JPS61168753A - Compressore for heat-pump - Google Patents

Compressore for heat-pump

Info

Publication number
JPS61168753A
JPS61168753A JP749685A JP749685A JPS61168753A JP S61168753 A JPS61168753 A JP S61168753A JP 749685 A JP749685 A JP 749685A JP 749685 A JP749685 A JP 749685A JP S61168753 A JPS61168753 A JP S61168753A
Authority
JP
Japan
Prior art keywords
working medium
compressor
heat
port
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP749685A
Other languages
Japanese (ja)
Inventor
秀夫 岩崎
荒木 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP749685A priority Critical patent/JPS61168753A/en
Publication of JPS61168753A publication Critical patent/JPS61168753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はヒート・ポンプ圧縮機に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to heat pump compressors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に夜間余剰電力を用い、エネルギーを高効率、高密
度に増倍貯蔵して、昼間のエネルギー必要時に温度ある
いは冷熱として取り出すことにより、大型ピル空調、大
規模冷暖房、各種産業プロセス加熱等の大規模熱源とし
て利用し、電力の負荷平準化に寄与することのできるヒ
ート・ポンプの開発が近年進められている。
In general, by using surplus electricity at night, multiplying and storing energy with high efficiency and high density, and extracting it as temperature or cold energy when energy is needed during the day, large-scale pill air conditioning, large-scale heating and cooling, various industrial process heating, etc. In recent years, progress has been made in the development of heat pumps that can be used as heat sources and can contribute to leveling the electric power load.

第2図に従来用いられているスパー、ヒート。Figure 2 shows the conventionally used spur and heat.

ポンプ装置のサイクルを示す。高温サイクル部16では
電動機2に接続された圧縮轡1で作動媒体が圧縮され、
圧縮機1の吐串部に接続された配管9が凝縮器3の熱交
換器へ接続される。凝縮器3で高温熱交換された作動媒
体は膨侵器8を通り、カスケード熱交換器5、吹込管1
2を介して圧縮機1の吸入部へ接続される閉ループを構
成している。
The cycle of the pump device is shown. In the high-temperature cycle section 16, the working medium is compressed in the compression barrel 1 connected to the electric motor 2,
A pipe 9 connected to the discharge portion of the compressor 1 is connected to a heat exchanger of the condenser 3. The working medium that has undergone high-temperature heat exchange in the condenser 3 passes through the expander 8, passes through the cascade heat exchanger 5, and blows into the blow pipe 1.
A closed loop is connected to the suction section of the compressor 1 via the compressor 2.

低温サイクル部17では電動機7に接続された圧縮機6
の吐出部は作動媒体導管10を通り一度前述のカスケー
ド熱交換器5によって熱交換され一度膨張器11によっ
て膨張した後、蒸発器4へ導かれ、蒸発器4で低温熱交
換された作動媒体は吸込管13を介して再び圧縮機6の
吹込部へ接続され、閉ループを構成している。
In the low temperature cycle section 17, a compressor 6 connected to an electric motor 7
The discharge part passes through the working medium conduit 10, undergoes heat exchange with the aforementioned cascade heat exchanger 5, expands with the expander 11, and then is led to the evaporator 4, where the working medium undergoes low-temperature heat exchange. It is again connected to the blowing section of the compressor 6 via the suction pipe 13, forming a closed loop.

ここで凝縮器3の熱交換器での熱交換の様子を第3図の
グラフで説明する。縦軸は温度、横軸は変換熱量である
。またTcは作動媒体の凝縮温度、であり、Taは顕熱
流体温度であり、熱交換過程において、上昇していく、
さて、ここで斜線部は熱交換に要した熱量に相当する0 ところで第5図に示す熱交換過程をたどれば、第3図の
熱交換と同じ効果を得るのに要する熱量(斜線部)が少
なくてすむと考えられる。
Here, the state of heat exchange in the heat exchanger of the condenser 3 will be explained using the graph of FIG. The vertical axis is temperature, and the horizontal axis is converted heat amount. In addition, Tc is the condensation temperature of the working medium, and Ta is the sensible fluid temperature, which increases during the heat exchange process.
Now, here, the shaded area corresponds to the amount of heat required for heat exchange.By the way, if you follow the heat exchange process shown in Figure 5, the amount of heat required to obtain the same effect as the heat exchange in Figure 3 (the shaded area) It is thought that there will be less.

第5図の熱交換過程では、Tc+−Tc+  と凝縮温
度が異なる作動媒体を用いることに相当し、この熱交換
過程を実現しうるシステムとして第4図の構成が考えら
れている。
The heat exchange process shown in FIG. 5 corresponds to using a working medium having a condensation temperature different from that of Tc+-Tc+, and the configuration shown in FIG. 4 is considered as a system that can realize this heat exchange process.

第4図では電動機2によって駆動される圧縮機1によっ
て作動媒体が圧縮されるのであるが、圧縮過程で圧力の
異なる作動媒体を順次抽気し、凝縮機3の熱交換器の圧
力ポートに導びくべく抽気管9a、b、c、dが設けら
れている。
In Fig. 4, the working medium is compressed by the compressor 1 driven by the electric motor 2. During the compression process, working mediums with different pressures are sequentially extracted and guided to the pressure port of the heat exchanger of the condenser 3. Air bleed pipes 9a, b, c, and d are provided.

このような構成にしておけば圧力の異なる、すなわち単
一作動媒体では凝縮温度の異なる作動媒体を熱交換に用
いることができ、第5図に示す熱交換過程が可能となる
With such a configuration, working media having different pressures, that is, different condensing temperatures in the case of a single working fluid, can be used for heat exchange, and the heat exchange process shown in FIG. 5 becomes possible.

しかしながら第4図に示したものについては、上述の機
能を満足しうる圧縮機の構成が末だ具体的になっておら
ず、出現がまたれている。
However, regarding the compressor shown in FIG. 4, the configuration of the compressor that can satisfy the above-mentioned functions has not yet been concretely determined, and the compressor has appeared at different times.

〔発明の目的〕[Purpose of the invention]

この発明は上述の点にかんがみなされたもので、凝縮温
度の異なる作動媒体を熱交換に用い、熱交換時の非可逆
的なエネルイ損失を抑制することのできるヒート・ポン
プ用圧縮機の提供を目的とする。
This invention has been made in view of the above points, and aims to provide a compressor for a heat pump that can suppress irreversible energy loss during heat exchange by using working media with different condensing temperatures for heat exchange. purpose.

〔発明の概要〕[Summary of the invention]

この発明は、ヒート・ポンプ装置の構成を表わす第4図
において作動媒体を圧縮する圧縮機を細流圧縮機とし、
中間段に、作動媒体を抽気する抽気口を少なくとも1つ
の段に設け、該油気口には抽気管が接続され、該抽気管
は凝縮器め熱交換器の圧力ポートに接続され、圧力の異
なる、つまり単一作動媒体では凝縮温度の異なる作動媒
体により圧縮仕事を効率的に利用しようというものであ
る。また、軸流圧縮機の抽気口より後流では抽気により
作動媒体の流量が減少するので、ケーシングあるいはロ
ータ側に段差をつけて通路部を絞りこむ構造とするもの
である。
In this invention, in FIG. 4 showing the configuration of a heat pump device, the compressor for compressing the working medium is a trickle compressor,
At least one intermediate stage is provided with an air bleed port for bleeding the working medium, an air bleed pipe is connected to the oil port, and the air bleed pipe is connected to a pressure port of a heat exchanger for a condenser, and the pressure is The idea is to efficiently utilize compression work by using different working media, that is, by using working media with different condensing temperatures in the case of a single working medium. Furthermore, since the flow rate of the working medium decreases due to air extraction downstream from the air extraction port of the axial compressor, a structure is adopted in which a step is provided on the casing or rotor side to narrow the passage.

〔発明の効果〕〔Effect of the invention〕

この発明によれば凝縮温度の異なる作動媒体を用いた熱
交換により、熱交換過程における非可逆過程のエネルギ
ー損失を抑制し、圧縮仕事を効率的に用いたヒート・ポ
ンプ装置用の圧縮機を提供することができる。
According to the present invention, there is provided a compressor for a heat pump device that suppresses energy loss in the irreversible process in the heat exchange process and efficiently uses compression work through heat exchange using working media with different condensing temperatures. can do.

一般に遠心圧締機等では前述のように圧力の異なる作業
媒体を抽気するには、遠心圧縮機を何台か用意する必要
があるが、この発明では1台の軸流圧縮機で充分であり
、それゆえ電動機も1台で充分でコスト、スペースの面
で大きな効果がある。
Generally, in a centrifugal compaction machine, etc., it is necessary to prepare several centrifugal compressors in order to bleed working media with different pressures as described above, but in this invention, one axial flow compressor is sufficient. Therefore, one electric motor is sufficient, which has a great effect in terms of cost and space.

また、細流圧縮機では遠心圧縮密にくらべて適用流量が
比較的任意で大容鷲化にも対処できる。
In addition, compared to centrifugal compaction, the trickle compressor allows for a relatively arbitrary flow rate and can accommodate large-capacity compressors.

さらに軸流圧縮機では段数をふやすことにより高圧力比
の圧縮機が可能であり、低圧段から高圧段に多くの抽気
口および抽気管を設け、凝縮器の熱交換器に接続すれば
、より少ない熱91.(圧縮仕事)で効率的に熱交換す
ることができる。
Furthermore, by increasing the number of stages in an axial flow compressor, it is possible to create a compressor with a high pressure ratio. Less heat 91. (compression work) allows for efficient heat exchange.

〔発明の実施例〕[Embodiments of the invention]

この発明の一実施例を第1図で説明する。つまり、第1
図はヒート・ポンプ用軸流圧Miの子牛面断面であり、
20がロータ、21がケー?ング22 a〜22dが動
翼、23a 〜23dが静翼、24a、24b。
An embodiment of this invention will be explained with reference to FIG. In other words, the first
The figure is a cross section of the calf surface of the axial flow pressure Mi for a heat pump.
20 is rotor, 21 is k? 22a to 22d are rotor blades, 23a to 23d are stationary blades, and 24a, 24b.

24 Cが抽気口、四が吐出口である。24C is a bleed port, and 4 is a discharge port.

作動媒体は図の矢印のよ、うに流れる。まず人口部26
より流入した作動媒体は第1段(動翼22a1静m23
a>で圧縮され圧力、温度が上昇する。
The working medium flows as shown by the arrow in the figure. First, population department 26
The working medium that has flowed further into the first stage (moving blade 22a1 static m23
a>, the pressure and temperature rise.

しかるのち作動媒体の一部は第1段後流のケーシングに
設けられた抽気口24 aより流出し、抽気管を通り凝
縮器の熱交換器に導ひかれ、残りの作動媒体は第2段(
22b、23b)に流入し、さらに圧縮仕事により温度
、圧力が上昇する。以下同様に。
A part of the working medium then flows out from the bleed port 24a provided in the casing downstream of the first stage, passes through the bleed pipe and is led to the heat exchanger of the condenser, and the remaining working medium flows to the second stage (
22b, 23b), and the temperature and pressure further increase due to compression work. Similarly below.

作動媒体は各段で圧力、温度を上昇したのち一部は各抽
気口より熱交換器に導ひかれ残りは次の段へ流入し、最
終的に残った作動媒体も吐出口四より熱交換器に導びか
れる。
After the working medium increases in pressure and temperature at each stage, a portion is led to the heat exchanger through each extraction port, the rest flows into the next stage, and finally the remaining working medium is also passed through the heat exchanger through the discharge port 4. be guided by.

ここで第5図に示したような熱交換過程における温度分
布を実現するには各抽気口および吐出口からほぼ同量の
作動媒体を抽気する必要があり、一般に抽気口がN個あ
るとき各抽気口からの作動媒体は全流入量の1/(N+
1)程度となる。
In order to achieve the temperature distribution during the heat exchange process as shown in Figure 5, it is necessary to bleed approximately the same amount of working medium from each bleed port and discharge port, and generally when there are N bleed ports, each The working medium from the bleed port is 1/(N+
1) Approximately.

第1図の例ではN=3で各抽気口から全流量のV4程度
の抽気がなされる。このようにヒート・ポンプ用圧縮機
では通常の圧縮機にくらべて抽気量が非常に大きいので
抽気口より後段では流量の減少がいちじるしく、各抽気
口の直後では、ケーシングに段差をつけ流量の減少にみ
あうように通路部を絞りこむ構造となっている。
In the example shown in FIG. 1, when N=3, air is extracted from each air bleed port at a total flow rate of about V4. In this way, heat pump compressors have a much larger amount of air bleed than normal compressors, so the flow rate decreases significantly at the stage after the bleed port, and immediately after each bleed port, a step is placed on the casing to reduce the flow rate. The structure is such that the passageway is narrowed to fit.

また第1図とは逆に各抽気口の直後でロータに段差をつ
けて通路部を絞りこむ構造としてもよい。
Further, contrary to FIG. 1, a structure may be adopted in which a step is added to the rotor immediately after each air bleed port to narrow the passage portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係ると−ト、ポンプ用圧縮機の要部の
断面図、 第2図は従来のヒート・ポンプ装置のシステム図、第3
図は第2図のシステムにおける熱交換過程を表わす図、 第4図は多段の熱交換過程を実現すると一ト・ポンプ装
置のシステム図、 第5図は第4図のシステムにおける熱交換過程を表わす
図である。 1.6・・・圧縮機 2.7・・・電動機 3・・・凝
縮器4・・・蒸発器 5・・・カスケード熱交換器8.
11・・・膨張器 9・・・抽気管 10・・・導管領
・・・ロータ 21・・・ケーシング 22・・・動翼
お・・・静翼 ス・・・抽気口 5・・・吐出口代理人
 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第8図    第5図 第4図
Fig. 1 is a sectional view of the main parts of a pump compressor according to the present invention; Fig. 2 is a system diagram of a conventional heat pump device;
Figure 4 shows the heat exchange process in the system shown in Figure 2, Figure 4 shows the system diagram of a single pump device that realizes a multi-stage heat exchange process, and Figure 5 shows the heat exchange process in the system shown in Figure 4. FIG. 1.6... Compressor 2.7... Electric motor 3... Condenser 4... Evaporator 5... Cascade heat exchanger 8.
11... Expander 9... Air bleed pipe 10... Conduit area... Rotor 21... Casing 22... Moving blade or stationary blade S... Air bleed port 5... Discharge Exit agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 8 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 内部に封入された作動媒体を圧縮する圧縮機と前記作動
媒体を凝縮する複数の熱交換器を有する凝縮器と作動媒
体を蒸発させる蒸発器とを備えたヒート・ポンプ装置に
用いられる圧縮機において、前記作動媒体の流れを軸流
とし、複数の中間段において、少なくとも1つの段に前
記作動媒体を抽気する抽気口を設け、該抽気口には抽気
管が接続され、該抽気管は前記凝縮器の熱交換器の圧力
ポートに接続され、前記抽気口の後流側のケーシングあ
るいはロータに段差をつけて、通路部をしぼりこむ構造
にしたことを特徴とするヒート・ポンプ用圧縮機。
In a compressor used in a heat pump device, the compressor includes a compressor that compresses a working medium sealed therein, a condenser having a plurality of heat exchangers that condenses the working medium, and an evaporator that evaporates the working medium. , the flow of the working medium is an axial flow, an air bleed port is provided in at least one stage of the plurality of intermediate stages to bleed the working medium, an air bleed pipe is connected to the air bleed port, and the air bleed pipe is connected to the condensation pipe. 1. A compressor for a heat pump, which is connected to a pressure port of a heat exchanger of a heat pump, and has a structure in which a passage portion is narrowed by adding a step to a casing or a rotor on the downstream side of the air extraction port.
JP749685A 1985-01-21 1985-01-21 Compressore for heat-pump Pending JPS61168753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP749685A JPS61168753A (en) 1985-01-21 1985-01-21 Compressore for heat-pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP749685A JPS61168753A (en) 1985-01-21 1985-01-21 Compressore for heat-pump

Publications (1)

Publication Number Publication Date
JPS61168753A true JPS61168753A (en) 1986-07-30

Family

ID=11667379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP749685A Pending JPS61168753A (en) 1985-01-21 1985-01-21 Compressore for heat-pump

Country Status (1)

Country Link
JP (1) JPS61168753A (en)

Similar Documents

Publication Publication Date Title
EP2147265B1 (en) Refrigerating device and method for circulating a refrigerating fluid associated with it
Harrell et al. Performance tests of a two phase ejector
US5107682A (en) Maximum ambient cycle
CN109708337B (en) Multistage series compression heat pump unit
US5555745A (en) Refrigeration system
US3494145A (en) Integral turbo compressor-expander system for refrigeration
JPS61168753A (en) Compressore for heat-pump
KR20200108347A (en) Gas fluid compression by alternating refrigeration and mechanical compression
US4187692A (en) Liquid cooled rotary vane air cycle machine
US4178766A (en) Thermodynamic compressor method
KR100461995B1 (en) Gas heat pump driven by refrigerant steam turbine
Poredoš et al. The energy efficiency of chillers in a trigeneration plant
CN218821098U (en) Open type low-ring-temperature air circulation high-temperature heat pump unit
CN219163506U (en) Heat management system of direct-cooling type energy storage battery
CN219163502U (en) Integrated energy storage thermal management system with double refrigeration modules
JPS61107058A (en) Compressor for superheating pump
CN216922237U (en) Air medium's heat pump electric storage system
Quack Cold compression of helium for refrigeration below 4 K
US4831289A (en) Gas compression using a two-phase MHD channel
JPS6124950A (en) Two-element refrigerator
CN116014286A (en) Energy storage battery and thermal management system thereof
Anderson et al. Analysis of a FAME/MLL Screw Multi-Stage Compressor for High Temperature, High Pressure Vapor Compression Refrigeration Cycle
JPS61107059A (en) Compressor for superheating pump
JPS60175980A (en) Cooling method
CN117287626A (en) System for reducing gas recovery of main exhaust pipeline, energy storage system and control method