JPS6116935B2 - - Google Patents

Info

Publication number
JPS6116935B2
JPS6116935B2 JP56204587A JP20458781A JPS6116935B2 JP S6116935 B2 JPS6116935 B2 JP S6116935B2 JP 56204587 A JP56204587 A JP 56204587A JP 20458781 A JP20458781 A JP 20458781A JP S6116935 B2 JPS6116935 B2 JP S6116935B2
Authority
JP
Japan
Prior art keywords
moisture
sensitive element
powder
sensitive
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56204587A
Other languages
Japanese (ja)
Other versions
JPS58105050A (en
Inventor
Mitsuhiro Murata
Akira Kumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP56204587A priority Critical patent/JPS58105050A/en
Publication of JPS58105050A publication Critical patent/JPS58105050A/en
Publication of JPS6116935B2 publication Critical patent/JPS6116935B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は感湿素子に関するものである。 感湿素子としてはセルロースカーボン系の有機
抵抗皮膜で構成されたものがあるが、有機材料の
劣化という問題があり、安定した特性を有するも
のではなかつた。また、Fe2O3,Fe3O4
Al2O3,Cr2O3などの金属酸化物系からなるもの
があり、これらの金属酸化物を蒸着、スパツタリ
ングなどで構成されたものである。この金属酸化
物の薄膜は吸水性にすぐれており、湿度吸着によ
る電気抵抗の変化により湿度を検知するもので、
応答速度が速いという特徴を有するが、抵抗値が
高く、低湿度の測定が困難であつた。さらにこの
ほかにセラミツク半導体からなるものがあり、耐
熱性にすぐれているという特徴を有しているが、
固有抵抗が高く、有機抵抗被膜により構成された
ものにくらべてコストが高いという問題があつ
た。 この発明は、上記した種々の問題を解決するた
めになされたもので、その要旨とするところは、
絶縁基板上に対向電極が形成され、少なくともこ
の対向電極間の絶縁基板表面に感湿膜が形成され
ている感湿素子において、感湿膜は、(a)導体粉末
または半導体粉末のうち少なくとも1種、(b)固体
電解質粉末、(c)少なくとも一部がジルコニウム化
合物で架橋されている有機高分子とからなること
を特徴とするものである。 導体粉末としては、炭素粉末、パラジウム粉末
などの金属粉末があり、半導体粉末としては
CrO2NiO,Fe3O4,ZnO,SnO2,MnO2
TiO2-x,チタン酸バリウム系半導体、チタン酸
ストロンチウム系半導体などの半導体チタン酸塩
などある。 固体電解質粉末としては、プロトン導電体タイ
プのものと、アルカリイオン導電体タイプのもの
がある。このうちプロトン導電体タイプのものと
しては、H3MO12PO40.29H2O,
H3W12PO40.29H2O,H8UO2PO4.4H2O,水和H3O
+β−Al2O3,水和H3O+β″−Al2O3,NH4+/
H(H2O)×β″−Al2O3,H+交換モンモリロナ
イト(montmoril−lonite)、Sb2O5・4H2O,
SnO2・3H2Oなどがある。またアルカリイオン導
電体タイプとしては、Na+−βAl2O3,Na+
β″Al2O3,Na3Zr2,PSi2O12,Li14Zn(GeO44
Li5AlO4,Li4B7O12Cl,LiI+40mol%Al2O3,Li+
−βAl2O3,Li+−β″Al2O3,K+−βAl2O3,K+
−β″Al2O3,K1.6Mg0.8Ti7.2O6,K1.76
Al1.76Ti7.12O16,Li3VO4,Li4GeO4などがある。 また少なくとも一部がジルコニウム化合物で架
橋されている有機高分子としては、エポキシ樹
脂、エチルセルロース、ポリビニルアルコール、
水溶性高分子、シリコン樹脂、フツ素樹脂などが
あり、一諸に混在させたジルコニウム化合物とと
もに熱処理を経ることによつて、少なくとも一部
がジルコニウム化合物で架橋された状態が作り出
される。 ここでジルコニウム化合物としては、オキシ塩
化ジルコニウム、酢酸ジルコニウムおよびこれら
塩の水和変性物などがあり、感湿膜にはこれらの
少なくとも、1種以上を含有させることができ
る。 ジルコニウム化合物による有機高分子の架橋状
態は、両者の混合比率、熱処理温度などの条件に
より変えることができる。感湿膜の構成成分の混
合比率は、導体粉末または半導体粉末のうち少な
くとも1種と、固体電解質粉末とがほとんど占
め、残存成分としてジルコニウム化合物で架橋さ
れている有機高分子が含まれる。 この発明にかかる感湿素子は、ガラス、セラミ
ツクなどの絶縁基板上に形成された対向電極を感
湿膜が覆うように形成されるのが通常である。 第1図は、この発明にかかる感湿素子の一例を
示したものである。 図において、1は絶縁基板、2,3はくし型電
極でくし歯を互いに交叉させている。4は感湿膜
で、くし型電極2,3を被つている。5,6はリ
ード端子で、電極2,3にそれぞれ電気接続され
ている。 感湿膜4を絶縁基板1上に形成する一例を説明
すると、各原料をそれぞれ所定比率で配合してこ
れをよく混合し、溶剤、たとえばエチルアルコー
ルを加えてペースト状とする。このペーストを絶
縁基板1に塗布し、100℃よりジルコニウム化合
物が分解しない温度まで焼付けることにより得ら
れる。 上記した例では一旦原料を混合したのち溶剤を
加えてペースト状としたが、たとえばジルコニウ
ム化合物に溶剤を加え、さらに他の原料を加えて
ペースト状としてもよい。 この発明にかかる感湿素子の特徴としては、ま
ず固体電解質粉末を用いたことにある。 つまり、固体電解質粉末を用いることによつて
水の吸着によるイオン電導を容易なものとし、湿
度変化に対して抵抗変化の大きい感湿素子を得る
ことができるという利点がある。また高湿度領域
における抵抗変化も大きくなるという利点を有す
る。 通常イオン電導にもとづく感湿素子では、吸湿
に伴ない生成するイオンが残留しやすく、再度吸
湿すると、イオン生成量が多くなつたり、また不
活性化合物が生成したりすると、イオン生成量が
少なくなつたりする。その結果、感湿素子の特性
劣化として現われることになる。 ところが、この発明にかかる感湿素子では固体
電解質を用いるため、上記したうな特性劣化とい
う問題が解決され、信頼性が高く、特性劣化が小
さくなるという特徴を有する。 したがつて、この発明にかかる感湿素子は結露
状態に対しても特性劣化が小さく、結露センサと
して高い検知性能を有するものと云うことができ
る。 この発明にかかる感湿素子の他の特徴として
は、ジルコニウム化合物を用いたことにある。 このジルコニウム化合物は反応性に富んだもの
で、無機ポリマーを生成し、これと相溶性のある
存機高分子と結び合つたとき、有機高分子の交叉
結合剤として(−O−Zr−)の架橋を作り、感湿
膜の構造を安定にさせる。しかも硬化した状態の
膜自体が強固になるだけでなく、乾燥状態での膜
抵抗は非常に高抵抗であるが、吸湿時には抵抗値
が大きく低下して、吸湿に伴なう抵抗変化率が非
常に大きくなるという特徴を有している。この機
構の詳細は明らかにされていないが、ジルコニウ
ム化合物を含むため、感湿膜の親水性が向上し、
固体電解質のイオン電導性と相俟つて、吸水に伴
なう抵抗変化が大きく現われるものと推察され
る。 有機高分子のみでも吸水に伴ない電気抵抗の変
化は認められるが、吸水時において抵抗値が高
く、大きな抵抗変化が見られないため実用上難点
があり、また種々の湿度−抵抗曲線を持つたもの
が得られていない。しかしながら、この発明によ
れば、低湿度においても抵抗値変化が認められ、
しかも、導体粉末または/および半導体粉末、固
体電解質粉末、ジルコニウム化合物、有機高分子
の各混合比を変化させることにより、変化幅が大
きく任意の湿度−抵抗曲線を有する感湿素子が得
られ、湿度センサのみならず結露センサも構成で
きる。 以下この発明を実施例に従つて説明する。 実施例 1 酸無水物タイプのエポキシ樹脂0.7gに
MnO24.7gの半導体粉末、H2O+−βAl2O33.8g
の固体電解質粉末をそれぞれ加えた。これにオキ
シ塩化ジルコニウムのアルコール溶液(ZrO2
換算して0.2g)を加えてよく混合し、さらにエ
チルアルコールを加えて適当な粘度のペーストと
した。 0.5mmの間隔を有する金の対向電極を形成した
アルミナ基板の上に前記ペーストを塗布し、150
℃の温度で焼付けた。 このようにして得られた感湿素子の各相対湿度
における抵抗変化を測定し、その結果を第2図に
示した。第2図中、番号1のものがこの実施例に
よるものである。 またこの感湿素子について、乾燥状態と結露状
態を1サイクルとして、導電状態で1500サイクル
の試験を行つたところ、初期値と試験後の特性値
は次表に示すとおりであつた。
TECHNICAL FIELD This invention relates to a moisture sensitive element. Some moisture-sensitive elements are composed of cellulose carbon-based organic resistance films, but they suffer from the problem of deterioration of the organic material and do not have stable characteristics. Also, Fe 2 O 3 , Fe 3 O 4 ,
Some are made of metal oxides such as Al 2 O 3 and Cr 2 O 3 , and these metal oxides are formed by vapor deposition, sputtering, etc. This thin film of metal oxide has excellent water absorption properties, and detects humidity by detecting changes in electrical resistance due to humidity adsorption.
Although it has a feature of fast response speed, it has a high resistance value, making it difficult to measure low humidity. Furthermore, there are other products made of ceramic semiconductors, which have excellent heat resistance.
There was a problem that the resistivity was high and the cost was higher than that made of an organic resistive film. This invention was made to solve the various problems mentioned above, and its gist is:
In a humidity sensing element in which a counter electrode is formed on an insulating substrate and a moisture sensitive film is formed on at least the surface of the insulating substrate between the counter electrodes, the moisture sensitive film is made of at least one of (a) a conductor powder or a semiconductor powder. (b) solid electrolyte powder; and (c) an organic polymer at least partially crosslinked with a zirconium compound. Conductor powders include metal powders such as carbon powder and palladium powder, and semiconductor powders include metal powders such as carbon powder and palladium powder.
CrO 2 NiO, Fe 3 O 4 , ZnO, SnO 2 , MnO 2 ,
Examples include semiconductor titanates such as TiO 2-x , barium titanate-based semiconductors, and strontium titanate-based semiconductors. Solid electrolyte powders include proton conductor type and alkali ion conductor type. Among these, proton conductor types include H 3 MO 12 PO 40 .29H 2 O,
H 3 W 12 PO 40 .29H 2 O, H 8 UO 2 PO 4 .4H 2 O, hydrated H 3 O
+β-Al 2 O 3 , hydrated H 3 O + β″-Al 2 O 3 , NH 4 +/
H (H 2 O) × + β″−Al 2 O 3 , H + exchanged montmoril−lonite, Sb 2 O 5・4H 2 O,
Examples include SnO 2 3H 2 O. In addition, as alkali ion conductor types, Na + −βAl 2 O 3 , Na +
β″Al 2 O 3 , Na 3 Zr 2 , PSi 2 O 12 , Li 14 Zn(GeO 4 ) 4 ,
Li 5 AlO 4 , Li 4 B 7 O 12 Cl, LiI + 40mol% Al 2 O 3 , Li +
−βAl 2 O 3 , Li + −β″Al 2 O 3 , K + −βAl 2 O 3 , K +
−β Al2O3 , K1.6Mg0.8Ti7.2O6 , K1.76 _ _ _ _
Examples include Al 1 . 76 Ti 7 . 12 O 16 , Li 3 VO 4 , Li 4 GeO 4 . Examples of organic polymers at least partially crosslinked with a zirconium compound include epoxy resin, ethyl cellulose, polyvinyl alcohol,
These include water-soluble polymers, silicone resins, fluorine resins, etc., and by heat-treating them together with a zirconium compound mixed together, a state is created in which at least a portion of them is crosslinked with the zirconium compound. Here, examples of the zirconium compound include zirconium oxychloride, zirconium acetate, and hydrated modified products of these salts, and the moisture sensitive membrane may contain at least one of these. The state of crosslinking of the organic polymer by the zirconium compound can be changed by changing the mixing ratio of the two, heat treatment temperature, and other conditions. The mixing ratio of the components of the moisture-sensitive membrane is mostly comprised of at least one of conductor powder or semiconductor powder and solid electrolyte powder, and the remaining component is an organic polymer crosslinked with a zirconium compound. The moisture-sensitive element according to the present invention is usually formed such that a humidity-sensitive film covers a counter electrode formed on an insulating substrate such as glass or ceramic. FIG. 1 shows an example of a moisture-sensitive element according to the present invention. In the figure, 1 is an insulating substrate, and 2 and 3 are comb-shaped electrodes whose comb teeth intersect with each other. Reference numeral 4 denotes a moisture sensitive membrane, which covers the comb-shaped electrodes 2 and 3. Lead terminals 5 and 6 are electrically connected to the electrodes 2 and 3, respectively. An example of forming the moisture-sensitive film 4 on the insulating substrate 1 will be described. Each raw material is blended in a predetermined ratio, mixed well, and a solvent such as ethyl alcohol is added to form a paste. This paste is obtained by applying this paste to the insulating substrate 1 and baking it to a temperature lower than 100° C. at which the zirconium compound does not decompose. In the above example, the raw materials were once mixed and then a solvent was added to form a paste. However, for example, a solvent may be added to the zirconium compound and other raw materials may be added to form a paste. The moisture-sensitive element according to the present invention is characterized by the use of solid electrolyte powder. In other words, the use of solid electrolyte powder facilitates ionic conduction due to water adsorption, and has the advantage that a moisture-sensitive element having a large resistance change with respect to humidity changes can be obtained. It also has the advantage of increasing resistance change in high humidity regions. Normally, in a moisture-sensing element based on ion conduction, ions generated due to moisture absorption tend to remain, and when moisture is absorbed again, the amount of ions generated increases, and when inert compounds are generated, the amount of ions generated decreases. or As a result, this appears as a deterioration in the characteristics of the moisture sensitive element. However, since the moisture-sensitive element according to the present invention uses a solid electrolyte, the above-mentioned problem of deterioration of characteristics is solved, and the device is characterized by high reliability and small deterioration of characteristics. Therefore, it can be said that the moisture-sensitive element according to the present invention exhibits little characteristic deterioration even under dew condensation conditions and has high detection performance as a dew condensation sensor. Another feature of the moisture sensitive element according to the present invention is that it uses a zirconium compound. This zirconium compound is highly reactive, and when it forms an inorganic polymer and combines with existing organic polymers that are compatible with it, it acts as a cross-linking agent for organic polymers (-O-Zr-). Creates crosslinks and stabilizes the structure of the moisture-sensitive membrane. Moreover, not only does the film itself become strong in the cured state, but the film resistance in the dry state is extremely high, but when moisture is absorbed, the resistance value decreases significantly, and the rate of change in resistance due to moisture absorption is extremely low. It has the characteristic of becoming larger. Although the details of this mechanism have not been clarified, the presence of a zirconium compound improves the hydrophilicity of the moisture-sensitive film.
Coupled with the ionic conductivity of the solid electrolyte, it is presumed that the resistance change due to water absorption appears to be large. Changes in electrical resistance with water absorption are observed even with organic polymers alone, but this is difficult in practice because the resistance value is high and no large resistance change is observed when water is absorbed, and there are various humidity-resistance curves. I'm not getting anything. However, according to this invention, resistance value changes are observed even at low humidity,
Moreover, by changing the mixing ratio of conductor powder and/or semiconductor powder, solid electrolyte powder, zirconium compound, and organic polymer, a humidity-sensitive element can be obtained that has a large variation range and an arbitrary humidity-resistance curve. Not only a sensor but also a dew condensation sensor can be configured. The present invention will be explained below based on examples. Example 1 0.7g of acid anhydride type epoxy resin
MnO 2 4.7 g semiconductor powder, H 2 O + −βAl 2 O 3 3.8 g
of solid electrolyte powder were added respectively. An alcohol solution of zirconium oxychloride (0.2 g in terms of ZrO 2 ) was added to this and mixed well, and ethyl alcohol was further added to form a paste with an appropriate viscosity. The paste was applied onto an alumina substrate on which gold counter electrodes were formed with a spacing of 0.5 mm, and
Baked at a temperature of ℃. The resistance change of the humidity sensing element thus obtained at each relative humidity was measured, and the results are shown in FIG. In FIG. 2, the one designated by number 1 is according to this embodiment. In addition, this moisture-sensitive element was tested for 1500 cycles in a conductive state, with one cycle consisting of a dry state and a dew-condensing state, and the initial values and characteristic values after the test were as shown in the following table.

【表】 上表から明らかなように、この発明にかかる感
湿素子は負荷寿命試験に対して特性劣化の小さい
ものであることがわかる。さらにこの感湿素子の
結露検出感度は従来例にくらべそ高く、相対湿度
20〜30%の低湿度領域での検知も可能であつた。 実施例 2 酸無水物タイプのエポキシ樹脂0.7gに
MnO25.2gの半導体粉末、H3O+−βAl2O33.3g
の固体電解質粉末をそれぞれ加えた。これにオキ
シ塩化ジルコニウムのアルコール溶液(ZrO2
換算して0.6g)を加えよく混合し、さらにエチ
ルアルコールを加えて適当な粘度のペーストとし
た。 次いで、実施例1と同様にして感湿素子を作成
し、相対湿度中での抵抗変化を第2図の実線2で
示した。図から明らかなようにこの実施例によれ
ば、相対湿度に対して比例性のよい抵抗変化を示
している。 実施例 3 エチルセルロースをブチルセルゾルブに溶解し
て16%溶液を2g作成した。次いで半導体粉末、
固体電解質粉末であるMnO21.7g,Li+β
Al2O31.4gをそれぞれ加えてよく混合し、さらに
オキシ塩化ジルコニウムのアルコール溶液
(ZrO2に換算して0.16g)を加えてペースト状と
した。 このペーストを実施例1と同様に処理して感湿
素子を作成し、各相対湿度中での抵抗変化を測定
した。第2図中、実線3はその測定結果である。 実施例 4 実施例3と同じ条件で酢酸ジルコニウム
(ZrO2に換算して40mg)を含有させて感湿素子を
作成した。 第2図中実線4は相対湿度中での抵抗値変化を
示したものである。 実施例 5 10%ポリビニルアルコール水溶液の1gをと
り、MnO20.31g,H3O+−βAl2O30.14gを加え
た。さらにオキシ塩化ジルコニウム(ZrO2に換
算して0.018g)を加えてよく混合した。このよ
うにして得たペーストを実施例1と同様に処理し
て感湿素子を作成した。焼付け条件は120℃、20
分間とした。 第2図中、実線5はこの感湿素子について相対
湿度中での抵抗値変化を示したものである。 実施例 6 酸無水物タイプのエポキシ樹脂0.7gに
MnO24.7g,Na+−βAl2O33.8gをそれぞれ加え
た。これにオキシ塩化ジルコニウムのアルコール
溶液(ZrO2に換算して0.2g)を加えてよく混合
し、ペースト状とした。このようにして得たペー
ストを実施例1と同様に処理して感湿素子を作成
した。 この感湿素子につき各相対湿度における抵抗値
を測定した。第2図中、実線6はこの感湿素子の
特性を示したものであり、結露時における抵抗値
は500KΩであつた。 実施例 7 酸無水物タイプのエポキシ樹脂0.7gにH3O+
βAl2O38.5gを加え、これにオキシ塩化ジルコニ
ウムのアルコール溶液(ZrO2に換算して0.2g)
を加えてよく混合した。このようにして得たペー
ストを実施例1と同様に処理して感湿素子を作成
した。 この感湿素子につき、各相対湿度における抵抗
値を測定し、その結果を第2図に示た。図中、試
料番号7のものがこの実施例によるものである。
この感湿素子の結露時における抵抗値は400KΩ
で、他の感湿素子よりも高い抵抗値を示してい
る。 以上の各実施例から明らかなように、この発明
にかかる感湿素子によれば、感湿膜を構成する各
材料の混合比を変化させることにより、湿度−抵
抗曲線を調整することができ、抵抗値の変化幅の
小さいものから大きいもの、また感湿センサから
結露センサまで構成することができる。また感湿
膜には固体電解質が含有されているから、イオン
電導に伴なう特性劣化という問題が解消され、信
頼性の高い感湿素子が提供できる。しかもジルコ
ニウム化合物で架橋されている有機高分子を含有
するため、感湿膜そのものが強固であり、経時的
な劣化が少ないという特徴がある。さらにはこの
ジルコニウム化合物による親水性の向上と、固体
電解質によるイオン伝導性と相俟つて、感湿特性
のすぐれた感湿素子を提供することができる。
[Table] As is clear from the above table, it can be seen that the moisture-sensitive element according to the present invention shows little characteristic deterioration in the load life test. Furthermore, the dew condensation detection sensitivity of this moisture-sensitive element is higher than that of conventional devices, and the relative humidity
Detection was also possible in a low humidity region of 20-30%. Example 2 0.7g of acid anhydride type epoxy resin
MnO 2 5.2 g semiconductor powder, H 3 O + −βAl 2 O 3 3.3 g
of solid electrolyte powder were added respectively. An alcoholic solution of zirconium oxychloride (0.6 g in terms of ZrO 2 ) was added to this and mixed well, and ethyl alcohol was further added to form a paste with an appropriate viscosity. Next, a humidity sensitive element was prepared in the same manner as in Example 1, and the resistance change in relative humidity is shown by the solid line 2 in FIG. As is clear from the figure, this example shows a resistance change that is highly proportional to relative humidity. Example 3 Ethyl cellulose was dissolved in butyl cellosolve to prepare 2 g of a 16% solution. Next, semiconductor powder,
Solid electrolyte powder MnO 2 1.7g, Li + β
1.4 g of Al 2 O 3 was added to each and mixed well, and an alcoholic solution of zirconium oxychloride (0.16 g in terms of ZrO 2 ) was added to form a paste. This paste was treated in the same manner as in Example 1 to create a humidity sensitive element, and the resistance change at each relative humidity was measured. In FIG. 2, solid line 3 is the measurement result. Example 4 A moisture-sensitive element was prepared under the same conditions as in Example 3 by containing zirconium acetate (40 mg in terms of ZrO 2 ). A solid line 4 in FIG. 2 shows the change in resistance value under relative humidity. Example 5 1 g of 10% polyvinyl alcohol aqueous solution was taken, and 0.31 g of MnO 2 and 0.14 g of H 3 O + -βAl 2 O 3 were added. Furthermore, zirconium oxychloride (0.018 g in terms of ZrO 2 ) was added and mixed well. The thus obtained paste was treated in the same manner as in Example 1 to produce a moisture sensitive element. Baking conditions are 120℃, 20
It was set as 1 minute. In FIG. 2, a solid line 5 shows the change in resistance value of this humidity sensitive element under relative humidity. Example 6 0.7g of acid anhydride type epoxy resin
4.7 g of MnO 2 and 3.8 g of Na + -βAl 2 O 3 were added. An alcoholic solution of zirconium oxychloride (0.2 g in terms of ZrO 2 ) was added to this and mixed well to form a paste. The thus obtained paste was treated in the same manner as in Example 1 to produce a moisture sensitive element. The resistance value of this humidity sensing element at each relative humidity was measured. In FIG. 2, the solid line 6 shows the characteristics of this moisture sensitive element, and the resistance value during dew condensation was 500KΩ. Example 7 H 3 O + − to 0.7 g of acid anhydride type epoxy resin
Add 8.5 g of βAl 2 O 3 and add zirconium oxychloride alcohol solution (0.2 g in terms of ZrO 2 )
was added and mixed well. The thus obtained paste was treated in the same manner as in Example 1 to produce a moisture sensitive element. The resistance value of this humidity sensing element was measured at each relative humidity, and the results are shown in FIG. In the figure, sample number 7 is according to this example.
The resistance value of this moisture sensing element during dew condensation is 400KΩ
This shows a higher resistance value than other moisture-sensitive elements. As is clear from the above embodiments, according to the humidity-sensitive element of the present invention, the humidity-resistance curve can be adjusted by changing the mixing ratio of each material constituting the humidity-sensitive film. It is possible to configure sensors with small to large resistance value changes, and from humidity sensors to dew condensation sensors. Furthermore, since the moisture-sensitive membrane contains a solid electrolyte, the problem of characteristic deterioration due to ionic conduction is resolved, and a highly reliable moisture-sensitive element can be provided. Moreover, since it contains an organic polymer crosslinked with a zirconium compound, the moisture-sensitive membrane itself is strong and has the characteristic of being less susceptible to deterioration over time. Furthermore, by combining the improved hydrophilicity due to the zirconium compound and the ionic conductivity due to the solid electrolyte, it is possible to provide a moisture-sensitive element with excellent moisture-sensitive characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、感湿素子の一例を示す平面図、第2
図は、各相対湿度と抵抗値の関係を示す図であ
る。 1……絶縁基板、2,3……くし型電極、4…
…感湿膜。
FIG. 1 is a plan view showing an example of a moisture-sensitive element, and FIG.
The figure is a diagram showing the relationship between each relative humidity and resistance value. 1...Insulating substrate, 2, 3...Comb-shaped electrode, 4...
...Moisture sensitive membrane.

Claims (1)

【特許請求の範囲】 1 絶縁基板上に対向電極が形成され、少なくと
もこの対向電極間の絶縁基板表面に、感湿膜が形
成されている感湿素子において、感湿膜は、(a)導
体粉末または半導体粉末のうち少なくとも1種、
(b)固体電解質粉末、(c)少なくとも一部がジルコニ
ウム化合物で架橋されている有機高分子とからな
ることを特徴とする感湿素子。 2 前記固体電解質粉末は、プロトン導電体、ア
ルカリイオン導電体のうち少なくとも1種である
ことを特徴とする特許請求の範囲第1項記載の感
湿素子。 3 ジルコニウム化合物は、オキシ塩化ジルコニ
ウム、酢酸ジルコニウム、およびこれら塩の水和
変性物のうち少なくとも1種であることを特徴と
する特許請求の範囲第1項記載の感湿素子。
[Scope of Claims] 1. In a moisture-sensitive element in which opposing electrodes are formed on an insulating substrate and a moisture-sensitive film is formed at least on the surface of the insulating substrate between the opposing electrodes, the moisture-sensitive film includes (a) a conductor; At least one of powder or semiconductor powder,
1. A moisture-sensitive element comprising (b) a solid electrolyte powder; and (c) an organic polymer at least partially cross-linked with a zirconium compound. 2. The moisture sensing element according to claim 1, wherein the solid electrolyte powder is at least one of a proton conductor and an alkali ion conductor. 3. The moisture-sensitive element according to claim 1, wherein the zirconium compound is at least one of zirconium oxychloride, zirconium acetate, and hydrated modified products of these salts.
JP56204587A 1981-12-17 1981-12-17 Humidity-sensitive element Granted JPS58105050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204587A JPS58105050A (en) 1981-12-17 1981-12-17 Humidity-sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204587A JPS58105050A (en) 1981-12-17 1981-12-17 Humidity-sensitive element

Publications (2)

Publication Number Publication Date
JPS58105050A JPS58105050A (en) 1983-06-22
JPS6116935B2 true JPS6116935B2 (en) 1986-05-02

Family

ID=16492927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204587A Granted JPS58105050A (en) 1981-12-17 1981-12-17 Humidity-sensitive element

Country Status (1)

Country Link
JP (1) JPS58105050A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118651A (en) * 1984-11-15 1986-06-05 Matsushita Electric Ind Co Ltd Hydrogen gas sensor

Also Published As

Publication number Publication date
JPS58105050A (en) 1983-06-22

Similar Documents

Publication Publication Date Title
US4263576A (en) Humidity sensitive device
US4497701A (en) Humidity sensitive device
US4481813A (en) Dew sensor
JPS6116935B2 (en)
GB2135781A (en) Humidity sensitive device
US4450429A (en) Humidity sensitive resistance device
JPH0378761B2 (en)
DE3305683C2 (en) Humidity sensor
JPS6235058B2 (en)
JPS58166701A (en) Method of producing humidity sensitive element
JPH0572157A (en) Humidity sensing element
KR840000260B1 (en) Temperature-responsive element
JPH0218310B2 (en)
JPH043081B2 (en)
JPH0552795A (en) Humidity sensitive element
KR910004110B1 (en) Dew senser and its manufacturing method
JPH0242191B2 (en)
JPH0237046B2 (en)
JPH04238260A (en) Humidity-sensitive element
JPS6116934B2 (en)
JPS5967602A (en) Moisture sensitive element
JPH05302908A (en) Moisture sensitive element
JPS58135602A (en) Moisture sensitive element
JPS5832303A (en) Humidity sensitive dielectric loss element
JPH04359141A (en) Humidity-sensitive element