JPS61173777A - Immobilized bacterium, production thereof and method of water treatment - Google Patents

Immobilized bacterium, production thereof and method of water treatment

Info

Publication number
JPS61173777A
JPS61173777A JP60013165A JP1316585A JPS61173777A JP S61173777 A JPS61173777 A JP S61173777A JP 60013165 A JP60013165 A JP 60013165A JP 1316585 A JP1316585 A JP 1316585A JP S61173777 A JPS61173777 A JP S61173777A
Authority
JP
Japan
Prior art keywords
water
microorganisms
resin
immobilized
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60013165A
Other languages
Japanese (ja)
Other versions
JPH0130476B2 (en
Inventor
Shigeru Honda
繁 本田
Yukio Murakami
幸夫 村上
Ichiro Toyama
一郎 遠山
Hiroshi Sano
寛 佐野
Muneharu Makita
蒔田 宗治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Arakawa Chemical Industries Ltd
Original Assignee
Agency of Industrial Science and Technology
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Arakawa Chemical Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP60013165A priority Critical patent/JPS61173777A/en
Publication of JPS61173777A publication Critical patent/JPS61173777A/en
Publication of JPH0130476B2 publication Critical patent/JPH0130476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain immobilized bacterium having preferable characteristics such as shock loading resistance, acid and alkali resistance, starvation resistance, oxygen resistance, higher fatty acid resistance, etc., by immobilizing a microorganism to the interior of a crosslinked water-absorbing resin. CONSTITUTION:Water dispersion of a bacterium is blended with a water- absorbing resin while stirring, water containing the bacterium is absorbed in the resin, and added to a solution of a polyvalent metallic salt. Water-absorption ability of the resin is reduced by the presence of the polyvalent metallic ion to release water, crosslinking reaction of the resin with the polyvalent metallic ion is caused, the bacterium is embedded in the resin, to carry out immobilization. USE:Aerobic and unaerobic treatment in water treatment fields.

Description

【発明の詳細な説明】 1皇」JソLl立夏 本発明は吸水性樹脂を保持担体とし、該樹脂の架橋反応
を利用して樹脂内に微生物を固定化する方法、これによ
り得られる固定化微生物及び該固定化微生物を使用する
水処理方法に関する。
[Detailed Description of the Invention] The present invention provides a method of immobilizing microorganisms in the resin by using a water-absorbing resin as a holding carrier and utilizing the crosslinking reaction of the resin, and the immobilization obtained by this method. The present invention relates to microorganisms and water treatment methods using the immobilized microorganisms.

11立盈1 微生物は周囲の環境に強く影響されることから高等生物
に見られない代謝能の強さと、組織の非常な不安定さと
いう2つの主要な生物学的特性があり、幅広い作用スペ
クトルを持つ生物反応器として、その物質変換能力を利
用して各種有用物質の製造分野や水処理分野等の多方面
に亘って広く実用されている。しかしながら微生−を利
、用する技術の最大の欠点としては、微生物自体が一般
に比較的不安定であり、しかも利用できる微生狗量(反
応系内濃度)に自づと制限があり、一般的有機化学反応
に比して目的物の生産性や目的とする処理能率をある程
度以上向上できないこと及び通常微生物は一回の反応に
用いられるのみで、反応後乃至は処理後に微生物を回収
して繰返し使用することが困難で、使用微生物の散逸を
避けられないことが挙げられる。特に微生物を利用し゛
て水処理を行なう代表的方法としてより知られている活
性汚l!法においては、処理効率に重大な影響を及ぼす
活性汚泥量、即ち処理すべき水に対する使用1体製度に
限界があると共に、処理後の汚泥の一部は繰返し使用で
きるものの、大量の廃棄されるべきスラッジが発生し、
その固液分離は非常に困難である。
11 Standing 1 Since microorganisms are strongly influenced by the surrounding environment, they have two major biological characteristics: a strong metabolic ability not seen in higher organisms and a highly unstable tissue, and they have a wide spectrum of action. As a biological reactor, it is widely used in various fields such as the production of various useful substances and the water treatment field by utilizing its material conversion ability. However, the biggest drawback of technology that uses microorganisms is that the microorganisms themselves are generally relatively unstable, and there is a natural limit to the amount of microorganisms that can be used (concentration in the reaction system). Compared to conventional organic chemical reactions, the productivity of the target product and the target treatment efficiency cannot be improved beyond a certain level, and microorganisms are usually only used in one reaction, so microorganisms cannot be collected after the reaction or treatment. It is difficult to use it repeatedly, and the microorganisms used cannot be avoided. In particular, activated pollutants are well known as a representative method of water treatment using microorganisms! Under the law, there is a limit to the amount of activated sludge that can be used for the water to be treated, which has a significant impact on treatment efficiency, and although some of the sludge after treatment can be used repeatedly, a large amount is discarded. sludge is generated,
Its solid-liquid separation is extremely difficult.

が 決しようとする間 本発明は、上記微生物を利用する各種分野、殊に水処理
分野において、従来避けられなかった微生物自体の安定
性の低い欠点、画体濃度を向上できない欠点、微生−の
回収、繰返し利用が困難な欠点等を悉く解決できる新し
い固定化微生物、その製造及びその利用技術を提供する
ことを目的とする。
However, the present invention is useful in various fields that utilize the above-mentioned microorganisms, particularly in the field of water treatment, and has the disadvantages of low stability of the microorganisms themselves, the drawbacks of not being able to improve image density, and the drawbacks of microorganisms that have hitherto been unavoidable. The purpose of the present invention is to provide a new immobilized microorganism that can solve all the drawbacks of difficult recovery and repeated use, as well as techniques for its production and utilization.

を  するための 本発明によれば、架橋された吸水性樹脂内に微生物が固
定されてなる固定化微生物、その製造法及び該固定化微
生物を利用する水処理方法が提供される。
According to the present invention, there are provided an immobilized microorganism in which microorganisms are immobilized within a crosslinked water-absorbing resin, a method for producing the same, and a water treatment method using the immobilized microorganism.

本発明者らは、微生物の固定化技術について鋭意研究を
重ねる過程において、近年、生理用品、衛生用品等とし
て利用されつつある吸水性樹脂が、微生物を分散させた
水を被処理水とする時には、その本来の吸水性により、
水と共にこれに分散された微生物をも樹脂内部に吸収し
て取り込み、しかも該微生物の吸収量は被処理水におけ
る微生物濃度とほぼ完全に一致し、樹脂の種類やその吸
水能とは無関係であることを見出した。しかるに上記樹
脂による微生物の取り込みは、可逆的なものであり、こ
の状態のままでは一旦取り込まれた微生物は再度水と共
に樹脂外に放出され、何ら樹脂に固定化されないもので
あったが、上記微生物を取り込んだ樹脂を、次いで多価
金属塩溶液中に投入する詩には、多価金属イオンの共存
によって樹脂の吸水−が低下し、樹脂内に吸収された水
が放出されると共に、該多価金属イオンによる樹脂の架
橋反応が生起し、この吸水膨張°した樹脂の収縮と架橋
とによって、微生物は樹脂内に包括され、・かくして所
望の微生物の固定化が行なわれ、この微生物を固定化し
た樹脂は、再度水中に分散させても樹脂内に包括された
微生物を放出することはないという新しい知見を得た0
本発明はこの知見を基礎として完成されたものである。
In the process of intensive research on microorganism immobilization technology, the present inventors discovered that water-absorbing resins, which have recently been used in sanitary products, sanitary products, etc. , due to its natural water absorbency,
Microorganisms dispersed in water are also absorbed into the resin, and the amount of microorganisms absorbed almost completely matches the concentration of microorganisms in the water to be treated, and is unrelated to the type of resin or its water absorption capacity. I discovered that. However, the uptake of microorganisms by the resin is reversible, and if the microorganisms are taken in in this state, they will be released out of the resin together with water again and will not be immobilized on the resin. In this method, the water absorption of the resin decreases due to the coexistence of polyvalent metal ions, and the water absorbed in the resin is released and the polyvalent metal salt solution is added. A cross-linking reaction of the resin occurs due to the valent metal ions, and the microorganisms are encapsulated within the resin by the contraction and cross-linking of the water-swollen resin, thus immobilizing the desired microorganisms. We obtained new knowledge that the microorganisms trapped within the resin will not be released even if the resin is dispersed in water again.
The present invention was completed based on this knowledge.

本発明の固定化微生物は、上記の通り架橋された吸水性
樹脂内に微生物を閉じ込めたものであり、該吸水性樹脂
自体優れた機械的強度、物理的・化学的安定性を有して
おり、しかも取扱い容Iな任意の形状に成形できる利点
がある。また微生物は上記樹脂内に閉じ込められ固定さ
れているため、その安定性が向上されており、しかも微
生一本来の活性は何ら損われない。また本発明の上記固
定化方法によれば被処理水とする微生−分散水の微生物
濃度に応じて樹脂内に任意の量の微生物を固定すること
ができ、特に従来の微生物を単独で、即ち固定化等を行
なうことなく、利用する場合では列置不可能な高濃度条
件での利用が可能となる。
The immobilized microorganism of the present invention is one in which microorganisms are confined within a crosslinked water-absorbing resin as described above, and the water-absorbing resin itself has excellent mechanical strength and physical and chemical stability. Moreover, it has the advantage that it can be molded into any shape that is easy to handle. Furthermore, since the microorganisms are confined and fixed within the resin, their stability is improved, and the original activity of the microorganisms is not impaired in any way. Further, according to the above immobilization method of the present invention, it is possible to immobilize any amount of microorganisms in the resin depending on the microbial concentration of the microorganism-dispersed water used as the water to be treated. That is, without immobilization or the like, it becomes possible to use it under high concentration conditions where it would not be possible to arrange it in a row.

従って例えば本発明の固定化微生物は、従来微生物が単
独で利用されている分野においてより有効に利用できる
。特にこれを水処理用活性汚泥として利用する時には、
該固定化微生物自体取扱いが容易であることは勿論のこ
と、その被処理水中濃度を顕著に向上でき、より効率良
く所望の水処理が行ない得るに加え、処理水との分離も
極めて容易であり、また汚泥の返送を必要とせず、更に
スラッジの発生量も極めて少なく、その廃棄のための処
理等も著しく軽減されるという優れた利点がある1本発
明はかかる固定化微生1を利用する水処理技術をも提供
するものである。
Therefore, for example, the immobilized microorganism of the present invention can be used more effectively in fields where microorganisms have conventionally been used alone. Especially when using this as activated sludge for water treatment,
Not only is the immobilized microorganism itself easy to handle, but its concentration in the water to be treated can be significantly increased, and the desired water treatment can be carried out more efficiently, and it is also extremely easy to separate it from the treated water. In addition, the present invention utilizes such immobilized microorganisms 1, which have the excellent advantage of not requiring the return of sludge, generating extremely little sludge, and significantly reducing the amount of processing required for its disposal. It also provides water treatment technology.

以下、本発明の固定化微生物を、その製法より詳述する
The immobilized microorganism of the present invention will be described in detail below, starting with its manufacturing method.

本発明に係る微生物の固定化方法において、用いられる
微生物としては、特に限定はなく、有用産物生産能を有
する各種微生物及び従来より水処理等の分野で広く用い
られている各種の好気性菌及び嫌気性菌のいずれでもよ
く、また之等各微生物の混合物でもよい。代表的な上記
好気性菌としては、例えばアクロモバクタ−属 (AChrOIObaCtOr ’) 、アルカリ土類
金属(A+ca++genes ) 、バチルス属(B
acillus) 、バクテリウム属(8aCterJ
IJ■)、コリネバクテリウム属(Corynebac
terium ) 、フラボバクテリウム属(Flav
obacterius) 、 vイクロバクテリウム属
(旧crobacterium) 、マイクロコツカス
属(Hicrococcus ) 、シュードモナス属
(Pseudosonas )等に属する菌を、また嫌
気性菌としては、例えばメタノバクテリウム属(Het
hanobacterium   formicium
  、H,oselianskil  、  14.D
roplonicum  、  M、sohngenl
i  、H,5uboxydans等)、メタノコツカ
ス属(Hethanococcus wazei 、 
H,vaniclii等)、メタノサルシナ属(Met
hanosarcina  methanlca 。
In the method for immobilizing microorganisms according to the present invention, there are no particular limitations on the microorganisms used, including various microorganisms capable of producing useful products and various aerobic bacteria conventionally widely used in fields such as water treatment. Any anaerobic bacteria may be used, or a mixture of these microorganisms may be used. Typical aerobic bacteria include, for example, Achromobacter (AChrOIObaCtOr'), alkaline earth metal (A+ca++genes), Bacillus (B
acillus), Bacterium (8aCterJ
IJ■), Corynebacterium spp.
terium), Flavobacterium (Flav
(formerly Crobacterium), Micrococcus (Hicrococcus), Pseudomonas (Pseudomonas), and anaerobic bacteria such as Methanobacterium (Het.
hanobacterium formicium
, H. oselianskil, 14. D
roplonicum, M. sohngenl
i, H, 5uboxydans, etc.), Hethanococcus wazei,
H. vaniclii, etc.), Methanosarcina (Met
hanosarcina methanlca.

H,barkerli等)等の菌を夫々例示できる。Bacteria such as H., Barkerli, etc.) can be exemplified.

本発明で用いられる吸水性樹脂は、吸水能を有し且つ多
価金属イオンの共存により架橋反応を生起されることを
前提として、特に制限はなく、従来公知のいずれのもの
でもよい。その具体例としては、例えばカルボキシルメ
チルセルロースの部分架橋物、デンプン−7クリロニト
リルクラフト共重合体の加水分解物、デンプン−アクリ
ル酸グラフト共重合体、ポリ(メタ)アクリル酸塩部分
架橋物、ポリビニルアルコール−(メタ)アクリル酸塩
共重合体、その他ポリビニルアルコールー無水マレイン
酸基、ポリイソブチレン−無水マレイン酸系のもの等の
多価金属イオンの共存により架橋反応を惹起されるカル
ボキシル基を分子中に有するものをあげることができる
。これらのうちでは、デンプン−アクロニトリルグラフ
ト共重合体の加水分解物、デンプン−(メタ゛)アクリ
ル酸グラフト共重合体、ポリ(メタ)アクリル酸塩部分
架橋物等が好ましい。上記の吸水性樹脂はいずれも公知
の方法、例えば特開昭56−93716号、特開昭56
−131608号、特開昭56−147806号、特開
昭58−71907号、特開昭58−117222号、
特公昭54−30710号、特公昭54−37994号
、特公昭53−46200号、米国特許第 4041228号等に示されている種々の方法で製造す
ることができる。
The water-absorbing resin used in the present invention is not particularly limited, and may be any conventionally known resin, provided that it has water-absorbing ability and that a crosslinking reaction occurs due to the coexistence of polyvalent metal ions. Specific examples thereof include partially crosslinked carboxymethylcellulose, hydrolyzate of starch-7-crylonitrile kraft copolymer, starch-acrylic acid graft copolymer, partially crosslinked poly(meth)acrylate, and polyvinyl alcohol. -(Meth)acrylate copolymers, other polyvinyl alcohol-maleic anhydride, polyisobutylene-maleic anhydride, etc. have carboxyl groups in the molecule that can cause a crosslinking reaction due to the coexistence of polyvalent metal ions. I can give what I have. Among these, hydrolysates of starch-acronitrile graft copolymers, starch-(meth)acrylic acid graft copolymers, partially crosslinked poly(meth)acrylates, and the like are preferred. The water-absorbing resins mentioned above can be prepared using known methods such as JP-A-56-93716 and JP-A-56-56.
-131608, JP 56-147806, JP 58-71907, JP 58-117222,
It can be produced by various methods such as those disclosed in Japanese Patent Publication No. 54-30710, Japanese Patent Publication No. 54-37994, Japanese Patent Publication No. 53-46200, and US Pat. No. 4,041,228.

また、本発明に利用される吸水性樹脂の吸水能は、特に
Mlされないが、下記方法により求められる吸水能が通
常10JX上であれば問題なく使用できる。一般に吸水
性樹脂としてよく知られるものは、市販品をも含め、上
記吸水能が約100〜1000の範囲にある。
Further, the water absorbing capacity of the water absorbing resin used in the present invention is not particularly determined by Ml, but if the water absorbing capacity determined by the following method is usually 10JX or higher, it can be used without problems. In general, well-known water-absorbing resins, including commercially available products, have the above-mentioned water-absorbing capacity in the range of about 100 to 1000.

(吸水能〕 (a)  200m11のビーカーに脱イオン水150
Qと吸水性樹脂試料0.12aとを加え、30分開放置
した後、200メツシユの金網で炉別し、流出してくる
水の重量を測定し、下式により吸水能を算出した。
(Water absorption capacity) (a) 150ml of deionized water in a 200ml beaker
Q and water absorbent resin sample 0.12a were added, and after being left open for 30 minutes, the mixture was separated into a furnace using a 200 mesh wire mesh, the weight of the flowing water was measured, and the water absorption capacity was calculated using the formula below.

(始めに添加したー(流出してきた 吸水性樹脂試料の重量 上記吸水性樹脂のゲル強度は、下記方法により求められ
、通常1.0X103ダイン/C−2以上であれば、問
題なく使用できる。
(The weight of the water-absorbent resin sample that flows out) The gel strength of the above-mentioned water-absorbent resin is determined by the following method, and normally if it is 1.0 x 103 dynes/C-2 or more, it can be used without problems.

〔ゲル強度〕[Gel strength]

生理食塩水60gと吸水性樹脂試料2.0gとを混合し
てゲル(以下、30倍ゲルという)を作成し、飯尾電機
株式会社製のネオカードメーターによりゲルの硬さく表
面硬さ)を測定する。ここで表面硬さとは、試料表面に
おいて感圧軸がゲルを押し退けて進入することを阻止す
る抵抗力として表わされる。
A gel (hereinafter referred to as 30x gel) was created by mixing 60 g of physiological saline and 2.0 g of a water-absorbing resin sample, and the hardness (surface hardness) of the gel was measured using a Neocard meter manufactured by Iio Electric Co., Ltd. do. Here, the surface hardness is expressed as a resistance force that prevents the pressure-sensitive shaft from pushing away the gel and entering the sample surface.

本発明方法においては、まず微生物の水分散液と吸水性
樹脂とを撹拌混合して樹脂に微生物を含む水を吸収させ
る。この際の微生物水分散液における微生物濃度、吸水
性樹脂の使用形状及び使用量は、用いる微生物及び樹脂
の種類並びに得られる固定化微生物の使用目的に応じて
適宜に決定される。通常微生物水分散液における微生物
濃度は、これがそのまま樹脂に吸収され、かくして得ら
れる微生物を吸収した樹脂が、引続く架橋反応による水
放出後、改めて各種用途での使用に当り、再度同程度の
固定化微生物の水分散液として利用されることを考慮す
れば、薗体約2000■Q/Q〜800001M Q程
度に調整されるのが望ましい。
In the method of the present invention, first, an aqueous dispersion of microorganisms and a water-absorbing resin are stirred and mixed to cause the resin to absorb water containing the microorganisms. At this time, the concentration of microorganisms in the aqueous microorganism dispersion, the shape and amount of the water-absorbing resin to be used are appropriately determined depending on the types of microorganisms and resins used, and the purpose of use of the obtained immobilized microorganisms. Normally, the concentration of microorganisms in an aqueous microbial dispersion is such that the microorganisms are absorbed as they are into the resin, and the resulting resin that has absorbed the microorganisms is then used for various purposes after releasing water through the subsequent crosslinking reaction. Considering that it will be used as an aqueous dispersion of chemical microorganisms, it is desirable to adjust the amount to about 2,000 Q/Q to 800,001 MQ.

また吸水性樹脂は、通常入手される形状、例えばビーズ
状、フィルム状、フレーク状、顆粒状、塊状等のいずれ
の形状でも任意に利用でき、その人きさも特に制限はな
いが、本発明方法に従い得られる固定化微生物、即ち微
生物を吸収させ次いで架橋反応させた後の一粒子牛に適
当な量の微生物が吸収されており、しかも該固定化微生
物が、その使用時に充分な反応媒体(被処理水等)と接
触でき、且つ使用後(反応後)固液分離が容易であるも
のとするのがよい。かかる固定化微生物の粒子径は、通
常的0.1−以上、好ましくは約1〜511程度である
のが適当である。該吸水性樹脂と微生物水分散液との使
用割合は、吸水性樹脂の吸水能に応じて任意に決定され
、通常その吸水能と対応する量、即ち吸水能100〜1
000の吸水性樹脂では、その1重層部に対して微生物
水分散液約100〜1000重量部とするのが適当であ
る。
In addition, the water-absorbing resin can be arbitrarily used in any commonly available shape, such as beads, films, flakes, granules, lumps, etc., and there is no particular restriction on its shape. An appropriate amount of microorganisms has been absorbed into the immobilized microorganisms obtained according to the method, i.e., after the microorganisms have been absorbed and then subjected to a cross-linking reaction. It is preferable to use a material that can be brought into contact with treated water, etc.) and that can be easily separated into solid and liquid after use (after reaction). The particle size of such immobilized microorganisms is generally 0.1-1 or more, preferably about 1-511. The ratio of the water-absorbing resin to the microbial aqueous dispersion is arbitrarily determined depending on the water-absorbing capacity of the water-absorbing resin, and is usually an amount corresponding to the water-absorbing capacity, that is, a water-absorbing capacity of 100 to 1.
000 water-absorbent resin, it is appropriate that the aqueous microbial dispersion should be in an amount of about 100 to 1,000 parts by weight per one layer of the water-absorbing resin.

上記微生物水分散液と吸水性樹脂との撹拌混合は、微生
物画体を水中に均一に分散させた状態で、該分散液を吸
水性樹脂の各粒子中に吸収させるために行なわれるもの
であり、通常の撹拌方法により行えばよい。この撹拌に
より吸水性樹脂の多粒 。
The stirring and mixing of the microbial aqueous dispersion and the water-absorbing resin is carried out in order to absorb the dispersion into each particle of the water-absorbing resin while the microbial images are uniformly dispersed in the water. , may be carried out by a normal stirring method. This stirring creates multiple particles of water-absorbing resin.

子牛に微生物水分散液が吸収される。The calf absorbs the microbial aqueous dispersion.

本発明方法によれば、次いで上記微生物水分散液を吸収
し膨潤した吸水性樹脂を、多価金属塩溶液と接触させて
、水の放出及び架橋反応を行なわせる。ここで用いられ
る多価金属塩としては、吸水性樹脂分子内に存在するカ
ルボキシル基を架橋反応させ得る多価金属イオン、例え
ばカルシウム、マグネシウム、銅、鉄等の2価金属イオ
ン及び鉄、アルミニウム等の3価金属イオンを提供でき
る各種のものでよい。その具体例としては例えば塩化カ
ルシウム、塩化マグネシウム、塩化第一鉄、塩化第二鉄
、塩化第二銅、塩化アルミニウム等の塩化物、硝酸カル
シウム、硝酸マグネシウム、硫酸第一鉄、硫酸第二鉄、
硫酸アルミニウム等を例示できる。之等のうちで塩化カ
ルシウム、硫酸第一鉄、硫酸第二鉄、塩化アルミニウム
、硫酸アルミニウム等は中性付近でイオン化し、微生物
に対して身性を全く及ぼすおそれがないため特に好適で
ある。上記多価金属塩溶液は、通常0.1〜5重量%程
度の濃度の水溶液形態で有利に用いられる。
According to the method of the present invention, the water-absorbing resin that has absorbed the microbial aqueous dispersion and swelled is then brought into contact with a polyvalent metal salt solution to cause water release and a crosslinking reaction. The polyvalent metal salts used here include polyvalent metal ions that can crosslink the carboxyl groups present in the water-absorbing resin molecules, such as divalent metal ions such as calcium, magnesium, copper, and iron, and iron, aluminum, etc. Various types of metal ions that can provide trivalent metal ions may be used. Specific examples include chlorides such as calcium chloride, magnesium chloride, ferrous chloride, ferric chloride, cupric chloride, aluminum chloride, calcium nitrate, magnesium nitrate, ferrous sulfate, ferric sulfate,
Examples include aluminum sulfate. Among these, calcium chloride, ferrous sulfate, ferric sulfate, aluminum chloride, aluminum sulfate, etc. are particularly suitable because they are ionized near neutrality and have no fear of affecting microorganisms at all. The above polyvalent metal salt solution is advantageously used in the form of an aqueous solution, usually with a concentration of about 0.1 to 5% by weight.

その使用量は得られる固定化微生物の微生物固定化能及
びその使用時の物理的強度に若干影響を与えるため、こ
れらの点を考慮して適当なものとするのがよく、通常は
使用される吸水性樹脂分子内に含有されるカルボキシル
基1モル当り多価金属イオンが0.03モル以上となる
量とするのが好ましい。多価金属塩溶液と微生物吸収樹
脂との接触は、単に樹脂を多価金属塩溶液中に投入して
撹拌するのみで容1に行なわれ、この接触により、樹脂
自体の吸水能の低下による吸収水の放出が起ると同時に
樹脂の架橋反応が起り、これにより結果として樹脂内部
に微生物を閉じ込めた所望の固定化微生物を収得できる
The amount used slightly affects the microbial immobilization ability of the obtained immobilized microorganisms and the physical strength when used, so it is best to take these points into account and select an appropriate amount. The amount of polyvalent metal ion is preferably 0.03 mole or more per mole of carboxyl group contained in the water-absorbing resin molecule. The contact between the polyvalent metal salt solution and the microbial absorption resin is carried out by simply adding the resin into the polyvalent metal salt solution and stirring, and this contact reduces absorption due to a decrease in the water absorption capacity of the resin itself. Simultaneously with the release of water, a crosslinking reaction of the resin occurs, and as a result, desired immobilized microorganisms can be obtained in which the microorganisms are trapped inside the resin.

かくして得られる固定化微生物は、架橋された吸水性樹
脂の内部空隙に微生物が閉じ込められていると共に、該
微生物の生存を維持し得る若干量の水を保有している。
The immobilized microorganism thus obtained has the microorganisms trapped in the internal voids of the crosslinked water-absorbing resin, and also retains a certain amount of water that can maintain the survival of the microorganisms.

またこれは基質、栄養塩等のとり込み口として通常約1
μ以下の細孔が、その表面に多数存在するものである。
It also serves as an intake port for substrates, nutrients, etc.
A large number of pores smaller than μ are present on its surface.

更に得られる固定化微生物は、その固定化によって微生
物自体例えばショックロード耐性、酸・アルカリ耐性、
飢餓耐性、酸素耐性、高級脂肪酸耐性等の好ましい緒特
性を付与されており、非常に安定なものとなっている。
Furthermore, the immobilized microorganisms obtained have properties such as shock load resistance, acid/alkali resistance,
It is endowed with favorable characteristics such as starvation resistance, oxygen resistance, and higher fatty acid resistance, making it extremely stable.

従って本発明の固定化微生物は、従来微生物がそのまま
利用されてきた分野に利用して一層良好な結果をもたら
すと共に、従来安定性、菌体濃度等の面より微生物の利
用が困難であった分野にも、微生物本来の有する生化学
反応を利用可能とするものである。特に本発明の固定化
微生物は、水処理分野における好気性処理及び嫌気性処
理に利用して、それ特有の格別顕著な効果を賽すること
ができる。以下この水処理方法につき詳述する。
Therefore, the immobilized microorganism of the present invention can be used in fields where microorganisms have conventionally been used as they are, and bring about even better results. It also makes it possible to utilize the biochemical reactions inherent in microorganisms. In particular, the immobilized microorganism of the present invention can be used in aerobic treatment and anaerobic treatment in the field of water treatment, and can provide particularly remarkable effects unique to it. This water treatment method will be explained in detail below.

本発明固定化微生物を用いる水処理方法は、従来より都
市下水や各種産業排水等の処理に広く利用されている活
性汚泥法において、活性汚泥又はその余剰汚泥を上述し
た固定化方法に従い固定化して用いることを除いては、
基本的には同様の操作により行なうことができる。即ち
活性汚泥としての固定化微生物と処理すべき汚水を混合
曝気した後、該固定化微生物と処理水とを分離して、処
理水を放流し、固定化微生物は繰返し使用すればよい。
The water treatment method using immobilized microorganisms of the present invention involves immobilizing activated sludge or its surplus sludge according to the above-mentioned immobilization method in the activated sludge method, which has been widely used in the treatment of urban sewage and various industrial wastewater. Except for using
Basically, it can be performed by the same operation. That is, after the immobilized microorganisms as activated sludge and the wastewater to be treated are mixed and aerated, the immobilized microorganisms and treated water are separated, the treated water is discharged, and the immobilized microorganisms can be used repeatedly.

特に本発明に従う水処理方法によれば、用いる微生物自
体の酸化分解能力が長期間に亘って安定に持続する利点
があり、また固定化用の吸水性樹脂内に包括される微生
物量を任意に増加させることによって、被処理水当りの
微生物濃度を従来の約2倍以上に増加させても、充分な
処理が可能であり、これにより処理効率を顕著に向上で
きる。また従来の活性汚泥法では微生物の増殖等により
処理水と共に搬出されるスラッジ(浮遊物)が多く、そ
の処理のための煩雑な操作及びこれに伴われるコストの
増大は避けられなかったが、本発明によれば、上記スラ
ッジ量を約174程度以下に減少させることができる。
In particular, the water treatment method according to the present invention has the advantage that the oxidative decomposition ability of the microorganisms used remains stable over a long period of time, and the amount of microorganisms contained in the water-absorbing resin for immobilization can be controlled arbitrarily. By increasing the concentration of microorganisms per water to be treated, sufficient treatment is possible even if the concentration of microorganisms per water to be treated is increased to about twice or more than the conventional level, and thereby treatment efficiency can be significantly improved. In addition, in the conventional activated sludge method, a large amount of sludge (floating material) is carried out with the treated water due to the growth of microorganisms, etc., and the complicated operations for processing the sludge and the resulting increase in costs were unavoidable. According to the invention, the amount of sludge can be reduced to about 174 or less.

しかも本発明方法では用いる固定化微生物自体の固液分
離が1常に容易であるため、汚泥のバルキング現象等の
起る弊害も確実に回避することができる。また、嫌気性
lI酵処理においては、菌体濃度を従来の数倍以上に高
めることが可能であり、処理時間の短縮、処理装置の小
型化等が可能である。之等の効果は、後記する実施例に
おいて詳細に説明する。
Furthermore, in the method of the present invention, solid-liquid separation of the immobilized microorganism itself used is always easy, so that adverse effects such as sludge bulking phenomenon can be reliably avoided. Furthermore, in the anaerobic II fermentation treatment, it is possible to increase the bacterial cell concentration several times or more than the conventional one, and it is possible to shorten the treatment time and downsize the treatment equipment. These effects will be explained in detail in Examples to be described later.

従って本発明の水処理方法は、都市下水め他、畜製肉工
場、醗酵工場、ミルク工場、缶詰工場等の各種工場排水
の処理に適用して、充分な効果を奏し得るものであり、
水処理対策、産業廃棄物処理対策、環境保全等の社会問
題に大きく貢献するものである。
Therefore, the water treatment method of the present invention can be applied to the treatment of urban sewage water and other various industrial wastewater such as livestock meat factories, fermentation factories, milk factories, canning factories, etc., and can achieve sufficient effects.
It will greatly contribute to social issues such as water treatment measures, industrial waste treatment measures, and environmental conservation.

!−」L−1 以下、本発明固定化微生物の製造例及びこれにより得ら
れる固定化微生物を用いた水処理試験例を実施例として
挙げる。
! -''L-1 Examples of manufacturing the immobilized microorganisms of the present invention and water treatment test examples using the immobilized microorganisms obtained thereby are listed below as examples.

実施例1 固定化すべき微生物として、活性汚泥処理法に利用され
ている余剰汚泥(下水処理場の余剰汚泥を後記する人工
下水により100日以上培養したもの、揮発分95%以
上)を用い、該微生物の固定用保持担体としてアクリル
系吸水樹脂(特開昭58−71907号公報に記載の方
法に従い製造したもの、吸水能100、ゲル強度2X1
0’ダイン/C11I’、粒度10〜16メツシユ)を
用いる。
Example 1 As the microorganisms to be immobilized, surplus sludge used in the activated sludge treatment method (surplus sludge from a sewage treatment plant, cultured for 100 days or more in artificial sewage as described below, volatile content of 95% or more) was used. Acrylic water-absorbing resin (manufactured according to the method described in JP-A-58-71907, water absorption capacity 100, gel strength 2X1) was used as a holding carrier for immobilization of microorganisms.
0'dyne/C11I', particle size 10-16 mesh) is used.

上記余剰汚泥100Qを水30R中に加え、撹拌(20
0rEIm 、 109閲)して菌体を均一に分散させ
る。この微生物菌体の分散液にアクリル系吸水樹脂30
0Qを徐々に加え、撹拌(200rE)1.20分間)
して樹脂を吸水膨張させる。
Add 100Q of the above surplus sludge to 30R of water and stir (20
0rEIm, 109 reviews) to uniformly disperse the bacterial cells. Acrylic water absorbing resin 30 is added to this dispersion of microbial cells.
Gradually add 0Q and stir (200rE) for 1.20 minutes)
The resin absorbs water and expands.

次いで、上記で吸水膨張させた樹脂を1%塩化カルシウ
ム水溶液5Q中に加え、60分閣撹拌(150rpm>
後、炉別水洗して本1発明の固定化微生物を得る。この
ものは画体濃度が300〜330■g微生物/Q樹脂、
1〜3■塊、水分15Q/Q樹脂であった。
Next, the resin expanded by water absorption above was added to 1% calcium chloride aqueous solution 5Q, and stirred for 60 minutes (150 rpm>
After that, the immobilized microorganism of the present invention is obtained by washing with water in a separate furnace. This product has an image density of 300 to 330 g microorganisms/Q resin,
The resin had 1 to 3 cm lumps and a moisture content of 15Q/Q.

実施例2 微生物として中温嫌気醗酵の余剰汚泥を用い、嫌気性雰
囲気(無酸素雰囲気)下に実施例1と同一操作を行なっ
て、本発明の固定化微生物を得る。
Example 2 The same operations as in Example 1 were performed in an anaerobic atmosphere (anoxic atmosphere) using surplus sludge from mesotemperature anaerobic fermentation as the microorganism to obtain the immobilized microorganism of the present invention.

このものは、画体濃度が300〜330sa微生物/g
樹脂で1〜3霞■塊で、水分15o/a樹脂であった。
This product has an image concentration of 300 to 330 sa microorganisms/g.
The resin had 1 to 3 haze lumps, and the resin had a moisture content of 15 o/a.

実施例3〜9 下記第1表に示す微生物、吸水樹脂及び多価金属塩の夫
々を用い、実施例1と同様にして夫々本発明同定化微生
物を得た。第1表には得られた固定化微生物の粒径(a
−)及び水分率(%)を併記する。
Examples 3 to 9 Microorganisms identified according to the present invention were obtained in the same manner as in Example 1 using each of the microorganisms, water-absorbing resins, and polyvalent metal salts shown in Table 1 below. Table 1 shows the particle size (a) of the immobilized microorganisms obtained.
-) and moisture content (%).

但し第1表中、吸水樹脂A注1〕としては、市販デンプ
ン−アクリル酸ナトリウムグラフト共重合体架橋物(吸
水能350、ゲル強度1.1×101ダイン/cm2、
粒度約60メツシユ)を、また吸水性樹脂a 注2 )
としては、特開昭56−131608号公報に記載の方
法に従い製造した吸水性樹脂(吸水能500.ゲル強度
0.8×101ダイン/C■2、粒度約100メツシユ
)を夫々用いた。
However, in Table 1, water absorbing resin A Note 1] is a commercially available starch-sodium acrylate graft copolymer crosslinked product (water absorption capacity 350, gel strength 1.1 x 101 dynes/cm2,
particle size of approximately 60 mesh), and water absorbent resin a Note 2)
A water-absorbing resin (water absorption capacity 500, gel strength 0.8 x 101 dynes/C2, particle size approximately 100 mesh) manufactured according to the method described in JP-A-56-131608 was used in each case.

実施例10 実施例1で得た固定化微生物を用い、被処理用原水とし
て、ブドウ糖1751M1ペプトン75 gag/ Q
並びにリン酸水素カリウム及びリン酸水素ナトリウムを
合計で319/ Qの濃度で含有するように調製した人
工下水を利用して、該人工下水の処理を以下の通り行な
った。
Example 10 Using the immobilized microorganism obtained in Example 1, glucose 1751M1 peptone 75 gag/Q was used as the raw water to be treated.
Using artificial sewage prepared to contain potassium hydrogen phosphate and sodium hydrogen phosphate at a total concentration of 319/Q, the artificial sewage was treated as follows.

即ち、50Qの二重円筒型処理槽に、下水及び固定化微
生物を入れ、内円筒下部の散気管より5G/分の空気を
気泡として通気し、該固定化微生物を、エアーリフト効
果により内筒を上昇したのち、外筒部で沈降し、再び内
筒で上昇し、循環を行なう。人工下水は、外筒下部より
注入され、上部よりとり出し、約12Q/時簡の割合で
供給される。平均槽内滞留時開は6時間で、水温は本実
験期圓の平均で24℃とした。
That is, sewage and immobilized microorganisms are placed in a 50Q double cylindrical treatment tank, and 5G/min of air is bubbled through the aeration tube at the bottom of the inner cylinder, and the immobilized microorganisms are transported through the inner cylinder by the air lift effect. After rising, it sinks in the outer cylinder, rises again in the inner cylinder, and circulates. Artificial sewage is injected from the bottom of the outer cylinder and taken out from the top, and is supplied at a rate of about 12 Q/hour. The average residence time in the tank was 6 hours, and the water temperature was 24°C on average during this experiment.

上記試験において経時的酸素消費量を、呼吸活性度計(
アクアコントロール社製、呼吸活性度肝RR−7100
)を用いて測定した結果を第1図に曲線(1)として示
す。また第1図には比較のため、上記と同一の微生物量
20001G/ Qで活性汚泥をそのまま利用した場合
の結果を曲線(2)として示す6図において縦軸は酸素
消費量(lit)を、横軸は呼吸活性度計に試料をセッ
トした時からの経過時開(h「)を示す。
In the above test, oxygen consumption over time was measured using a respiratory activity meter (
Aqua Control, respiratory activity liver RR-7100
) is shown in FIG. 1 as curve (1). For comparison, Figure 1 shows the results when activated sludge is used as it is with the same microbial load of 20001G/Q as above as curve (2). In Figure 6, the vertical axis represents the oxygen consumption (lit). The horizontal axis shows the elapsed time (h'') from the time when the sample was set on the respiratory activity meter.

第1図より、本発明の固定化微生物は、その固定化に拘
らず本来の微生物活性を賽することが明らかである。
From FIG. 1, it is clear that the immobilized microorganism of the present invention retains its original microbial activity regardless of its immobilization.

また上記試験における有機物の酸化分解能力の経日変化
を調べた結果を第2図に纏(1)として示す、第2図に
は第1図に示したと同一の比較試論結果を纏(2)とし
て示し、また本発明固定化微生物として、微生物量を上
記の2倍としたものを用いた結果を纏(3)として示し
、更に供給原水における結果を纏(4)として示す、第
2図において縦軸は、柳本−作所製、全有機炭素、W窓
装置TOC−I LWに従い測定された処理水中の有l
ll5IsI1度(IMIを、横軸は試験霧始後の達統
運転軽過日数(日)を示す。
In addition, the results of examining the oxidative decomposition ability of organic matter over time in the above test are shown in Figure 2 as summary (1), and Figure 2 summarizes the same comparative trial results as shown in Figure 1 as summary (2). In Fig. 2, the results obtained using the immobilized microorganisms of the present invention with twice the above amount of microorganisms are shown as Table (3), and the results for the supplied raw water are shown as Table (4). The vertical axis is the total organic carbon content in the treated water measured according to the TOC-I LW W window device manufactured by Yanagimoto-Sakusho.
ll5IsI1 degree (IMI), the horizontal axis shows the number of days (days) of light driving during test fog after the start of the test fog.

第2allより、使用する微生物量が同一である場合は
、纏(1)と纏(2)との対比より明らかなように、酸
化分解能力に差は認められず、本発明の固定化微生物が
、その固定化に拘りなく通常の活性汚泥と遜色な(長期
に亘って安定に所望の有機物酸化分解能力を持続発現で
きることが判る。
From the 2nd all, when the amount of microorganisms used is the same, as is clear from the comparison between Mato (1) and Mato (2), there is no difference in oxidative decomposition ability, and the immobilized microorganisms of the present invention Regardless of its immobilization, it can be seen that the desired ability to oxidize and decompose organic matter can be stably maintained over a long period of time (comparable to ordinary activated sludge).

しかも活性汚泥法では微生物量(画体濃度)に限界があ
り、従って有機物の分解能力にも限度があるのに対し、
本発明では担体とする吸水性樹脂に固定化させる微生物
量を上記の2倍量とすることによって、活性汚泥法では
考えられない1体製度4000 ma/ Qとすること
ができ、この場合には纏(3)として示す通り、有機物
の酸化分解量を顕著に高め得、一層効率よく水処理を行
ない得ることが判る。
Moreover, in the activated sludge method, there is a limit to the amount of microorganisms (concentration of the image), and therefore there is a limit to the ability to decompose organic matter.
In the present invention, by doubling the amount of microorganisms immobilized on the water-absorbing resin used as a carrier, it is possible to achieve a one-body production rate of 4000 ma/Q, which is unimaginable with the activated sludge method. As shown in Part (3), it can be seen that the amount of oxidative decomposition of organic matter can be significantly increased and water treatment can be carried out more efficiently.

次いで、上記試験において微生物の増殖等により処理水
と共に搬出される浮遊物(スラッジ)量を肩べた結果を
第3図に示す。第3図において縦軸は、JIS  KO
102の方法により測定した発生懸濁物質量(19/1
1)を、横軸は経過日数(日)を示し、図中線(1)及
び纏(2)は第1図のそれと同様のことを示す。
Next, in the above test, the amount of suspended matter (sludge) carried out together with the treated water due to the growth of microorganisms, etc., was compared, and the results are shown in FIG. In Figure 3, the vertical axis is JIS KO
Amount of suspended solids generated measured by the method of 102 (19/1
1), the horizontal axis indicates the number of elapsed days (days), and lines (1) and (2) in the figure indicate the same things as those in FIG.

第3図より、本発明によれば、活性汚泥を固定化して用
いることに基づいて、活性汚泥をそのまま用いる場合に
比し、連続運転5日後前後より、スラッジ量を約1/4
以下に低下させ得ることが判る。
From FIG. 3, according to the present invention, based on the use of immobilized activated sludge, the amount of sludge can be reduced to about 1/4 from around 5 days after continuous operation compared to when activated sludge is used as it is.
It can be seen that it can be lowered to below.

更に本発明の上記水処理方法によれば、水処理副生物と
して発生する余剰汚泥量が少なく固定化微生物の漏洩は
なかった。従って本発明では汚泥処理コストが軽減され
、更に固定化微生物と水との分離が非常に容易である利
点がある。
Further, according to the water treatment method of the present invention, the amount of surplus sludge generated as a water treatment by-product was small, and there was no leakage of immobilized microorganisms. Therefore, the present invention has the advantage that sludge treatment costs are reduced and furthermore, it is very easy to separate immobilized microorganisms from water.

実施例11 実施例2で得た嫌気性微生物を固定化させた本発明、の
固定化微生物を、6.50/Qの割合で供試試験液(有
機物としてペプトン0.40/Q。
Example 11 The immobilized microorganisms of the present invention, in which the anaerobic microorganisms obtained in Example 2 were immobilized, were added to a test solution at a ratio of 6.50/Q (peptone 0.40/Q as an organic substance).

ブドウ糖0.99/Q、栄養塩としてリン酸塩を0.0
13G+リン/Q、DH14整のために炭酸カルシウム
を含有、pH約7)の一定量(有機物として1.31;
l/Q)に加え、毎日この試論液の同量を添加しつつ、
中温醗酵法(38℃)に従い有機物の分解量をガスビウ
レットにより発生ガス量(−)を求めることにより調べ
る。
Glucose 0.99/Q, phosphate as nutrient salt 0.0
13G+phosphorus/Q, contains calcium carbonate to adjust DH14, pH approximately 7) in a certain amount (1.31 as organic matter;
l/Q), while adding the same amount of this sample solution every day,
According to the medium temperature fermentation method (38°C), the amount of organic matter decomposed is determined by determining the amount of gas generated (-) using gas biuret.

結果を第4図に示す。第4図において縦軸はガス発生量
(1G)を、横軸は経過日数(日)を示し、図中線(1
)は、本発明の固定化微生物利用の場合の結果を、纏(
2)は、上記固定化を行なわなかった嫌気性微生物を同
−画体濃度で利用した場合の結果を夫々示す。
The results are shown in Figure 4. In Figure 4, the vertical axis shows the amount of gas generated (1G), the horizontal axis shows the number of elapsed days (days), and the line in the figure (1
) summarizes the results of the use of immobilized microorganisms of the present invention (
2) shows the results obtained when anaerobic microorganisms that were not immobilized were used at the same concentration.

第4図より、本発明によれば、嫌気性微生物の場合にも
その汚泥を阻害することなく、これを良好に固定化でき
、この固定化により、微生物活性を長期に亘り安定して
持続発現できることが判る。
From FIG. 4, according to the present invention, even in the case of anaerobic microorganisms, sludge can be immobilized well without inhibiting the sludge, and by this immobilization, microbial activity can be stably and sustainably expressed over a long period of time. I see that it is possible.

尚上記試験において発生するガスをガスクロマトグラフ
ィーにより分析した結果、いずれの場合にもメタンガス
が約60%、炭酸ガスが約35%と変化はなかった。
In addition, as a result of analyzing the gas generated in the above test by gas chromatography, there was no change in either case, with methane gas being about 60% and carbon dioxide gas being about 35%.

また上記において担体に固定化すべき微生物量を増大さ
せた所、その増加に伴い、より短時間内にほぼ同一ガス
発生量となるが、その後のガス発生量に有意差は認めら
れなかった。このことから同一量の有機物を分解するの
に要する時開が短縮されることが判る。
Furthermore, when the amount of microorganisms to be immobilized on the carrier was increased in the above method, the amount of gas generated was almost the same in a shorter time as the amount of microorganisms was increased, but no significant difference was observed in the amount of gas generated thereafter. This shows that the time required to decompose the same amount of organic matter is shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明固定化微生物及び比較のため固定化前の
微生物の夫々を用いた場合の酸素消費速度の経時変化を
調べたグラフ、第2図は同微生物の酸化分解能の経日変
化を調べたグラフ、第3図は同微生物使用時のスラッジ
発生量の経日変化を調べたグラフ及び第4図は同微生物
のガス発生量の経日変化を調べたグラフである。 (以 上)
Figure 1 is a graph examining the change over time in the oxygen consumption rate when using the immobilized microorganism of the present invention and the microorganism before immobilization for comparison, and Figure 2 shows the change over time in the oxidative decomposition ability of the same microorganism. The graphs investigated, FIG. 3, are graphs in which the change over time in the amount of sludge generated when the same microorganism is used, and FIG. 4 is a graph in which the change over time in the amount of gas generated by the same microorganism is investigated. (that's all)

Claims (3)

【特許請求の範囲】[Claims] (1)架橋された吸水性樹脂内に微生物が固定されてな
る固定化微生物。
(1) Immobilized microorganisms in which microorganisms are immobilized within a crosslinked water-absorbing resin.
(2)微生物の水分散液と吸水性樹脂とを撹拌混合して
樹脂に微生物を含む水を吸収させた後、該樹脂を多価金
属塩溶液と接触させて水の放出及び架橋反応を行なわせ
ることを特徴とする固定化微生物の製造法。
(2) After stirring and mixing an aqueous dispersion of microorganisms and a water-absorbing resin to allow the resin to absorb water containing microorganisms, the resin is brought into contact with a polyvalent metal salt solution to release water and perform a crosslinking reaction. A method for producing an immobilized microorganism, characterized by:
(3)活性汚泥法による水処理に当り、架橋された吸水
性樹脂内に微生物が固定されてなる固定化微生物を用い
ることを特徴とする水処理方法。
(3) A water treatment method using an activated sludge method, which uses immobilized microorganisms in which microorganisms are immobilized within a crosslinked water-absorbing resin.
JP60013165A 1985-01-25 1985-01-25 Immobilized bacterium, production thereof and method of water treatment Granted JPS61173777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013165A JPS61173777A (en) 1985-01-25 1985-01-25 Immobilized bacterium, production thereof and method of water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013165A JPS61173777A (en) 1985-01-25 1985-01-25 Immobilized bacterium, production thereof and method of water treatment

Publications (2)

Publication Number Publication Date
JPS61173777A true JPS61173777A (en) 1986-08-05
JPH0130476B2 JPH0130476B2 (en) 1989-06-20

Family

ID=11825558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013165A Granted JPS61173777A (en) 1985-01-25 1985-01-25 Immobilized bacterium, production thereof and method of water treatment

Country Status (1)

Country Link
JP (1) JPS61173777A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204091A (en) * 1985-03-08 1986-09-10 Ebara Infilco Co Ltd Biological treatment of liquid material
JPH0372996A (en) * 1989-08-11 1991-03-28 Kuraray Co Ltd Water purifying of closed water system and water purifying process
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
CN114506925A (en) * 2022-01-26 2022-05-17 浙江工业大学 Method for removing DEHP in landfill leachate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204091A (en) * 1985-03-08 1986-09-10 Ebara Infilco Co Ltd Biological treatment of liquid material
JPH0218910B2 (en) * 1985-03-08 1990-04-27 Ebara Infilco
JPH0372996A (en) * 1989-08-11 1991-03-28 Kuraray Co Ltd Water purifying of closed water system and water purifying process
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
CN114506925A (en) * 2022-01-26 2022-05-17 浙江工业大学 Method for removing DEHP in landfill leachate

Also Published As

Publication number Publication date
JPH0130476B2 (en) 1989-06-20

Similar Documents

Publication Publication Date Title
Liu et al. Substrate concentration‐independent aerobic granulation in sequential aerobic sludge blanket reactor
CN110482715A (en) A method of synchronous nitration denitrification denitrogenation is realized using immobilized microorganism technique
US7425267B2 (en) Method and equipment for treating microcystin-containing water
Hatamoto et al. Characterization of downflow hanging sponge reactors with regard to structure, process function, and microbial community compositions
CN109956563B (en) Preparation method and application of efficient aerobic denitrification phosphorus-accumulating bacteria immobilized pellet
Chang et al. Efficient removal of nitrate, manganese, and tetracycline by a polyvinyl alcohol/sodium alginate with sponge cube immobilized bioreactor
CN104528947B (en) A kind of modification biological enzyme charcoal filler for sewage disposal
Zhang et al. Immobilization of nitrifying bacteria in magnetic PVA–SA-diatomite carrier for efficient removal of NH4+-N from effluents
Xia et al. Denitrification performance and microbial community of bioreactor packed with PHBV/PLA/rice hulls composite
CN110092482B (en) Method for realizing synchronous PND-DNRA (pneumatic digital-to-analogue conversion) treatment of carbon-nitrogen-containing wastewater based on immobilized beads
Xu et al. Denitrification potential of sodium alginate gel beads immobilized iron–carbon, Zoogloea sp. L2, and riboflavin: performance optimization and mechanism
Bandhyopadhyay et al. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation
CN100334008C (en) Method for treaing uaste water containing aminopolycanboxylic acid
CN103805591A (en) Method for co-immobilization of nitrite bacteria-denitrifying bacteria
CN109110928A (en) The cultural method of biomembrane on a kind of biologic packing material
JPS61173777A (en) Immobilized bacterium, production thereof and method of water treatment
CN111892166A (en) Active biological filter material and efficient nitrogen and phosphorus removal method for sewage by using same
CN116716284A (en) Immobilized microorganism particles and preparation method and application thereof
Li et al. Encapsulation of denitrifying bacteria for potential recirculating aquaculture system denitrification
Su et al. Ammonium reduction from piggery wastewater using immobilized ammonium-reducing bacteria with a full-scale sequencing batch reactor on farm
CN113800651A (en) Method for realizing rapid start of anaerobic ammonia oxidation reactor through immobilization of anaerobic ammonia oxidation microorganisms
CN112194257A (en) Biological regulator for efficiently reducing eutrophication of water body, preparation method and use method
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPS62166889A (en) Immobilized microorganism, production thereof and treatment of water using said immobilized microorganism
CN110078206A (en) A method of based on DNRA-Anammox immobilized spherule efficient process nitrogenous effluent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term