boron nitride with a grain size of 1.0 pm or less. The hardness of the coating layer thus obtained was 4100.
The Vickers hardness was kg/mm2.

実施例2 反応容器内を真空排気した後窒素300m1J/■in
を供給して系内圧力をITo r rにし、この窒素を
マイクロ波出力400Wによる放電中に通過させた後ア
ルゴンガスをキャリアガスとして送入したボラジン50
−/膳inと混合した。この混合ガスを放電領域外でガ
ス排出口側に設置して1100℃に加熱したSi3N4
系セラミックス(S ix Na−5%Y2O3−10
%A見N組成)の基体表面に導入して窒化ホウ素からな
る被覆層を形成した。得られた被覆材料を走査型電子顕
微鏡、X線回折、オージェ分光法により測定した所、被
覆層は1.0gm厚さで、粒径が1.0gm以下の立方
晶型窒化ホウ素からなる膜状の薄層であることが確認で
きた。
Example 2 After evacuating the inside of the reaction vessel, nitrogen was added at 300 m1J/■in.
was supplied to bring the system pressure to ITorr, and this nitrogen was passed through during discharge with a microwave output of 400 W, and then borazine 50 was introduced with argon gas as a carrier gas.
-/mixed with Zenin. This mixed gas was placed outside the discharge area on the gas outlet side and heated to 1100°C.
ceramics (Six Na-5%Y2O3-10
A coating layer made of boron nitride was formed by introducing boron nitride onto the surface of the substrate. When the obtained coating material was measured using a scanning electron microscope, X-ray diffraction, and Auger spectroscopy, it was found that the coating layer was 1.0 gm thick and was in the form of a film made of cubic boron nitride with a particle size of 1.0 gm or less. It was confirmed that it was a thin layer of

実施例3 反応容器内を真空排気した後窒素400J/sinを供
給して系内圧力を50Torrにした0次いでジポラン
50+J/winを反応容器内に供給して、窒素とジポ
ランをマイクロ波出力400Wによる放電中に通過させ
てなる混合ガスを放電領域内に設置して700℃に加熱
したMo板の基体表面に導入し、窒化ホウ素からなる被
覆!#奄影形成た。得られた被覆材料を走査型電子顕微
鏡。
Example 3 After evacuating the inside of the reaction vessel, 400 J/sin of nitrogen was supplied to make the system pressure 50 Torr.Next, 50+J/win of Diporan was supplied into the reaction vessel, and nitrogen and Diporan were evacuated by microwave output of 400 W. The mixed gas passed through during the discharge was introduced onto the surface of the Mo plate which was heated to 700°C in the discharge area, and a coating made of boron nitride was formed! #Amakage formation. Scanning electron microscopy of the resulting coating material.

X線回折、オージェ分光法により測定した所、被覆層は
3.0pm厚さの立方晶型窒化ホウ素からなる膜状の薄
層であることが確認できた。
As measured by X-ray diffraction and Auger spectroscopy, it was confirmed that the coating layer was a thin film-like layer made of cubic boron nitride with a thickness of 3.0 pm.

実施例4 反応容器内を真空排気した後窒素4001w0/m:n
を供給して系内圧力を150Torrにし、この窒素を
マイクロ波出力400Wによる放電中に通過させた後ジ
ポランをキャリアガスとしてジポランとボラジンを50
d/量in反応容器に供給した。この窒素とジポランと
ボラジンの混合ガスを放電領域外でガス排出口側に設置
して500℃に、加熱した基体表面に導入して窒化ホウ
素からなる被覆層を形成した。ここで使用した一体は、
高速度鋼(SKH−9)の表面に1.07zmのT1C
N層の内層と0.54mのA28層を外層とする複合材
料であった。得られた被覆材料を実施例3と同様に調べ
た所、略、実施?13と同様な傾向にあることが確認で
きた。
Example 4 After evacuating the inside of the reaction vessel, nitrogen 4001w0/m:n
was supplied to make the system pressure 150 Torr, and this nitrogen was passed through during discharge with a microwave output of 400 W. Diporan and borazine were then heated at 50 Torr using Diporan as a carrier gas.
d/amount in the reaction vessel. This mixed gas of nitrogen, diporane, and borazine was placed outside the discharge region on the gas outlet side and introduced onto the heated substrate surface at 500° C. to form a coating layer made of boron nitride. The one used here is
1.07zm T1C on the surface of high speed steel (SKH-9)
It was a composite material with an inner layer of N layer and an outer layer of A28 layer of 0.54 m. The obtained coating material was examined in the same manner as in Example 3, and it was found that the result was approximately 10%. It was confirmed that there was a similar trend as in No. 13.

(発明の効果) 以上の結果1本発明の硬質窒化ホウ素被覆材料の製造方
法は、立方晶型窒化ホウ素からなる硬質な被積層が低温
で容易に得られることから切削用工具及び耐摩耗用工具
に応用することができ、特に鉄との親和性の低い立方晶
型窒化ホウ素の硬質被覆層を形成することができること
から鋼、鋳物又は耐熱合金を含めた各種の高硬度材料及
び難削材料の切削用工具として利用することができる。
(Effects of the Invention) Results 1 The method for manufacturing the hard boron nitride coating material of the present invention is suitable for cutting tools and wear-resistant tools because a hard laminated layer made of cubic boron nitride can be easily obtained at low temperatures. It can be applied to various hard materials and difficult-to-cut materials, including steel, castings, and heat-resistant alloys, because it can form a hard coating layer of cubic boron nitride, which has a low affinity for iron. It can be used as a cutting tool.

また、耐食性及び化学的安定性にすぐれた緻密で薄膜状
の窒化ホウ素からなる被覆層であるのでノズル、メカニ
カルシール、バルブ等の耐J’J耗用工具にも利用する
ことができる。さらに高電気絶縁性、高熱伝導性及び高
硬度性の被覆層を有する被覆材料の製造方法であること
から半導体用チップを含めたエレクトロニクス材料など
の機能材料用に応用できる産業上有用なものである。
Furthermore, since it is a coating layer made of dense and thin boron nitride with excellent corrosion resistance and chemical stability, it can be used for J'J wear-resistant tools such as nozzles, mechanical seals, and valves. Furthermore, since it is a method for producing a coating material having a coating layer with high electrical insulation, high thermal conductivity, and high hardness, it is industrially useful and can be applied to functional materials such as electronic materials including semiconductor chips. .

Claims (2)

【特許請求の範囲】[Claims] (1)直流、高周波又はマイクロ波により放電させた反
応容器内で、窒素と水素化ホウ素、ボラジン又はボラジ
ン誘導体の中の少なくとも1種を放電中に通過させてな
る混合ガス、もしくは窒素を放電中に通過させた後水素
化ホウ素、ボラジン又はボラジン誘導体の中の少なくと
も1種との混合ガスを200℃〜1500℃に加熱した
基体表面に導入して、該基体表面に窒化ホウ素からなる
被覆層を形成させることを特徴とする硬質窒化ホウ素被
覆材料の製造方法。
(1) A mixed gas formed by passing nitrogen and at least one of boron hydride, borazine, or a borazine derivative during discharge, or nitrogen during discharge in a reaction vessel discharged by direct current, high frequency, or microwave. A gas mixture with at least one of boron hydride, borazine, or a borazine derivative is introduced onto the surface of the substrate heated to 200°C to 1500°C to form a coating layer made of boron nitride on the surface of the substrate. A method for producing a hard boron nitride coating material, characterized by forming a hard boron nitride coating material.
(2)上記反応容器が0.001Torr〜300To
rrの内圧であることを特徴とする特許請求の範囲第1
項記載の硬質窒化ホウ素被覆材料の製造方法。
(2) The reaction vessel is 0.001 Torr to 300 Torr
Claim 1 characterized in that the internal pressure is rr.
A method for producing a hard boron nitride coated material as described in 2.
JP1389585A 1985-01-28 1985-01-28 Production of rigid material coated with boron nitride Granted JPS61174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1389585A JPS61174378A (en) 1985-01-28 1985-01-28 Production of rigid material coated with boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1389585A JPS61174378A (en) 1985-01-28 1985-01-28 Production of rigid material coated with boron nitride

Publications (2)

Publication Number Publication Date
JPS61174378A true JPS61174378A (en) 1986-08-06
JPH0582474B2 JPH0582474B2 (en) 1993-11-19

Family

ID=11845912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1389585A Granted JPS61174378A (en) 1985-01-28 1985-01-28 Production of rigid material coated with boron nitride

Country Status (1)

Country Link
JP (1) JPS61174378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079038A (en) * 1990-10-05 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Hot filament CVD of boron nitride films
US5242663A (en) * 1989-09-20 1993-09-07 Sumitomo Electric Industries, Ltd. Method of and apparatus for synthesizing hard material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038744A1 (en) * 2014-09-12 2016-03-17 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate processing apparatus and recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116780A (en) * 1983-11-28 1985-06-24 Kyocera Corp Manufacture of high hardness boron nitride film
JPS61149478A (en) * 1984-12-25 1986-07-08 Furukawa Mining Co Ltd Production of boron nitride film of hexagonal or cubic crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116780A (en) * 1983-11-28 1985-06-24 Kyocera Corp Manufacture of high hardness boron nitride film
JPS61149478A (en) * 1984-12-25 1986-07-08 Furukawa Mining Co Ltd Production of boron nitride film of hexagonal or cubic crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242663A (en) * 1989-09-20 1993-09-07 Sumitomo Electric Industries, Ltd. Method of and apparatus for synthesizing hard material
US5436036A (en) * 1989-09-20 1995-07-25 Sumitomo Electric Industries, Ltd. Method of synthesizing hard material
US5079038A (en) * 1990-10-05 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Hot filament CVD of boron nitride films

Also Published As

Publication number Publication date
JPH0582474B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US4731303A (en) Cubic boron nitride coated material and producing method of the same
US6083570A (en) Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings
JPS62196371A (en) Diamond coated member having high adhesiveness
JPS627267B2 (en)
Gaydaychuk et al. Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings
JP4295830B2 (en) Coating of cemented carbide substrate or carbide containing cermet substrate with hard material
JPS6215484B2 (en)
JPH07315989A (en) Production of diamond coated member
JPS61174378A (en) Production of rigid material coated with boron nitride
JPS62133068A (en) Diamond coated member
JPH06262405A (en) Coating part for tool
JP3353239B2 (en) Method for producing diamond-coated member
JPS5993869A (en) Structure coated with hard layer containing diamond
JPH0582473B2 (en)
JPS61266576A (en) Production of member coated with high-hardness boron nitride
JP2004338041A (en) Cutting insert and tool unit
JPS61104078A (en) Hard coated sintered alloy and its manufacture
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JP3260157B2 (en) Method for producing diamond-coated member
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
JPH05214532A (en) Coated sintered body
JPH0558070B2 (en)
JPH0542509B2 (en)
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof