JPS6117120A - Liquid crystal lens varying focal length - Google Patents

Liquid crystal lens varying focal length

Info

Publication number
JPS6117120A
JPS6117120A JP13774084A JP13774084A JPS6117120A JP S6117120 A JPS6117120 A JP S6117120A JP 13774084 A JP13774084 A JP 13774084A JP 13774084 A JP13774084 A JP 13774084A JP S6117120 A JPS6117120 A JP S6117120A
Authority
JP
Japan
Prior art keywords
liquid crystal
lens
focal length
layers
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13774084A
Other languages
Japanese (ja)
Inventor
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13774084A priority Critical patent/JPS6117120A/en
Publication of JPS6117120A publication Critical patent/JPS6117120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a bright lens to which an integrated circuit can be directly connected and which is thin and lightweight and can shorten the response time and the recovery time, by using a liquid crystal cell whose power consumption is very small to constituted the lens varying the focal length. CONSTITUTION:Inside faces of the liquid crystal cell formed to the shape of a lens 2 are fromed to curved surfaces, and transparent conductive films are stuck to both faces, and they are connected electrically so that conductive films on both faces, and they are connected electrically so that conductive films on both faces have the same potential. The liquid crystal cell is divided to many layers by thin glass plates or plastic plates which are subjected to such parallel treatment that orientation directions of liquid crystal molecules are equalized in individual divided layers in the lens, thereby reducing the effective thickness of liquid crystal layers. That is, the response and recovery time is shortened to 1/4 theoretically when the liquid crystal cell is divided to two layers, and it is shortened to 1/16 when it is divided to four layers, and it is shortened to 1/64 when it is divided to eight layers.

Description

【発明の詳細な説明】 本発明は液晶による焦点距離可変レンズの応答特性、回
復特性および透過特性の改善に関するものである。白内
障などの眼の疾病により眼球の水晶体が摘出されてしま
った場合に、従来の焦点距離が固定のレンズを用いた眼
鏡では使用する距離に応じて焦点距離の異なった数種類
の眼鏡を用意してそれぞれの情況に応じて使い分ける必
要があり、実生活において多大なる不便さを強いられて
いる。したがって、焦点距離を自由に変化させることの
できる眼鏡レンズの出現が望まれていた。また、光学レ
ンズに用いられるズームレンズと呼ばれる可変焦点レン
ズの焦点距離の制御はその中の複数枚の単レンズから構
成されるレンズ群同士の間隔を変化させることによって
行なっている。したがってレンズ群の移動のためレンズ
可動機構が不可欠であり、小型化、低コストという要求
を十分満足することができず、レンズの移動なしに焦点
距離が自由に変化できる焦点距離可変レンズの出現が望
まれていた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the response characteristics, recovery characteristics, and transmission characteristics of a variable focal length lens using liquid crystal. If the crystalline lens of the eyeball is removed due to an eye disease such as cataracts, conventional glasses with fixed focal length lenses can be replaced with several types of glasses with different focal lengths depending on the distance at which they will be used. It is necessary to use them properly according to each situation, which is a great inconvenience in real life. Therefore, there has been a desire for a spectacle lens whose focal length can be freely changed. Further, the focal length of a variable focus lens called a zoom lens used in an optical lens is controlled by changing the distance between lens groups each composed of a plurality of single lenses. Therefore, a lens moving mechanism is indispensable to move the lens group, and the demands for miniaturization and low cost cannot be fully satisfied, and the emergence of variable focal length lenses that can freely change the focal length without moving the lens. It was wanted.

本発明はレンズの移動なしに、低電圧、低消費電力で動
作する液晶による焦点距離可変レンズを構成し、その応
答特性、回復特性および透適時性を改善することを目的
としている。液晶は、一般に長さ数lO入、幅が約数人
の細長い棒状分子構造をもっており、また誘電異方性を
もち、液晶分子の軸方向に平行な誘電率と直角な方向の
誘電率とは一般に一致しない。前者が後者よりも大きい
ものを正の液晶といい、逆のものは負の液晶といわれて
いる。
An object of the present invention is to construct a variable focal length lens using a liquid crystal that operates at low voltage and low power consumption without moving the lens, and to improve its response characteristics, recovery characteristics, and timeliness. Liquid crystals generally have an elongated rod-like molecular structure with a length of several 1000000 and a width of about several0000000, and also have dielectric anisotropy, with the dielectric constant parallel to the axial direction of the liquid crystal molecules and the dielectric constant perpendicular to the axial direction of the liquid crystal molecules. Generally not consistent. A liquid crystal in which the former is larger than the latter is called a positive liquid crystal, and the opposite is called a negative liquid crystal.

2枚の透明電極基板の間に誘電異方性が正の電界効果形
液晶を入れ、液晶分子が基板に平行になるように配向さ
せた液晶セルにしきい値以上の交流電圧を印加すると、
液晶分子の双極子モーメントに働く力により液晶分子は
液晶分子軸を電圧印加方向に向きを変える。したがって
、印加電圧の大きさにより基板に平行に配向していた液
晶分子を基板に対して垂直方向に連続的にその向きを変
えることができる。よって液晶分子の配向の方位に偏光
した入射光に対して液晶セルのみかけの屈折率は異常光
に対する値から常光に対する値まで連続的に変化する。
When a field-effect liquid crystal with positive dielectric anisotropy is placed between two transparent electrode substrates and an AC voltage above a threshold is applied to the liquid crystal cell in which the liquid crystal molecules are aligned parallel to the substrates,
The force acting on the dipole moment of the liquid crystal molecules causes the liquid crystal molecules to change the direction of the liquid crystal molecular axis in the direction of voltage application. Therefore, depending on the magnitude of the applied voltage, the orientation of the liquid crystal molecules, which were oriented parallel to the substrate, can be continuously changed in a direction perpendicular to the substrate. Therefore, the apparent refractive index of the liquid crystal cell for incident light polarized in the orientation direction of the liquid crystal molecules changes continuously from the value for extraordinary light to the value for ordinary light.

このいわゆる電界制御複屈折効果は電気的エネルギーと
弾性的エネルギーの相対的な関係によって決まるため、
液晶セルの厚みに依存せず、また印加電界ではなく印加
電圧に依存して変化することが知られている。つまり、
液晶セルがレンズのような形をしており、液晶セルの厚
みが各々の場所によって異なっていても光学的には一様
な屈折率の変化が得られることになる。したがって、第
1図に示した構成でレンズ2を平行配向させた誘電異方
性が正の電界効果形液晶を用いて作成し、印加電圧5に
より液晶分子の配向方向を制御して液晶セルのみかけの
屈折率を変化させることにより、レンズ2の焦点距離を
異常光に対する値Feから常光に対する値Foまで連続
的に変化させることができる。垂直配向させた誘電異方
性が負の液晶を用いると印加電圧に対する焦点距離の変
化が逆になる。
This so-called electric field-controlled birefringence effect is determined by the relative relationship between electrical energy and elastic energy, so
It is known that it does not depend on the thickness of the liquid crystal cell and changes depending on the applied voltage rather than the applied electric field. In other words,
The liquid crystal cell is shaped like a lens, and even if the thickness of the liquid crystal cell differs from place to place, optically uniform changes in refractive index can be obtained. Therefore, the configuration shown in FIG. 1 is made using a field-effect liquid crystal with positive dielectric anisotropy in which the lens 2 is aligned in parallel, and the alignment direction of the liquid crystal molecules is controlled by the applied voltage 5 to form a liquid crystal cell. By changing the apparent refractive index, the focal length of the lens 2 can be continuously changed from the value Fe for extraordinary light to the value Fo for ordinary light. When a vertically aligned liquid crystal with negative dielectric anisotropy is used, the change in focal length with respect to the applied voltage is reversed.

電圧を印加する代りに磁界を加えても液晶分子の配向状
態を変えることができるので、磁界による焦点距離可変
レンズとすることもできる。
Since the alignment state of liquid crystal molecules can be changed by applying a magnetic field instead of applying a voltage, it is also possible to create a variable focal length lens using a magnetic field.

しかし、液晶セルにおける液晶分子の印加電圧に対する
応答特性および印加電圧除去後の回復特性は液晶セルの
厚みの2乗に比例して増加することが知られており、た
とえば通常の表示素子等で使用されている厚みが10B
m程度の液晶セルの応答および回復時間が0.1秒であ
ったとすると、液晶セルの厚みが100gmでは10秒
となり、また500JLmの厚みでは250秒となって
しまう。レンズの形状をし゛た液晶セルでは必ず液晶層
の厚い部分が生じる。具体的な例としてネマチック液晶
であるMBBA液晶を用いて作成した焦点距離が20c
mの平凸状液晶レンズでは、レンズの曲率半径が10.
11cmとなり、レンズの直径が2cmの場合には液晶
レンズの中央部では液晶層の厚みが480 p−mとな
り、電圧印加による焦点距離の変化に要する時間が数分
程度になってしまい、実際上眼鏡レンズや他の光学素子
用のレンズとして使用することはできない。又、液晶層
が厚くなると、液晶分子の配向効果が低下して液晶分子
がランダムな運動をするようになるため液晶が白濁し第
2図に示すように液晶の透過率が急速に低下してしまう
という難点がある。
However, it is known that the response characteristics of liquid crystal molecules in a liquid crystal cell to an applied voltage and the recovery characteristics after the applied voltage is removed increase in proportion to the square of the thickness of the liquid crystal cell. The thickness is 10B
If the response and recovery time of a liquid crystal cell of about m is 0.1 seconds, it will take 10 seconds if the thickness of the liquid crystal cell is 100 gm, and 250 seconds if the thickness of the liquid crystal cell is 500 JLm. A lens-shaped liquid crystal cell always has a thick portion of the liquid crystal layer. As a specific example, the focal length created using MBBA liquid crystal, which is a nematic liquid crystal, is 20c.
In a plano-convex liquid crystal lens of m, the radius of curvature of the lens is 10.
If the diameter of the lens is 2 cm, the thickness of the liquid crystal layer at the center of the liquid crystal lens will be 480 p-m, and the time required to change the focal length by applying a voltage will be about several minutes. It cannot be used as a lens for eyeglasses or other optical elements. Additionally, as the liquid crystal layer becomes thicker, the alignment effect of the liquid crystal molecules decreases and the liquid crystal molecules begin to move randomly, causing the liquid crystal to become cloudy and the transmittance of the liquid crystal to drop rapidly, as shown in Figure 2. There is a problem with storing it away.

一方、従来の液晶による焦点距離可変レンズの構成では
入射光の偏光方向を液晶分子の配向方向に一致させるた
めに、必ず偏光板を使用しなければならず、そのため常
に偏光板による60%から70%にも及ぶ透過損失が避
けられず、明るい焦点距離可変レンズを構成することは
できない。
On the other hand, in the conventional variable focal length lens configuration using liquid crystal, a polarizing plate must be used in order to match the polarization direction of the incident light with the alignment direction of the liquid crystal molecules. %, and it is impossible to construct a bright variable focal length lens.

本発明者はこれらの難点に留意し、液晶層の厚みを実効
的に薄くして応答特性および回復特性の大幅な改善を行
ない、又、前記のような偏光板の使用による焦点距離可
変レンズの難点を解消する方法を考案し、本発明を完成
したものである。
The inventors of the present invention have taken these difficulties into account, and have effectively reduced the thickness of the liquid crystal layer to significantly improve response characteristics and recovery characteristics, and have also developed a variable focal length lens by using a polarizing plate as described above. The present invention was completed by devising a method to solve the problems.

以下、本発明につき詳細に説明する。Hereinafter, the present invention will be explained in detail.

第3図に示すように、レンズの形状をした液晶セルの内
部を、曲面構造をとりその両面に透明導電膜をつけ、両
面の導電膜が等電位となるように電気的に接続されてお
り、液晶分子の配白方向がレンズ内部の各分割層で同じ
方向になるように平行配向処理をした薄いガラス板又は
プラスチッ、り板で多層に分割することにより、液晶層
の実効的な厚みを薄くすることができる。すなわち、応
答会同復時間は理論的には液晶層を2層に分割すると1
/4に、4層では1/16に8層に分割すると1764
に短縮される。第4図に200gm厚の液晶セルを2層
および4層に分割したときの回復時間の特性図を示す。
As shown in Figure 3, the inside of a lens-shaped liquid crystal cell has a curved surface structure with transparent conductive films on both sides, and the conductive films on both sides are electrically connected to have an equal potential. The effective thickness of the liquid crystal layer can be reduced by dividing it into multiple layers using thin glass plates or plastic plates that have been subjected to parallel alignment treatment so that the whitening direction of the liquid crystal molecules is in the same direction in each divided layer inside the lens. Can be made thinner. In other words, the response time is theoretically 1 if the liquid crystal layer is divided into two layers.
/4, and if 4 layers are divided into 8 layers at 1/16, it will be 1764
It is shortened to . FIG. 4 shows a characteristic diagram of recovery time when a 200 gm thick liquid crystal cell is divided into two layers and four layers.

各々の液晶層の最大の厚みが実用的な値である50gm
程度であるとすると、8分割では最大400 ILm厚
のレンズとすることができ、数秒以下の応答ψ回復時間
が達成される。又、液晶の実効的な厚みが薄くなること
で液晶分子の配性状態も向−ヒして透過特性も改善され
る。
The maximum thickness of each liquid crystal layer is 50 gm, which is a practical value.
Assuming that the thickness of the lens is approximately 400 ILm thick with 8 divisions, a response ψ recovery time of several seconds or less can be achieved. Furthermore, by reducing the effective thickness of the liquid crystal, the alignment state of the liquid crystal molecules is also improved, and the transmission characteristics are also improved.

液晶層の分割数は任意であり、多く分割すればそれだけ
特性が改善される。又、分割面は球面の他に、各種の収
差を補償するような非球面構造のものも使用することが
できる。各々の分割層に加わる電圧が一定となるように
するために、外部抵抗等により印加電圧を定められた比
に分圧してそれぞれの分割層に加えるようにすることも
できる。
The number of divisions of the liquid crystal layer is arbitrary, and the more divisions the liquid crystal layer has, the better the characteristics will be. In addition to the spherical dividing surface, an aspherical structure that compensates for various aberrations can also be used. In order to keep the voltage applied to each divided layer constant, the applied voltage may be divided into a predetermined ratio using an external resistor or the like and then applied to each divided layer.

一方、第5図に示すように、同一の特性を有する2枚の
液晶による焦点距離可変レンズ7および8を電圧を印加
していないときの各々の液晶分子の配向方向すなわち光
軸方向が互いに直交するように重ね合わせた構造とする
ことにより、偏光板を使用する必要のない焦点距離可変
レンズを構成することができる。入射光は互いに直交す
る2つの偏光成分すなわち第5図のレンズ7の配向方向
とレンズ8の配向方向に分解することができる。まず、
入射光の一成分であるレンズ7の配向方向と平行な偏光
成分がレンズ7に入射した場合を考える。この光線成分
はレンズ7に対して、異常光線となる。したがって、こ
の状態でレンズ7に電圧を印加すると、液晶分子は電圧
に応じて徐々に電極に垂直な方向に向きを変えるので異
常光線成分に対してレンズ7のみかけの屈折率は異常光
に対する値から常光に対する値まで連続的に変化し、焦
点距離可変の効果をうけることができる。このレンズ7
に対しての異常光成分はレンズ8では常光成分となるた
め、みかけの屈折率は変化せず焦点距離可変の効果をう
けない。したがって、そのまま直進する。一方、もう一
方の入射光成分であるレンズ7で常光に相当する成分は
レンズ7ではみかけの屈折率は変化せず、焦点距離可変
の効果をうけないが、レンズ8では異常光に相当する成
分となるためレンズ7に異常光が入射した場合(前述)
と同様に、みかけの屈折率は変化し、焦点距離可変の効
果を序けることになる。レンズ7およびレンズ8は同じ
電圧を印加すれば互いに等しい焦点距離可変の効果を及
ぼすことになる。したがって、2枚の焦点距離可変レン
ズの光軸方向を互いに直交するように重ねることにより
、あらゆる方向の偏光に対しても焦点距離可変のレンズ
として動作することになり、偏光板を使用することなく
入射光の偏光方向に無関係に焦点距離を可変できるレン
ズとすることができる。したがって、第6図に示すよう
に、液晶層を分割する曲面構造の分割板に対する液晶分
子の配向方向が互いに直交するような構造とすることに
より、偏光板を使用することなく、直線偏光となってい
ない自然光に対しても明るく、応答特性および回復特性
のすぐれた焦点距離可変レンズとすることができる。
On the other hand, as shown in FIG. 5, when no voltage is applied to two variable focal length lenses 7 and 8 made of liquid crystals having the same characteristics, the orientation directions of the liquid crystal molecules, that is, the optical axis directions are orthogonal to each other. By having such a superimposed structure, it is possible to construct a variable focal length lens that does not require the use of a polarizing plate. The incident light can be decomposed into two mutually orthogonal polarization components, namely, the orientation direction of lens 7 and the orientation direction of lens 8 in FIG. first,
Consider a case where a polarized light component parallel to the alignment direction of the lens 7, which is one component of the incident light, is incident on the lens 7. This ray component becomes an extraordinary ray with respect to the lens 7. Therefore, when a voltage is applied to the lens 7 in this state, the liquid crystal molecules gradually change their orientation in a direction perpendicular to the electrodes according to the voltage, so the apparent refractive index of the lens 7 for the extraordinary ray component is the value for the extraordinary ray. It changes continuously from the value to the value for ordinary light, making it possible to obtain the effect of varying the focal length. This lens 7
Since the extraordinary light component becomes an ordinary light component in the lens 8, the apparent refractive index does not change and is not affected by the effect of changing the focal length. Therefore, continue straight ahead. On the other hand, the other incident light component, the component corresponding to ordinary light in lens 7, does not change the apparent refractive index in lens 7 and is not affected by the variable focal length, but in lens 8, the component corresponding to extraordinary light Therefore, when extraordinary light enters lens 7 (as described above)
Similarly, the apparent refractive index changes, which increases the effect of variable focal length. If the same voltage is applied to lenses 7 and 8, they will have the same effect of varying the focal length. Therefore, by stacking two variable focal length lenses so that their optical axes are perpendicular to each other, they can operate as a variable focal length lens for polarized light in any direction, without using a polarizing plate. The lens can have a variable focal length regardless of the polarization direction of incident light. Therefore, as shown in Figure 6, by creating a structure in which the orientation directions of liquid crystal molecules are orthogonal to each other with respect to the curved dividing plate that divides the liquid crystal layer, linearly polarized light can be obtained without using a polarizing plate. A variable focal length lens that is bright even in the presence of natural light and has excellent response characteristics and recovery characteristics can be obtained.

以上、本発明においては数ボルト程度の低い電圧で動作
し、消費電力の極めて少ない液晶セルを用いて焦点距離
可変のレンズを構成しており、集積回路と直結でき、薄
形軽量であり、さらに応答時間および回復時間を短縮で
き、明るいレンズとなるので、通常の眼鏡レンズとして
使用することが可能であり、また他の光学素子用のレン
ズへの応用も、もちろん可能である。
As described above, in the present invention, a variable focal length lens is constructed using a liquid crystal cell that operates at a low voltage of several volts and has extremely low power consumption, can be directly connected to an integrated circuit, is thin and lightweight, and is Since the response time and recovery time can be shortened and the lens is bright, it can be used as a normal eyeglass lens, and of course it can also be applied to lenses for other optical elements.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例と、その動作機構等を説明するも
ので、第〜図は液晶によるレンズに電圧を印加して液晶
分子の配向を制御し、屈折率の変化による焦点距離可変
のレンズの構成の断面図を示し、第2図は液晶層の厚み
と透過率の特性図を示したものである。第3図は応答特
性と回復特性および透過特性を改善するために液晶セル
内を多層に分割して液晶の実効厚みを減少させた焦点距
離可変レンズの構成の断面図を示し、第4図は液晶層の
分割による回復時間変化の特性図、第5図は偏光板によ
る透過損失を防ぐため、同一の特性を有する液晶による
レンズを2枚重ね合せた構造の、偏光板を使用しない焦
点距離可変レンズの構成を示し、第6図は多層分割形の
偏光板を使用しない焦点距離可変レンズの構成を示した
ものである。第5図および第6図で矢印は液晶分子の配
向方向を示す。 図中、■は偏光板、2は液晶によるレンズ、3は透明電
極、4はスペーサ、5は液晶の駆動電圧、6は曲面構造
の分割板、7および8はそれぞれ同一の特性を持つ焦点
距離可変レンズ。 第4図 第5図       第6図
The drawings are for explaining an embodiment of the present invention and its operating mechanism, etc. Figures 1 to 2 show a lens that applies voltage to a liquid crystal lens to control the alignment of liquid crystal molecules, and whose focal length is variable by changing the refractive index. FIG. 2 shows a characteristic diagram of the thickness and transmittance of the liquid crystal layer. Figure 3 shows a cross-sectional view of the configuration of a variable focal length lens in which the liquid crystal cell is divided into multiple layers to reduce the effective thickness of the liquid crystal in order to improve response characteristics, recovery characteristics, and transmission characteristics. Characteristic diagram of recovery time change due to division of the liquid crystal layer. Figure 5 shows a variable focal length structure that does not use a polarizing plate and has a structure in which two liquid crystal lenses with the same characteristics are stacked to prevent transmission loss due to the polarizing plate. The structure of the lens is shown in FIG. 6, which shows the structure of a variable focal length lens that does not use a multilayer split polarizing plate. In FIGS. 5 and 6, arrows indicate the alignment direction of liquid crystal molecules. In the figure, ■ is a polarizing plate, 2 is a liquid crystal lens, 3 is a transparent electrode, 4 is a spacer, 5 is a driving voltage for the liquid crystal, 6 is a dividing plate with a curved surface structure, and 7 and 8 are focal lengths each having the same characteristics. Variable lens. Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 レンズの形状をし液晶分子を一方向に配向させた液
晶セルに外部より電界または磁界を印加して液晶分子の
配向状態を制御して、液晶の屈折率を連続的に変化させ
るようにした液晶レンズの内部を多層に分割して液晶の
実効厚みを薄くした焦点距離可変レンズ。 2 特許請求の範囲第一項記載の液晶レンズ内部の分割
層を液晶分子の配向方向が互いに直交するように重ね合
わせた構造の焦点距離可変レンズ。
[Claims] 1. A liquid crystal cell in the shape of a lens with liquid crystal molecules oriented in one direction, by applying an external electric field or magnetic field to control the alignment state of the liquid crystal molecules, thereby continuously changing the refractive index of the liquid crystal. A variable focal length lens that has a thinner effective thickness by dividing the interior of the liquid crystal lens into multiple layers. 2. A variable focal length lens having a structure in which the divided layers inside the liquid crystal lens according to claim 1 are superimposed so that the orientation directions of the liquid crystal molecules are orthogonal to each other.
JP13774084A 1984-07-03 1984-07-03 Liquid crystal lens varying focal length Pending JPS6117120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13774084A JPS6117120A (en) 1984-07-03 1984-07-03 Liquid crystal lens varying focal length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774084A JPS6117120A (en) 1984-07-03 1984-07-03 Liquid crystal lens varying focal length

Publications (1)

Publication Number Publication Date
JPS6117120A true JPS6117120A (en) 1986-01-25

Family

ID=15205717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774084A Pending JPS6117120A (en) 1984-07-03 1984-07-03 Liquid crystal lens varying focal length

Country Status (1)

Country Link
JP (1) JPS6117120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138922A (en) * 1984-12-11 1986-06-26 Jiesu:Kk Variable focus liquid crystal lens
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
WO2006022346A1 (en) * 2004-08-26 2006-03-02 The Akita Center To Implement Vigorous Enterprises Optical element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138922A (en) * 1984-12-11 1986-06-26 Jiesu:Kk Variable focus liquid crystal lens
JPH048768B2 (en) * 1984-12-11 1992-02-18
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
WO2006022346A1 (en) * 2004-08-26 2006-03-02 The Akita Center To Implement Vigorous Enterprises Optical element
US8194228B2 (en) 2004-08-26 2012-06-05 Japan Science And Technology Agency Liquid crystal lens in which a voltage imparts optimal first-stage optical properties to the liquid crystal lens by influencing a liquid crystal layer

Similar Documents

Publication Publication Date Title
US4190330A (en) Variable focus liquid crystal lens system
EP2477067B9 (en) Tunable electro-optic liquid crystal lenses
US20030210377A1 (en) Hybrid electro-active lens
CN106226930B (en) Fresnel lens device
EP3092525A1 (en) Method and apparatus for creation and electrical tuning of spatially non-uniform reflection of light
JPH0261014B2 (en)
Banerjee et al. Low-power, thin and flexible, stacked digital LC lens for adaptive contact lens system with enhanced tunability
JPS5850339B2 (en) variable focal length lens
JPH048769B2 (en)
JPS6117120A (en) Liquid crystal lens varying focal length
JPH048768B2 (en)
JPS6050510A (en) Liquid crystal lens of variable focal distance
KR101866193B1 (en) Bi-focal gradient index lens and method for fabricating the lens
JP7064256B1 (en) Liquid crystal lens
JPS62129816A (en) Liquid crystal lens with focal length
JPH01205123A (en) Liquid crystal element
JPS6010224A (en) Focal length variable lens
JPS62129814A (en) Liquid crystal lens with variable focal length
JPH04345124A (en) Focal length variable liquid crystal lens
JPH04322214A (en) Liquid crystal lens and using method therefor
JPS59224820A (en) Variable focal length lens
JPS59224821A (en) Variable focal length lens
US20230130327A1 (en) Optical element and optical device having the same
US11698550B2 (en) Composite lens system with changeable focal length
JPS6051818A (en) Focal distance variable liquid crystal lens