JPS61168206A - Anisotropic manganese-aluminum-carbon series alloy magnet - Google Patents

Anisotropic manganese-aluminum-carbon series alloy magnet

Info

Publication number
JPS61168206A
JPS61168206A JP60007353A JP735385A JPS61168206A JP S61168206 A JPS61168206 A JP S61168206A JP 60007353 A JP60007353 A JP 60007353A JP 735385 A JP735385 A JP 735385A JP S61168206 A JPS61168206 A JP S61168206A
Authority
JP
Japan
Prior art keywords
alloy
added
weight
manganese
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60007353A
Other languages
Japanese (ja)
Other versions
JPH0736362B2 (en
Inventor
Shigeru Kojima
小嶋 滋
Seiji Kojima
小嶋 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60007353A priority Critical patent/JPH0736362B2/en
Publication of JPS61168206A publication Critical patent/JPS61168206A/en
Publication of JPH0736362B2 publication Critical patent/JPH0736362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To remarkably improve distortion resistance at a processing temperature range in hot plastic processing of alloys by adding a proper quantity of tine to an anisotropic manganese-aluminum-carbon (Mn-Al-C) series alloy. CONSTITUTION:An Mn-Al-C alloy billet composed of 70.2% of manganese in weight, 29.3% of aluminum in weight and 0.5% of carbon in weight and alloy billets added with Sn of 0.2, 1.0 and 3.0 in weight ratio for this composition 100 of the above alloy billet respectively are prepared by melting and casting thereof. After these alloy billets are given by heat processing in which they are cooled from the temperature 1,100 deg.C, they are extrusion-processed (extrusion ratio is equal to 5) at the temperature 700 deg.C. As to the distortion resistance values in extrusion-processing and the magnetic characteristic (BH)max values after extrusion-processing of the respective alloys, when the alloys added with Sn are compared with the alloy not added with Sn, the former magnetic characteristics are about the same as that of the latter and the former distortion resistance values are smaller by 22-26% than that of the latter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石に係り、特に異方性マンガン−アルミ
ニウム−炭素(Mn −AQ −C)系合金磁石に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to permanent magnets, and particularly to anisotropic manganese-aluminum-carbon (Mn-AQ-C) based alloy magnets.

(従来の技術) マンガン68.0ないし73.0重量%、炭素(1/1
0 Mn−6,6)ないしく1/3 Mn−22,2)
重量%(ただし数式内のMnはマンガン成分重量%を表
わす)、残部アルミニウムの組成からなる異方性Mn−
A(!−C系合金磁石はすぐれた磁気特性をもつ永久磁
石として、例えば、特公昭54−31448号公報など
によって知られている。
(Prior art) Manganese 68.0 to 73.0% by weight, carbon (1/1
0 Mn-6,6) or 1/3 Mn-22,2)
weight% (however, Mn in the formula represents the manganese component weight%), anisotropic Mn-
A(!-C alloy magnets are known as permanent magnets with excellent magnetic properties, for example, from Japanese Patent Publication No. 31448/1983).

(発明が解決しようとする問題点) 異方性Mn−AQ−C系合金磁石は、前記組成範囲内に
ある合金を530ないし830℃の温度領域で押出加工
などの温間塑性加工を施すことによって製造されるが、
この合金は鉄合金や銅合金と違って可塑性に乏しいため
塑性加工に必要な加工圧力が高くなり、加工設備が複雑
になったり工具寿命が十分でないなどの問題がある。
(Problems to be Solved by the Invention) Anisotropic Mn-AQ-C alloy magnets can be produced by subjecting an alloy within the above composition range to warm plastic working such as extrusion in a temperature range of 530 to 830°C. Manufactured by
Unlike iron alloys and copper alloys, this alloy has poor plasticity, so the processing pressure required for plastic working is high, leading to problems such as complicated processing equipment and insufficient tool life.

したがって、この合金の可塑性を良くして加工圧力を軽
減すること、言い換えれば、この合金の変形抵抗を小さ
くすることが工業的生産における重要な課題である。
Therefore, improving the plasticity of this alloy to reduce processing pressure, in other words, reducing the deformation resistance of this alloy is an important issue in industrial production.

(問題点を解決するための手段) 本発明は、前記組成範囲のMn−AQC系合金に適量の
スズ(以下、Snと記す)を添加することによって、こ
の合金の温間塑性加工時の加工温度領域における変形抵
抗を著しく改善させるものである。
(Means for Solving the Problems) The present invention provides a method for processing during warm plastic working of this alloy by adding an appropriate amount of tin (hereinafter referred to as Sn) to the Mn-AQC alloy having the above composition range. This significantly improves deformation resistance in the temperature range.

(作用) 以下に代表的な実験データを例示して本発明の詳細な説
明する。
(Function) The present invention will be described in detail below with reference to typical experimental data.

図はマンガン68.0ないし73.0重量%、炭素(1
/10Mn−6,6)ないしく1/3Mn −22,2
)重量%、残部がアルミニウムの組成範囲内のMn −
AQ −C系合金にSnを添加した合金を530ないし
830℃の温度領域で温間塑性加工を施したときの、S
nの添加量(横軸)と変形抵抗との関係を示した図で、
添加量(横軸)は上記Snを添加しないMn −AQ 
−C系合金100に対するSnの重量比で、また変形抵
抗値比(縦軸)は同じ<Snを添加しない上記Mn −
AQ −C系合金の変形抵抗値に対する比で表わしであ
る。
The figure shows manganese 68.0 to 73.0% by weight, carbon (1
/10Mn-6,6) or 1/3Mn-22,2
)% by weight, the balance being within the composition range of aluminum.
When an alloy containing Sn added to an AQ-C alloy is subjected to warm plastic working in a temperature range of 530 to 830°C, S
This is a diagram showing the relationship between the amount of n added (horizontal axis) and deformation resistance.
The amount added (horizontal axis) is Mn-AQ without adding Sn.
- The weight ratio of Sn to C-based alloy 100 and the deformation resistance value ratio (vertical axis) are the same <the above Mn without adding Sn -
It is expressed as a ratio to the deformation resistance value of the AQ-C alloy.

この図に示すように、Snの添加量が増すとともに変形
抵抗は小さくなり、特に添加量が0.2ないし3.0(
ただし添加前の合金を100とする重量比、添加量につ
いて以下同じ)の領域では変形抵抗値の比は0.78な
いし0.64となって変形抵抗は22から=3− 36%も小さくなる。また添加量が3.0を越えると変
形抵抗はさらに小さくなり、Snの添加は変形抵抗を小
さくする上で極めて有効に作用する。しかしながら、S
nの添加は磁気特性を低下させる傾向があり、0.2な
いし3.0の添加量では添加しない合金の磁気特性と比
べて7%以内の低下で実用上全く問題はないが、添加量
が3.0を越えると磁気特性が急激に低下し、添加量が
4.0では50%以下に低下する。例えば、Snを添加
しないMn−AQ−C系合金の押出加工後の磁気特性(
BH)max=6.0MG・oeに対して、Snを0.
2ないし3.0添加した場合の(BH)max値は5.
6MG・00以上であり、はとんど磁気特性は低下しな
い。しかし4.0のSnを添加した場合は(BH)ma
x値が3.0MG−Oe以下になり低い磁気特性となる
。したがって、実用上有効なSnの添加量としては0.
2ないし3.0の領域に限定される。
As shown in this figure, as the amount of added Sn increases, the deformation resistance decreases, especially when the amount of added Sn increases from 0.2 to 3.0 (
However, in the range of weight ratio and addition amount (the same applies hereafter, where the alloy before addition is 100), the deformation resistance value ratio becomes 0.78 to 0.64, and the deformation resistance decreases from 22 to 3-36%. . Moreover, when the addition amount exceeds 3.0, the deformation resistance becomes even smaller, and the addition of Sn acts extremely effectively in reducing the deformation resistance. However, S
The addition of n tends to reduce the magnetic properties, and when the addition amount is 0.2 to 3.0, there is no practical problem at all, as the reduction is within 7% compared to the magnetic properties of the alloy without the addition. When the amount exceeds 3.0, the magnetic properties rapidly decrease, and when the amount added is 4.0, the magnetic properties decrease to 50% or less. For example, the magnetic properties (
BH) For max=6.0MG・oe, Sn is 0.
The (BH) max value when 2 to 3.0 is added is 5.
It is 6MG·00 or more, and the magnetic properties hardly deteriorate. However, when 4.0 Sn is added, (BH)ma
The x value becomes 3.0 MG-Oe or less, resulting in poor magnetic properties. Therefore, the practically effective amount of Sn added is 0.
It is limited to the range of 2 to 3.0.

Snを添加することによって変形抵抗が小さくなる原因
はまだ明らかではないが、顕微鏡観察では添加量が0.
2ないし3.0の領域では結晶粒界に沿った少量の析出
物の存在が認められ、これが変形抵−4= 抗値の減少に関与しているものと考えられる。さらに添
加量が3.0を越えると上記の析出物以外にAlt4n
(r)相と呼ばれる非磁性相がwt察され、特に添加量
が4.0以」二ではこの非磁性相が多いために変形抵抗
は/J1さくなるものの磁気特性は大幅に低下すると考
えられる。
The reason why the deformation resistance decreases due to the addition of Sn is not yet clear, but microscopic observation shows that the amount added is 0.
In the range of 2 to 3.0, the presence of a small amount of precipitates along grain boundaries is recognized, and this is considered to be involved in the decrease in deformation resistance -4=resistance value. Furthermore, if the amount added exceeds 3.0, Alt4n will appear in addition to the above precipitates.
A non-magnetic phase called the (r) phase was detected, and it is thought that especially when the amount added is 4.0 or more, the deformation resistance decreases by /J1 due to the large amount of this non-magnetic phase, but the magnetic properties are thought to decrease significantly. .

以下に代表的な実施例を示す。Typical examples are shown below.

(実施例) マンガン70.2重量%、アルミニウム29.3重量%
、炭素0.5重量%の組成からなるMn−AQC合金ビ
レットおよびこの組成100に対する重量比で0.2.
1.0.3.0のSnをそれぞれ添加した合金ビレット
を溶解鋳造により作成し、これらの合金ビレットを11
00℃から冷却する熱処理を施した後、700℃の温度
で押出加工(押出比=5)した。それぞれの合金につい
て押出加工時の変形抵抗値および押出加工後の磁気特性
(BH)max値を測定したところ次表に示すように、
Snを添加した合金はSnを添加しない合金と比較して
磁気特性はほとんど変らずに変形抵抗値が22ないし3
6%も小さくなる結果が得られた。
(Example) Manganese 70.2% by weight, aluminum 29.3% by weight
, a Mn-AQC alloy billet having a composition of 0.5% by weight of carbon and a weight ratio of 0.2.
Alloy billets to which Sn of 1.0.3.0 was added were created by melting and casting, and these alloy billets were
After heat treatment of cooling from 00°C, extrusion processing was performed at a temperature of 700°C (extrusion ratio = 5). For each alloy, the deformation resistance value during extrusion processing and the magnetic property (BH) max value after extrusion processing were measured, as shown in the following table.
Alloys with Sn added have deformation resistance values of 22 to 3 with almost no change in magnetic properties compared to alloys without Sn added.
A result of 6% reduction was obtained.

(発明の効果) 以上詳細に述べて明らかなように本発明は、Mn−AQ
−C系合金磁石にSnを添加することによって、温間塑
性加工時の可塑性を著しく改善したもので、例えば加工
圧力が軽減されることによって加工金型の寿命は従来と
比べて10倍以上に延び、加工金型は小型簡易化が図れ
るなど、Mn −AQ −C系合金磁石の工業的生産に
おいて極めて高い価値を発輝する。
(Effects of the Invention) As is clear from the detailed description above, the present invention provides Mn-AQ
- By adding Sn to the C-based alloy magnet, the plasticity during warm plastic working has been significantly improved.For example, by reducing the working pressure, the life of the working mold can be increased by more than 10 times compared to conventional methods. It has an extremely high value in the industrial production of Mn-AQ-C alloy magnets, as the processing mold can be made smaller and simpler.

【図面の簡単な説明】[Brief explanation of the drawing]

図はMn −Ar4−C系合金磁石にSnを添加したと
きの流加量と変形抵抗との関係図である。
The figure is a diagram showing the relationship between the added amount and the deformation resistance when Sn is added to a Mn-Ar4-C alloy magnet.

Claims (1)

【特許請求の範囲】[Claims] マンガン68.0ないし73.0重量%、炭素(1/1
0Mn−6.6)ないし(1/3Mn−22.2)重量
%、残部がアルミニウムの組成からなる合金100に対
して、スズを重量比で0.2ないし3.0の割合で添加
した組成からなることを特徴とする異方性マンガン−ア
ルミニウム−炭素系合金磁石。
Manganese 68.0 to 73.0% by weight, carbon (1/1
A composition in which tin is added at a weight ratio of 0.2 to 3.0 to alloy 100 having a composition of 0Mn-6.6) to (1/3Mn-22.2)% by weight and the balance being aluminum. An anisotropic manganese-aluminum-carbon alloy magnet characterized by comprising:
JP60007353A 1985-01-21 1985-01-21 Method for manufacturing anisotropic manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0736362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007353A JPH0736362B2 (en) 1985-01-21 1985-01-21 Method for manufacturing anisotropic manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007353A JPH0736362B2 (en) 1985-01-21 1985-01-21 Method for manufacturing anisotropic manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS61168206A true JPS61168206A (en) 1986-07-29
JPH0736362B2 JPH0736362B2 (en) 1995-04-19

Family

ID=11663589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007353A Expired - Lifetime JPH0736362B2 (en) 1985-01-21 1985-01-21 Method for manufacturing anisotropic manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0736362B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496730A (en) * 1972-05-09 1974-01-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496730A (en) * 1972-05-09 1974-01-21

Also Published As

Publication number Publication date
JPH0736362B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US3954519A (en) Iron-chromium-cobalt spinodal decomposition-type magnetic alloy comprising niobium and/or tantalum
CN111564273A (en) FeNi soft magnetic alloy with low cost and high saturation magnetic induction intensity and preparation method thereof
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
CN113897558B (en) High-saturation-magnetic-induction high-permeability iron-based soft magnetic material and preparation method thereof
JPS587702B2 (en) Fe-Cr-Co magnet alloy
JPH0158261B2 (en)
JPS6154866B2 (en)
JPH0339451A (en) Permanent magnet material
KR830001327B1 (en) Method of manufacturing magnetic element made of alloy
JPS61168206A (en) Anisotropic manganese-aluminum-carbon series alloy magnet
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP2022056372A (en) METHOD OF MANUFACTURING Nd-Fe-B BASED MAGNETIC BODY, CAPABLE OF ADJUSTING GRAIN BOUNDARY
JPS608297B2 (en) magnet alloy
JPS61168208A (en) Anisotropic manganese-aluminum-carbon series alloy magnet
JPS61168207A (en) Anisotropic manganese-aluminum-carbon series alloy magnet
JPS5924177B2 (en) Square hysteresis magnetic alloy
US4443276A (en) Mn--Al--C Alloys for anisotropic permanent magnets
JP4239792B2 (en) Aluminum alloy for casting with high electrical resistivity
JPS609644B2 (en) alloy magnet
JPS629611A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH06264195A (en) Fe-co series magnetic alloy
JPS6119735A (en) Preparation of non-directional high strength semi-hard magnetic alloy
US2349857A (en) Permanent magnet material
JPS6213420B2 (en)
JPH0499819A (en) Production of mild magnetic steel products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term